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Themis Exarchos 5 and Nenad Filipović 3,4,*
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Abstract: Cardiovascular diseases (CVDs) are a leading cause of death. If not treated in a timely
manner, cardiovascular diseases can cause a plethora of major life complications that can include
disability and a loss of the ability to work. Globally, acute myocardial infarction (AMI) is responsible
for about 3 million deaths a year. The development of strategies for prevention, but also the early
detection of cardiovascular risks, is of great importance. The fractional flow reserve (FFR) is a mea-
surement used for an assessment of the severity of coronary artery stenosis. The goal of this research
was to develop a technique that can be used for patient fractional flow reserve evaluation, as well as
for the assessment of the risk of death via gathered demographic and clinical data. A classification
ensemble model was built using the random forest machine learning algorithm for the purposes
of risk prediction. Referent patient classes were identified by the observed fractional flow reserve
value, where patients with an FFR higher than 0.8 were viewed as low risk, while those with an
FFR lower than 0.8 were identified as high risk. The final classification ensemble achieved a 76.21%
value of estimated prediction accuracy, thus achieving a mean prediction accuracy of 74.1%, 77.3%,
78.1% and 83.6% over the models tested with 5%, 10%, 15% and 20% of the test samples, respectively.
Along with the machine learning approach, a numerical approach was implemented through a 3D
reconstruction of the coronary arteries for the purposes of stenosis monitoring. Even with a small
number of available data points, the proposed methodology achieved satisfying results. However,
these results can be improved in the future through the introduction of additional data, which will, in
turn, allow for the utilization of different machine learning algorithms.

Keywords: cardiovascular diseases; acute myocardial infarction; fractional flow reserve; machine
learning; ensemble; random forest; 3D reconstruction

1. Introduction

The World Health Organization estimates that cardiovascular diseases are the leading
cause of death in the world with 17.9 million fatal outcomes annually. Cardiovascular
diseases are responsible for significant medical, social and economic consequences globally.
They represent one of the leading causes of disability, a loss in the ability to work and
premature mortality, as well as place high costs on health care systems. According to the
literature data, CVDs result in 31.8% of all the reported deaths in the world, and half of
these outcomes are as a result of ischemic heart diseases [1–3].

Acute myocardial infarction is manifested through the necrosis of the heart muscle,
which occurs due to coronary artery occlusion and the insufficient oxygenation of car-
diomyocytes. The prevalence of acute myocardial infarction is about three million people,
with more than a million deaths per year occurring in the United States [4]. Considering the
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serious consequences of this disease, there is a need to develop strategies for the prevention
and early detection of cardiovascular risks, as well as for the rapid diagnosis of AMI for
the timely application of adequate therapy [5].

The rupture of unstable atherosclerotic plaque, thrombosis and the acute reduction
in blood flow through the coronary artery, with its consequent occlusion, are some of
the possible mechanisms of AMI development [6,7]. A study suggested that that the
characterization of culprit lesions by optical coherence tomography supported the concept
that plaque erosion is more common in cases of non-ST-segment-elevation myocardial
infarction (NSTEMI), while plaque rupture is more prominent in cases of ST-segment-
elevation myocardial infarction (STEMI) [8].

Dyslipidemia is one of the key proposed factors in the progression of atherosclerosis.
It has also been shown that a decrease in the concentration of low-density lipoprotein
cholesterol (LDL-C) in high-risk patients is one of the key strategies in the prevention of
ischemic heart disease [9,10]. Namely, the reduction in LDL concentration by 1 mmol/L
over five years in middle-aged people reduces the risk of developing CVD by 20% [11].

The laboratory measurement of cardiac biomarkers enables the rapid diagnosis and
monitoring of patients with AMI, as well as the possibility of individualizing the therapy
according to the characteristics and risks of the patient. A laboratory establishment of
CKMB activity is used in diagnosis, the assessment of the severity of the clinical picture
and in the prediction of the prognosis of AMI. This isoenzyme, due to myocardial necrosis,
shows an increase in activity in the patient’s serum after 4 to 8 h from the onset of chest
pain; this then reaches a maximum within 18–24 h, and then returns back to a normal value
after 24–48 h [12]. According to the data from the literature, the establishing of CKMB
activity together with concentrations of myoglobin, troponin I and NT-proBNP, also have
a—apart from diagnostic—prognostic significance [13].

The dominant biomarkers of myocardial damage today are certainly cardiac troponins
(i.e., TnI and TnT). High-sensitivity troponins entered the clinical practice guidelines and
were incorporated into the universal diagnostics definition of AMI [14]. The diagnosis
of AMI is established by the detection of an increase or decrease in cardiac biomarkers,
especially troponin, with at least one concentration that is larger than the 99th percentile of
the healthy population and at least one symptom of ischemia [15,16].

The establishment of NT-proBNP is significant in the assessment of ventricular dys-
function and myocardial ischemia. This highly specific and sensitive cardiac biomarker
is also a powerful predictor of the development of heart failure and mortality after
AMI [17,18].

In current clinical guidelines, the most important diagnostic/therapeutic strategy in
the management of patients with confirmed AMI is the invasive coronary angiography.
By performing this procedure, the disease is indicated within 24 h in patients who meet
at least one of the high-risk criteria for AMI (high cardiac troponins, dynamic changes
in the electrocardiogram or a Global Registry of Acute Coronary Events risk score of
>10). Percutaneous coronary intervention enables the establishment of a flow through the
occluded coronary artery (which is the cause of AMI), as well as helps in gaining insights
into the condition of other blood vessels.

Fractional flow reserve measurement is used to quantitatively assess the severity of the
coronary artery stenosis identified during invasive coronary angiography. FFR is defined
as the ratio between the maximum possible blood flow in the diseased coronary artery
and the theoretically possible maximum blood flow in the normal coronary artery. During
angiography, FFR is measured using a wire (catheter) for measuring coronary pressure, as
well as by calculating the ratio between the coronary pressure distal to the coronary artery
and the pressure in the aorta when under conditions of maximum myocardial hyperemia.
This ratio shows the potential decrease in the flow distal to coronary stenosis. In healthy
people, the FFR is 1, whereas an FFR lower than 0.75–080 indicates myocardial ischemia.
FFR values less than 0.75 indicate the need for revascularization [19,20].
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Multidetector computed tomography fractional flow reserve (MDC FFR) is used for a
more elaborate assessment of the hemodynamic significance of coronary artery stenosis
when compared to classic FFR. This quantitative technique is built on processing, based on
a mathematical model of fluid dynamics, the obtained data.

A decision tree algorithm is a supervised classification algorithm that is based on a
binary tree structure. This algorithm splits the ranges of input variables to create conditions
with which the dataset can be split between two or more classes. Each condition represents
a node of the binary tree. Each node branches into two other nodes, where each branch
represents one of the two possible outcomes of the set condition. The leaves of the decision
tree represent classes, which are then assigned to the samples of data.

A random forest classification algorithm is a supervised classification algorithm that is
based on an ensemble of multiple decision tree models. Each decision tree model contained
within the random forest has the same aforementioned way of making decisions, but it is
trained with different, randomly selected subsets of data. Each decision tree is capable of
making its own decisions, but the final output of the random forest is made by counting the
number of times each class was chosen by the decision trees and by selecting the class that
was chosen the highest number of times. The random forest approach reduces variance
in classification with its voting process when compared to a single decision tree, and it
achieves this while also reducing the overfitting of the model by feeding each tree with a
smaller subset of the initial set of data.

In recent times, artificial intelligence has been gaining a strong foothold in medical
science. Machine learning and deep learning models are gaining a widespread use in
the automation of disease classification, disease development over time, as well as risk
monitoring through the use of classification and regression analysis algorithms. Several
studies have been conducted for the purposes of FFR patient risk classification [21–23]. All
of these studies used data comprising computed tomography angiography (CTA) images
for training convolutional neural networks. In this paper, we propose a methodology based
on an ensemble of machine learning models for the purposes of patient risk classification
through fractional flow reserve measurements using demographic and clinical data. The
created system is meant to serve as a decision support tool for medical experts.

2. Materials and Methods

This section of the paper contains information on the available data, as well as the
methodology used for the data preprocessing and the creation of the final classification
model. The methodology used is depicted in Figure 1.

2.1. Dataset

Our dataset is composed of the clinical data gathered from patients in the form of
biomarkers and the descriptive data points regarding primary and follow up diagnosis,
as well as the descriptive data points that define the position and degree of stenosis and
lesions in three defined arteries from the left and right coronary artery trees. Along with the
aforementioned data collected directly from patients, our dataset contains simulated FFR
values, which represent the target to be used in the classification of patients into high-risk
or low-risk classes.
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During the visits, blood samples were taken from the patients according to the usual
standards of clinical biochemistry. All biomarkers were determined in the Laboratory
Diagnostic Service of the University Clinical Center Kragujevac. Standard laboratory
methods were used in all the patients to establish the following values: hematological
parameters (total number of leukocytes); concentrations of biochemical parameters (glu-
cose, urea, creatinine, uric acid, cholesterol, triacylglycerols and LDL); the enzyme activity
of cardiomyocyte damage markers (CK, CKMB, AST and LDH); and cardio-specific pro-
teins (hs TNI and NT-proBNP). Hematological parameters were established on a DxH900
hematological counter, Beckman Coulter Analysers and biochemical parameters. The
cardio-specific enzymes were established on an Oly AU 680 biochemical analyzer and
on Beckman Coulter Analyzers. An Abbot Allinity immunochemical analyzer was used
to establish the concentration of hsTNI, whereas the concentration of NT-proBNP was
measured on a Cobas e411 immunochemical analyzer (Roche Diagnostics, Mannheim,
Germany). All laboratory measurements included the implementation of regular internal
and external quality controls in accordance with the recommendations of good laboratory
practice. The study conduction was complied with the code of ethics of the World Medical
Association (Declaration of Helsinki), and it was also approved by the Ethics Board of
University Clinical Centre Kragujevac.

In our study, we have included patients suffering from coronary artery disease, where
80% had a history of AMI. Most of the patients had between 40% and 50% of stenosis,
which meant that they belonged to the intermediate class of coronary artery stenosis; this
was the reason virtual FFR was applied as a validation tool.

All the features used in the creation of a machine learning model, as well as their data
types and ranges, are shown in Table 1.
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Table 1. Dataset description.

Name Type Range

Numeric FFR Numeric 0–1

Risk class Binary [0, 1]

Smoker Binary [0, 1]

Gender Binary [0, 1]

Age Numeric 36–73

CK Numeric 61–3353

CKMB Numeric 11–324

AST Numeric 12–348

LDH Numeric 210–2557

Troponin Numeric 0.0124–58.96

pBNP Numeric 48.1–32,700.0

CRP Numeric 3.3–122.6

Leukocyte Numeric 7.1–18.61

Glucose Numeric 4.7–16.3

Urea Numeric 5.0–23.2

Creatinine Numeric 59.0–1447.0

Ac. uricum Numeric 204.0–532.0

Cholesterol Numeric 3.33–7.4

Trig Numeric 0.88–8.3

HDL Numeric 0.7–2.07

LDL Numeric 2.57–5.88

Atherosclerosis index Numeric 3.23–6.17

Cholesterol/HDL Numeric 3.28–9.43

LAD Descriptive/Numeric 0–1

LCx Descriptive/Numeric 0–1

RCA Descriptive/Numeric 0–1

The dataset contained data on 276 patients, of which 181 had simulated FFR values.
Of the 181 labeled patients, 123 belonged to the low-risk class and 58 belonged to the
high-risk class. Our approach included the training of a machine learning model with
181 patients for which the simulated FFR values were available. The geometries for the
numerical simulation of FFR for these 181 patients were taken from the invasive coronary
angiography images. In addition, a 3D finite element model was built based on the
methodology published in [24]. Details on the 3D reconstruction and analysis are given in
Section 2.3. We have already published several papers related to the numerical simulations,
and we have obtained a good match with the measurements of FFR [25,26]. Now, this
methodology was used as a standard to compare with the results of ML model.

The remaining 95 patients were patients who had suffered an AMI in the past, as well
as had clinical and demographic data available; however, these patients were unlabeled
because their geometric coronary angiography data were not available. Because the 95 unla-
beled patients still represented possible real world combinations of the feature values, these
patients were used for missing data imputation. However, the labels could not be assigned
to those patients, so they could not have been used for the validation of machine learning
models in any way. The 95 unlabeled patients were fed into the final classification model
in order to demonstrate the application of the proposed methodology on those patients
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with unknown FFR values. The main challenge was that the data of those 181 patients was
a very low amount of data that was used for training. After this, the model was applied
to predict the values for the new 95 patients (for which the FFR values were unknown).
Nevertheless, since the final machine learning model was meant to classify the patients
using non-geometric parameters, it was expected that the model would achieve similar
classification results to the results obtained during the testing on labeled data. It is impor-
tant to emphasize that the application of the proposed methodology to the unlabeled data
cannot be viewed as a validation attempt. The application of the proposed methodology
represents a transfer of the learned medical knowledge from the labeled subset of patients
to the patients for whom the ground truth was unknown. The added value of the proposed
methodology was that the numerical calculations with a combination of the real measure-
ments of the FFR could help in the future to significantly increase the size of the dataset, as
well as increase the accuracy of the proposed ML models.

The problem of missing data in a dataset was tackled using a conventional approach,
whereby the missing samples were filled in depending on the type of data contained in
the column in question. Namely, the numeric data were replaced by the mean value of the
already present values in the examined column, and the categorical data were replaced by
the most common value in the column. For the purposes of data imputation, there was an
attempt at using a multiple imputation approach via chained equations, but the results
were very poor because of the low correlation between the different features; as such, the
aforementioned approach yielded far greater results.

As for the descriptive data regarding stenosis and the lesion values of the three arteries,
they were required to be translated into numeric values so that they could be used during
the training of the classification model. The problem arose with the formatting of the
descriptive data, and this was because very similar situations were described in completely
different ways; as such, there was no way of translating these data other than translating
them directly by hand and approximating the meaning. The data were translated as follows:

• Data that contained percentile values for the narrowing of the observed artery were
translated as a numeric sample corresponding to the percentage value.

• Data that contained an approximation of the narrowing in the form of a range of
values were translated as a numeric sample that corresponded to the average value of
the observed range.

• Data that did not contain percentage values of the narrowing but did have an indication
that the narrowing was not substantial were translated as if they held information of a
10% narrowing.

• Data that did not contain percentage values of the narrowing but did have an indication
that the narrowing was very minor were translated as if they held information of a 5%
narrowing.

• Data that did not contain percentage values of the narrowing but indicated an orderly
arterial lumen were translated as if there was no narrowing at all.

• Data that did not contain any indication of the size of the narrowing nor contained
the previously mentioned phrases with which the narrowing was estimated were not
translated at all. Instead, they were approximated as a mean value of all of the other
translated values.

Lastly, the available simulated FFR values were written in the form of a floating-point
notation between the values of 0 and 1. These values had to be transcribed into categorical
values that represented the risk class of the patient so that they could be used as output
values of the classification model.

With regard to FFR, the patients could be divided into 3 risk classes. The low-risk
class was defined by an FFR greater than 0.8, while the high-risk class was defined by an
FFR lower than 0.74. There also existed a class between the values of 0.74 and 0.8, which
was defined as a border class because the patients in this range could be considered both
high-risk and low-risk; the final classification was the doctor’s prerogative [27]. When
transcribing the data, this border class was viewed as a part of the high-risk class and
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was merged. This was performed because of the inherent risk of falsely putting high-risk
patients as anything other than a high-risk class.

2.2. Data Correlation

After data preprocessing, we ran tests to find the correlations between the input values
and the designated output FFR value. These correlations were calculated with the aim
of expanding the dataset using high correlation features to create more labeled data. The
correlation between the features and the patients’ FFR is shown in Table 2.

Table 2. Feature correlations with the FFR.

Feature Correlation with the
FFR Feature Correlation with the

FFR

Smoker −0.39 Urea 0.15

Gender −0.19 Creatinine 0.11

Age 0.21 Ac. Uricum 0.40

CK −0.21 Cholesterol −0.02

CKMB −0.07 Trig 0.09

AST −0.14 HDL 0.03

HDL −0.33 LDL 0.06

Troponin 0.25 Atherosclerosis index 0.16

pBNP 0.33 Cholesterol/HDL 0.02

CRP −0.18 LAD 0.50

Leukocyte −0.23 LCx 0.25

Glucose 0.30 RCA 0.30

With the available data, it was not possible to expand the dataset because there were
no features that had a high correlation with the FFR values. The classification model had to
be created using only the initial data, which presented a challenge due to the small amount
of labeled data.

2.3. 3D Reconstruction and Analysis

Three-dimensional models of the right and left coronary arteries were reconstructed
from DICOM angiography images. An eight-node brick element was obtained as the final
element. PAK-F software, version 2023 [28] was used for the numerical solution of the
fluid flow problems. The three-dimensional flow of a viscous incompressible fluid that
is considered here is governed by the Navier–Stokes equations [28], and its continuity
equation can be written as follows:

ρ(ui · ∇)ui +∇pi − µ∆ui = 0 (1)

∇ui = 0 (2)

where ui is velocity, pi is pressure, µ is the dynamic viscosity and ρ is the density of blood.
The first equation represents the balance of linear momentum, while Equation (2) expresses
the incompressibility condition. By applying the Galerkin method on the previous two
equations, we obtained the final form of the discretized Navier Stokes equations as follows:[ 1

∆t M + n+1K̂i−1
vv Kvp

KT
vp 0

]{
∆Vi

∆Pi

}
=

{n+1Fi−1
ext

0

}
−

[ 1
∆t M + n+1Ki−1

vv Kvp
KT

vp 0

]{n+1Vi−1

n+1Pi−1

}
+

{ 1
∆t MnV

0

}
(3)
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FFR is defined as the ratio of the maximum flow through a coronary artery in the
presence of stenosis with the maximum flow through a normal coronary artery [29]:

FFR =
QS

QN (4)

where QS is the flow through an artery with stenosis, and QN is the flow through an artery
without stenosis. The flow through an artery without stenosis can be calculated as follows:

QN =
pa − pv

R
(5)

where pa is the mean aortic pressure, pv is the mean venous pressure and R is the resistance
through the heart. The flow through the artery with stenosis is calculated in a similar way:

QS =
pd − pv

R
(6)

where pd is the mean distal pressure in coronary arteries with stenosis. When we substitute
Equations (6) and (5) into Equation (4), we obtain the following:

FFR =
pd − pv

pa − pv
≈ pd

pa
(7)

In the case of healthy arteries, the FFR value is 1. Based on clinical trials, the critical
value for stenting is any value that is ≤0.75.

Blood was considered as an incompressible Newtonian fluid with a dynamic viscosity
of µ = 0.00365 Pas and a density of ρ = 1050 kg/m3. In order to calculate the numerical FFR
value, two separate simulations were performed for each case. A pressure of 100 mmHg
was applied at the inlet, and the flow rates of 1 and 3 mL/s were applied at the outlet.
Patient-specific microvascular resistance was considered a specific Windkessel boundary
condition. This was algebraically coupled to calculate the outlet pressure and flow, which
was informed in each time step of the 3D computational fluid dynamics simulation [26].

2.4. Classification Model

The main problem encountered in the development of our classification model was
the inability to test the model’s performance because of the small amount of data labeled
with a risk class. More specifically, the data from 181 patients were not enough to build
a comprehensive test set. To overcome this problem, we resorted to using an ensemble,
which consists of a great number of less complex prediction models [30].

These less complex prediction models were also smaller ensemble models that were
created using the random forest classification algorithm. First, we trained 19 random forest
classification models that consisted of 50 decision trees and were without constraints in
regard to the minimum samples required for creating branching nodes and leaves. The
181 labeled patients from the original dataset were split into 20 groups of data samples,
each containing 5% of the data and including both high-risk and low-risk patients. Each of
the models was trained using a different configuration of 19 groups of training samples,
and they were tested with the one remaining group of samples. After that, we trained
more models with every possible configuration of 18, 17 and 16 groups of training samples,
as well as tested them with their respective combinations of 2, 3 and 4 remaining test
sample groups.

The major drawback of the standard approach is that, when a model makes a wrong
prediction with such a small test set, the final accuracy metric was severely impacted. To
resolve this problem, we kept only the models that were deemed capable of predicting
their respective test sets very precisely. In the case of models trained with a configuration
of 19 training samples, only those models that predicted 6 out of 9 test samples correctly
were kept. In the case of models that used bigger test sets, only those that achieved the set
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threshold for classification accuracy were kept. We achieved this by setting thresholds of
66%, 75%, 75% and 80% accuracy for the models being tested with 1, 2, 3 and 4 test sample
groups, respectively. Only models above the given threshold were kept while the others
were discarded. In the end, a total of 2785 classification models were obtained, and each
model was trained with different configurations of the samples from our starting dataset.

The final model we created was an ensemble of these 2785 models. Each new sample
from the original dataset was fed to every one of these models in succession. After new
pieces of data were fed to all of the models in this ensemble, the final decision was made by
counting up the outputs for each class and picking the one that was chosen most frequently.

3. Results

This section of the paper provides a review of the results acquired from the training
and testing of the classification model, as well as presents the possible approaches through
which to improve its performance in the future.

3.1. Classification Results

In the starting dataset, an imbalance can be noticed between the samples belonging to
the high-risk class, of which there were 58 samples, and the low-risk class, of which there
were 123 samples. Moreover, there was a risk of falsely classifying the patients into the
low-risk class when they should be in the high-risk class. Hence, we first opted to evaluate
our model using the F1 score metric on the high-risk class. However, we experienced some
difficulties evaluating the final model in such a manner.

In the main, the F1 score metric was spoiled due to its tendency to evaluate the model
through only using the results achieved from a single class. In this case specifically, there
were multiple lower-level models that had been tested using only samples belonging to
class 1, or, in this case, the low-risk class. In these situations, the F1 score was drastically
lowered even though it was able to predict multiple test samples correctly. The problem was
that the sizes of the test datasets were quite small and could not be increased in any way.

As a result, prediction accuracy was chosen as the main evaluation metric of our
model’s capabilities. The final model’s accuracy was calculated as a mean of the accuracy of
each of the lower-level models that were used in creating an ensemble for the final model.
This accuracy metric is a simulated metric that evaluates the average performance of all the
final model’s pieces instead of the entire final model. The classification model achieved an
estimated prediction accuracy of 76.21%. The average performances for the models trained
with different configurations of training and test sets are shown in Table 3.

Table 3. Classification accuracy metrics.

Train: Test Split Mean Prediction Accuracy

95%: 5% split 74.1%

90%: 10% split 77.3%

85%: 15% split 78.1%

80%: 20% split 83.6%

Final model 76.21%

3.2. Feature Importance

The importance of the features used during the training process of our classification
model varied from one lower-level model to the next. This variation was caused by differ-
ences in the training data sample groups, which affected the model’s ability to consolidate
the concrete values for the importance of certain features.
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However, some features varied less than others. Every training feature at our disposal
was a crucial part of at least some of the classification models, but those features that did
not vary much were the best features in a majority of the classification models and served
as a backbone to the final classification ensemble. In the end, feature importance was
calculated for the final model as a whole, and this was expressed as a mean value of the
feature importance across all of the lower-level models. These feature importance values
are shown in Table 4.

Table 4. The simulated feature importance of the final model.

Feature Feature Importance Feature Feature Importance

Smoker 0.023 Glucose 0.058

Gender 0.014 Urea 0.048

Age 0.048 Creatinine 0.047

CK 0.042 Ac. Uricum 0.077

CKMB 0.045 Cholesterol 0.048

AST 0.047 Trig 0.037

LDH 0.048 HDL 0.043

Troponin 0.057 LDL 0.045

pBNP 0.074 Atherosclerosis index 0.009

CRP 0.041 Cholesterol/HDL 0.059

Leukocyte 0.058 Observed coronary artery 0.032

The feature importance of ac. uricum, pBNP, leukocyte, troponin and glucose var-
ied very little between the different models. The feature importance of cholesterol/HDL,
AST, urea and creatinine varied heavily between the models, ranging from being ex-
tremely important in some and mostly redundant in others. The feature importance of the
atherosclerosis index, trig, smoker and gender was quite low across the board; however, the
number of good models was slightly reduced every time one of these features was omitted
from the training process.

These feature importance values, especially those that had very little variation be-
tween models, can be used to explain the learning and decision-making process—after the
evaluation of the patient’s state—of the final model to the patient.

3.3. Numerical Simulation Results

Figure 2 shows the results of four patients after a numerical simulation in the case of a
flow rate of 3 mL/s. This flow rate was a standard maximum flow for the measurement of
FFR when adenosine was intravenously administrated. A red circle can be seen in Figure 2,
which marks the observed stenosis on the artery. As already mentioned, a good agreement
between the numerical simulations and the measurements of FFR was obtained, and this
was the reason we used numerical results to validate the ML model [25,26].



Diagnostics 2023, 13, 3349 11 of 15

Diagnostics 2023, 13, x FOR PEER REVIEW 11 of 15 
 

 

agreement between the numerical simulations and the measurements of FFR was ob-
tained, and this was the reason we used numerical results to validate the ML model 
[25,26]. 

 
Figure 2. Pressure distribution, based on finite element analysis, in the coronary arteries. The FFR 
value was calculated based on numerical simulations. 

4. Discussion 
The main limiting factor during the creation of a classification model, for the pur-

poses of classifying the patients based on their FFR, was the very low amount of available 
labeled data. The low amount of data severely limited the possibilities when choosing the 
base algorithm and tuning the parameters of the classification models. We hypothesized 
that the classification process could be drastically improved if there were more labeled 
data samples. 

Also, the current model’s prediction capabilities could be improved by adopting a 
different approach to building the ensemble. One of the ways through which to achieve 
this improvement is to fine tune the models by utilizing grid search during the training 
process. Fine tuning would exponentially increase the training time of the model, but it 
would also potentially increase its prediction performance in the end. Another approach 
that could be utilized was the creation of different types of classification models with the 
same configurations of training and testing datasets [31]. 

Furthermore, even though the imbalance between classes was not large, this imbal-
ance, when paired with the size of the entire labeled dataset, rendered the use of tradi-
tionally good ensemble inclusions impossible. Namely, when working with small da-
tasets, machine learning algorithms such as K-Nearest Neighbors and the Support Vector 
Machine achieve good classification results. However, each of these approaches had 
some drawbacks when used in this particular situation. 

The Support Vector Machine algorithm is a kernel-based classifier, which divides the 
training data using multidimensional hyperplanes, the dimensionality of which is de-
pendent on the dimensionality defined by the model input parameters. As an algorithm, 

Figure 2. Pressure distribution, based on finite element analysis, in the coronary arteries. The FFR
value was calculated based on numerical simulations.

4. Discussion

The main limiting factor during the creation of a classification model, for the purposes
of classifying the patients based on their FFR, was the very low amount of available labeled
data. The low amount of data severely limited the possibilities when choosing the base
algorithm and tuning the parameters of the classification models. We hypothesized that the
classification process could be drastically improved if there were more labeled data samples.

Also, the current model’s prediction capabilities could be improved by adopting a
different approach to building the ensemble. One of the ways through which to achieve
this improvement is to fine tune the models by utilizing grid search during the training
process. Fine tuning would exponentially increase the training time of the model, but it
would also potentially increase its prediction performance in the end. Another approach
that could be utilized was the creation of different types of classification models with the
same configurations of training and testing datasets [31].

Furthermore, even though the imbalance between classes was not large, this imbalance,
when paired with the size of the entire labeled dataset, rendered the use of traditionally
good ensemble inclusions impossible. Namely, when working with small datasets, machine
learning algorithms such as K-Nearest Neighbors and the Support Vector Machine achieve
good classification results. However, each of these approaches had some drawbacks when
used in this particular situation.

The Support Vector Machine algorithm is a kernel-based classifier, which divides
the training data using multidimensional hyperplanes, the dimensionality of which is
dependent on the dimensionality defined by the model input parameters. As an algorithm,
it is capable of perfectly separating a dataset based on training data samples while keeping
the Euclidean distance between the physical representations of the training data points in
multidimensional space at the maximum. However, problems arise with the generalization
capabilities of such models for newly introduced data. For this reason, a coefficient of error
tolerance was introduced, which allows the algorithm to make minor mistakes during
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training but also increases the potential to better generalize when making decisions in the
future. The problem in this particular situation arises when any high-risk patient is present
in the test set as this reduces the number of available high-risk patients for training. Any
value of allowed error tolerance renders the models incapable of predicting the high-risk
class in an acceptable manner.

Similarly, the K-Nearest Neighbors algorithm, while not an algorithm that creates
a mathematical model in the true meaning of those concepts, is still capable of splitting
a multidimensional hyperspace into sections belonging to observed classes. The class
separation of this algorithm is based on the proximity of similar training data points in
the n-dimensional space. The high-risk patients defined two dense clusters within the
aforementioned space, and this was achieved by clearly separating the zones within which
the patient would be considered as under a high risk of AMI from those that could be
considered to be under a low risk of suffering AMI. Introducing high-risk samples into
the test set reduced the density of these clusters. This, consequently, greatly reduces the
area inside the n-dimensional hyperspace within which the patient could be classified as
high-risk, or, as in some situations, where those zones would be eliminated.

With the increase in the size and diversity of the dataset that was available for model
training, the inclusion of a classification model other than the random forest model in the
final ensemble became a possibility. While the introduction of new models would increase
the time needed for training and parameter optimization, as well as slightly increase the
time needed for prediction, the introduction of these models would, on the other hand,
further reduce the output variance and greatly increase the versatility of the final ensemble.

High-quality data are seldom available in large amounts in fields of research like
medicine due to ethical guidelines and patient privacy protection. Furthermore, medical
data that are tied to specific diseases are, in some cases, region-specific, and they are also
much sparser in some locations compared to others. In order to address these challenges,
the proposed methodology serves as a proof of concept for a way in which to improve the
automatic diagnosis approach when using a small amount of available data.

The main limiting factor of this study was the small amount of real data available
as input to the ML model. Commonly used techniques for dataset enhancement that
include the generation of new data through oversampling and the estimation of labels for
unlabeled samples when using multiple imputations through chained equations are not
always applicable to certain datasets and they do not always yield satisfying results.

Therefore, the added value of this paper primarily lies in the fact that we have proposed
a methodology that deals with datasets that have a small amount of data. In fact, high
amounts of data are hard to obtain in the medical field due to requiring ethical approvals
and the need to ensure data privacy protection. As a result, this paper focuses on the
novel methods that could be used on small datasets and can thus surpass traditional data
enhancement methods. Although applied on a specific dataset regarding the assessment
of the risk of suffering an acute myocardial infarction, the proposed methodology can be
translated to other medical datasets as well. In addition, the novelty of the paper lies in
the validation of the proposed methodology with simulated FFRs via the finite element
method (FEM). The proposed approach would reduce the time needed for diagnosis and
works to eliminate invasive coronography, as the data used in this paper were faster and
easier to obtain than the real measurements of FFR.

In future research, numerical calculations combined with real measurements of FFR
could be used to significantly increase the size of the dataset and achieve better accuracy
in the proposed ML models. In addition to the improvement of the proposed machine
learning approach to assessing the risk of AMI, an additional increase in the amount of
available data would enable the transfer from machine learning algorithms to creating a
specialized neural network for patient classification.
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5. Conclusions

Cardiovascular diseases are the leading cause of death globally and a major contributor
to life-altering complications such as a loss in the ability to work and physical disabilities.
Acute myocardial infarction occurs due to coronary artery occlusion and the insufficient
oxygenation of cardiomyocytes.

The main goal of this study was to create a decision support system that is capable of
classifying patients into risk classes based on their calculated fractional flow reserve. The
risk classes within the final ensemble model were defined by the observed FFR value of
patients, where 0.8 was chosen as a threshold value. Patients with an FFR value higher
than 0.8 were viewed as belonging to the low-risk class, while those with an FFR lower
than 0.8 were considered as being in the high risk-class.

In order to classify patients, an ensemble model was constructed from multiple random
forest classification models, which were all trained using different combinations of training
and test data. The final classification model achieved a value of 76.21% prediction accuracy.
Machine learning models that showed good prediction capabilities were incorporated into
the final classification ensemble, and they achieved mean prediction accuracy values of
74.1%, 77.3%, 78.1% and 83.6%, which were tested with 5%, 10%, 15% and 20% test samples,
respectively.

In conclusion, we have succeeded in creating a machine learning ensemble that is
capable of classifying patients based on their risk of death via a fractional flow reserve,
which greatly improves prediction capabilities over a single machine learning model, even
when using a small amount of available training data. Additionally, feature importance was
calculated based on the training weights of the created model, which provides a possible
starting point for future research and classification accuracy improvements.
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