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Abstract: Objectives: Breast density is considered an independent risk factor for the development
of breast cancer. This study aimed to quantitatively assess the percent breast density (PBD) and the
mammary glands volume (MGV) according to the patient’s age and breast quadrant. We propose a
regression model to estimate PBD and MGV as a function of the patient’s age. Methods: The breast
composition in 1027 spiral breast CT (BCT) datasets without soft tissue masses, calcifications, or
implants from 517 women (57 & 8 years) were segmented. The breast tissue volume (BTV), MGV, and
PBD of the breasts were measured in the entire breast and each of the four quadrants. The three breast
composition features were analyzed in the seven age groups, from 40 to 74 years in 5-year intervals.
A logarithmic model was fitted to the BTV, and a multiplicative inverse model to the MGV and PBD
as a function of age was established using a least-squares method. Results: The BTV increased from
545 + 345 to 676 + 412 cm?3, and the MGV and PBD decreased from 111 + 164 to 57 + 43 cm? and
from 21 =+ 21 to 11 =+ 9%, respectively, from the youngest to the oldest group (p < 0.05). The average
PBD over all ages were 14 £ 13%. The regression models could predict the BTV, MGV, and PBD
based on the patient’s age with residual standard errors of 386 cm3, 67 cm?, and 13%, respectively.
The reduction in MGV and PBD in each quadrant followed the ones in the entire breast. Conclusions:
The PBD and MGV computed from BCT examinations provide important information for breast
cancer risk assessment in women. The study quantified the breast mammary gland reduction and
density decrease over the entire breast. It established mathematical models to estimate the breast
composition features—BTV, MGV, and PBD, as a function of the patient’s age.

Keywords: breast; breast CT; breast density; mammary glands

1. Introduction

Breast cancer constitutes more than a quarter of cancer occurrences among women
and is the second cancer most frequently leading to a woman’s death [1]. Previous studies
widely observed a strong association between breast density, which is the ratio of the
amount of fibroglandular tissue in the breast and the amount of fatty tissue, and increased
breast cancer risk. While the most important factors for breast cancer risk would be the
patient’s age and family history, mammographic breast density is widely considered a
strong risk factor for breast cancer that is not specific to the breast side [2-7]. Higher density
means the glands are located close to each other. This tends to result in more stimulation
in glands, which might lead to or be related to breast cancer development. The cancer
occurrence rate depends on the anatomical position of the breast according to the breast
cancer location database of the Clinical Breast Cancer Project (CBCP) and the Surveillance,
Epidemiology, and End Results (SEER) Program of the National Cancer Institute of the
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United States [8,9]. The upper outer quadrant (UOQ) accommodated tumors from 3.3 to
6.6 times more frequently than other anatomical sites.

Various studies previously assessed the variability of breast density in different radio-
logical breast imaging modalities, the spatial distribution of glandular tissue, and the role of
age. For mammography (MG) and ultrasonography (US) examinations, the breast density
is visually assessed following the Breast Imaging Reporting and Data System (BI-RADS)
classification system of the American College of Radiology (ACR) [4]. In previous studies
based on the qualitative BI-RADS density classification in MG, a strong inverse influence of
age on breast density was observed [7,10,11]. The conventional breast imaging techniques,
however, have limitations in providing quantitative information on breast density or the
volume of the mammary glands. The grey level in MG, US, or breast MRI scans represents
the relative contrast of either cumulative attenuation, the reflection of the projected beams,
or atomic spin density and relaxation time properties but not the real physical tissue density.

In this study, we aimed to assess the breast tissue volume (BTV), mammary glands
volume (MGV), and percent breast density (PBD) according to the age of the patient and
the anatomical site in the breast. We investigated the variations in the breast composition
features with regard to age and breast quadrants. Based on this study’s analysis, we propose
regression models to describe these breast composition features according to the patient’s
age. Our study assessed the breast composition in volumetric breast images reconstructed
by spiral breast computed tomography (BCT) equipped with the latest photon-counting
detector. BCT enables true 3D imaging of the breast at an acceptable radiation dose without
imposing painful compression on patients’ breasts. The grey level of BCT in the imaging
voxel that appears due to the difference in the absorption of glandular and fatty tissue offers
a possibility to quantify the amount of glandular tissue and the density and distribution
within the breast [12-14].

2. Materials and Methods
2.1. Study Participants

One thousand twenty-seven photon-counting breast CT examinations acquired from
women aged between 40 and 74 years from August 2018 to December 2019 were selected
for the breast population study. The average age of the women was 57 & 8 years. We se-
lected patient examinations without breast implants, soft tissue masses, large calcifications
(diameter > 1 mm), and resection scars based on the radiological report. This retrospective
study was approved by the institutional review board, and written informed consent was
obtained from each patient. The participants were grouped into seven five-year intervals
based on their age: 4044, 4549, 50-54, 55-59, 60-64, 65-69, and 70-74 years old.

2.2. Image Data

The breast CT datasets were acquired by a BCT scanner (nu:view, AB-CT—Advanced
Breast-CT GmbH, Erlangen, Germany). The patients were examined in the prone position
while assuring the central positioning by the radiographers. The detailed image acqui-
sition parameters of the BCT scans and applied dose exposure setup are presented in
Appendix A [12-17]. The BCT datasets used for this population study were reconstructed
with a voxel size of (300 um)3. An exemplary breast CT image screening through the
coronal plan can be found in the Multimedia Content.

2.3. Image Segmentation and Component Localization

For BCT images, a dedicated segmentation method was developed to classify different
breast tissues—the fatty tissues, glandular tissue, and other soft tissues such as the skin and
pectoralis major muscle—and automatically localize the quadrants of the breasts [13]. We
segmented each breast image into six components by applying the automatic segmentation
method [13]: adipose and glandular tissue, skin, pectoralis major muscle, ribs, and skin fold
section depicted from the thoracic or abdominal wall. Nipples were segmented as skin. The
method was specifically implemented for BCT images using an adaptive region growing
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algorithm that classifies the glandular tissue by applying the average breast density, which
was calculated from the Hounsfield unit (HU) values during the segmentation process, for
the voxel-wise probability. In a previous study, this method was validated against human
readings and manual segmentations by experienced radiologists as good (4)—excellent (5)
in a five-point Likert scale with excellent inter-reader reliability (Cronbach’s alpha test [18],
ot = 0.83) and a Dice’s similarity coefficient of 0.94 & 0.04 [13,19].

The four quadrants—upper outer quadrant (UOQ), upper inner quadrant (UIQ),
lower outer quadrant (LOQ), and lower inner quadrant (LIQ)—were separated by two
perpendicular planes parallel to the row and column of the image intersecting the nipple
on the segmented BCT images. The reference nipple position was assigned as the center of
mass of the skin in the most posterior slice.

2.4. Breast Composition Feature Acquisition

The breast composition features—BTV, MGV, and PBD—were measured on the seg-
mented images. The BTV and MGV were acquired by summing up the volume of the
voxels of the adipose and glandular tissues and only the glandular tissue, respectively. The
PBD, that is, the percent ratio between MGV and BTV, was calculated from the HU values
in the voxels classified as the adipose and glandular tissues [13]. The composition features
were acquired for the entire breast and separately for each quadrant.

2.5. Breast Composition Feature Analysis

The mean and standard deviation (SD) of the age and the composition features for the
entire breast, and each quadrant were acquired for the entire study cohort and each age
subgroup. The percentage proportions of the BTV, MGV, and PBD in each quadrant to the
entire breast were analyzed in each age group in order to assess the composition variation
among the quadrants over the patient’s age.

2.6. Statistical Analysis

Differences between mean values were assessed by applying a student’s t-test. All
reported p values are two-sided. p < 0.05 was considered to indicate a significant difference.
A logarithm model to estimate BTV (1) and a multiplicative inverse model to MGV and
PBD (2) were fitted with the least squares method as a function of patients” age. 2 and
b are fitting coefficients and constants. Age, the predictor, describes the average age of
each sub-cohort in years, and y denotes the corresponding composition feature as the
dependent variable.

y=axIn(Age)+0b (1)

y=a/Age+b ()

The goodness of the fit for the models was assessed by residual standard error (RSE).
RSE assesses how well a regression model fits a dataset and is acquired by (3), where SSE
denotes the sum of squares residual error (4) and DFssr degrees of freedom for error (5).
i is the regressed y of data point i, n is the number of points in the data sample, and p is
the number of the independent regressor.

SSE

RSE = 3
DFssE ©)
where
SSE=Y (vi—:)*, (4)
DFssg=n—p-—1, )

i=1,...,n.
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3. Results
3.1. Segmentation and Localization Results

The 1027 BCT images were successfully segmented, and the quadrants could reliably
be located based on the nipples that were present at the most posterior slice of the scans.
An exemplary image sequence of the original BCT image and the segmentation result
of a right-side breast is presented in Figure 1 in three planes: longitudinal, coronal, and
horizontal. The reference nipple position is marked as a purple dot, and the perpendicular
planes intersecting at the nipple are marked in yellow lines. The right and left sides are the
outer and inner sides of the breast, respectively.

Muscle
Skin
Gland
Fat

Air

Figure 1. Exemplary BCT original (A) and segmentation (B) images in longitudinal (a), coronal (b),
and horizontal (c) planes. (B): From dark to bright grey level, air, fatty tissue, mammary glands,
skin, and pectoralis muscle. The four breast quadrants—UIQ, UIQ, LOQ, LIQ—are divided by the
perpendicular planes (yellow lines) crossing the nipple position (purple dots in the longitudinal and
horizontal planes).

3.2. Study Participants and Average Composition Feature

The composition features of the selected 1027 breasts—BTV, MGV, and PBD—were
successfully measured on the segmented images. On average, the BTV and MGV were
614 4- 388 and 62 + 68 cm?, leading to an average PBD of 14 + 13% in all breasts.

3.3. Composition Feature Analysis across the Age Groups

The demographics of the seven groups’ age and breast composition features, which
were grouped based on the patient’s age, were analyzed as summarized in Table 1. The
average age in each groupwas42+1,47 £1,52£1,57£1,62+£2,67 £ 1,and 72 £ 1 year.
The BTV presented a gradual increase with age: from the youngest to the oldest, the
BTV values were 545 + 345, 539 + 314, 589 =+ 365, 657 + 416, 627 £ 401, 663 + 424, and
676 + 412 cm®. The MGV and PBD presented a decreasing tendency from 111 + 164,
77 & 64, 64 + 59, 56 + 55, 51 & 43, 50 + 57, to 57 & 43 cm® and from 24 + 21, 17 & 15,
14 £12,13 £ 14,13 £ 13,10 £ 9, and 11 £ 9%, respectively. The BTV, MGV, and PBD values
exhibited a significant difference between the groups with the youngest and oldest patients
(p = 0.00-0.01). Box and whiskers plots for BTV, MGV, and PBD of the age sub-cohorts
are presented in Figure 2. The red line in the box denotes the median value, the box the
interquartile range (lower quartile to upper quartile), and the whiskers the minimum and
maximum values of the categories excluding the outliers.
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Table 1. Breast composition features according to age.

1500

1000 A

Age Range
40-44 45-49 50-54 55-59 60-64 65—-69 70-74
Counts 62 120 292 190 176 123 70
Mean 42 47 52 57 62 67 72
Age/1
SD 1 1 1 1 2 1 1
Mean 545 539 589 657 627 663 676
BTV/cm3
SD 345 314 365 416 401 424 412
s Mean 111 77 64 56 51 50 57
MGV
/e’ e 164 64 59 55 43 57 43
Mean 24 17 14 13 13 10 11
PBD/%
SD 21 15 12 14 13 9 9
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Figure 2. Box and whisker plots for the BTV (A), MGV (B), and PBD (C) of the age sub-cohorts. The
orange line in the box denotes the median value, the box the interquartile range (lower quartile to

upper quartile), the whiskers the minimum and maximum values of the categories excluding the

outliers, and the circles the outliers.

The obtained descriptive estimation models of the BTV, MGV, and PBD as a function
of the patient’s age are presented in (6)—(8), respectively. The uncertainty in the regression
coefficients and constants were 86 and 345 for (6), 822 and 15 for (7), and 160 and 2.9 for (8),
respectively. All regression parameters’ p values were below 0.05 except the constants of
the regressions for BTV (p = 0.11) and MGV (p = 0.09). The logarithmic and multiplicative
inverse models with the optimized coefficients are fitted in the red line in Figure 3. The
regression models” RSEs were 386 cm?, 67 ecm?, and 13%, respectively, for the BTV, MGV,
and PBD plots.

BTV (ecm®) = 290 x In(Age (year)) — 554 (6)
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Figure 3. BTV (A), MGV (B), and PBD (C) plots and the corresponding logarithmic or multiplicative
inverse model fits as a function of age.

3.4. Feature Analysis in Each Quadrant

The demographics of the quadrant composition features across all ages are presented
in Table 2. The quadrant BTVs in UOQ, UIQ, LOQ, and LIQ were 208 + 135, 164 £ 107,
126 4+ 17, and 117 4+ 12 cm?, and the MGV were 21 + 23,13 4 15, 17 4 24, and 12 + 17 cm.
The PBD in UOQ, UIQ, LOQ, and LIQ was 13 & 13,11 £ 13, 19 £ 17, and 13 + 14%. The
largest quadrant shares of BTV and MGV were observed in UOQ, which were 34 &+ 9 and
34 4 14% of the breast, and the smallest in LIQ, 19 4+ 7 and 18 =+ 10%. This led to a similar
PBD in UOQ and LIQ quadrants, 13 &+ 13 and 13 + 14%, respectively, which is similar
to the entire breast’s PBD. LOQ, on average, presented the highest PBD, 19 £ 17%, with
the second biggest MGV quadrant share, 26 & 13%, and the second smallest BTV share,
19 & 7%. On the other hand, UIQ is composed of the second largest quadrant share of the
BTV, 28 + 8%, and the second smallest share of the MGV, 21 £ 11%, resulting in the lowest
PBD, 11 +£ 13%.

3.5. Feature Analysis in Each Quadrant across the Age Groups

Across all groups, the quadrant composition features presented a similar tendency
as the entire breast. The average BTC increased, and MGV and PBD decreased in every
quadrant with age, as presented in Figure 4A.a, Figure 4B.a, and Figure 4C.a, respectively.
The quadrant shares of all three features to the entire breast were relatively stable across
all ages, as presented in Figure 4A.b,B.b,C.b without a significant variation. Appendix A,
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Tables A2-A4, present values of the quadrant composition features and their relative
quadrant share compared to the entire breast.

Table 2. Quadrant composition features and their shares of the entire breast.

Value Entire UuoQ UIQ LOQ LIQ
s Mean 614 208 164 126 117
BTV
/em SD 388 135 107 17 12
Quadrant BTV Mean - 34 28 19 19
share/% SD - 9 8 7 7
s Mean 62 21 13 17 12
MGV
/eny SD 68 23 15 24 17
Quadrant MGV Mean - 34 21 26 18
share/% SD - 14 11 13 10
Mean 14 13 11 19 13
PBD/%
SD 13 13 13 17 14
Quadrant PBD Mean - 99 75 142 92
ratio/% SD - 31 27 47 37
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Figure 4. The quadrant BTV (A.a), MGV (B.a), and PBD (C.a) and the quadrant shares of BTV (A.b)
and MGV (B.b) and the ratio of quadrant PBD (C.b) to the entire breast for each age group.
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4. Discussion

We successfully quantitatively analyzed the breast composition from the 3-D segmentation
of BCT images. In this analysis, the breast composition features—BTV, MGV, and PBD—were
quantified, and their variation according to the patient’s age and breast quadrants were assessed.
The BTV increases, and MGV and PBD decrease with age, exhibiting a significant difference
between the youngest and oldest patients” groups (p < 0.05). In the analysis in each quadrant,
the largest shares of BTV and MGV were observed in the UOQ), about 34% of the breast, and the
smallest shares in the LIQ, 18-19%. The LOQ, on average, exhibited the highest PBD, 1.4 times
the mean value for the entire breast, whereas the UIQ only showed three-quarters of the mean
value of the entire breast. The BTV increased, and the MGV and PBD decreased homogeneously
across quadrants with the patient’s age, which is the same tendency in the entire breast.

The increase in BTV was able to be modeled in a logarithmic function, and the de-
creases in MGV and PBD in multiplicative inverse functions. Statistical significance in the
regressions’ coefficient indicated the general tendency of the breast’s composition features
according to the patient’s age (p < 0.05), although a significant value for the regression
constant of BTV and GTV was not found in this study. When a further study is conducted
with larger datasets, leading to a smaller standard deviation in the datasets, a more signifi-
cant constant for the two models may be acquired in the future. The proposed estimation
model’s RSEs—386 cm?3, 67 cm3, and 13% for BTV, MGV, and PBD, respectively—are
in the same range of the SDs of composition features in each age group—314-412 cm?,
43-164 cm?, 9-21%. Although the data were cloudy, which is shown in a relatively large
standard deviation of the features in each age group, the mean values contract to the
regression curves (see Figure 3). This indicates that the regression curves might show
the tendency of the composition in the human body according to age. The strong inverse
influence of age on breast density previously observed in the MG studies based on the
BI-RADS classification [7,10,11] was systematically proved in our investigation.

We observed a decrease in breast density and amount of mammary gland tissue with
patients” age when the breast cancer risk increases with age. Solely from this observation,
the relationship between breast cancer risk and breast density was not confirmed. Breast
cancer incidence is a multi-factorial process overlaying different risks. Therefore, in order
to study the relationship between cancer risk and a risk factor, the other factors may need
to be controlled. For example, the influence of breast density on breast cancer incidence
shall be studied in the same age cohort. This needs to be further studied with additional
experiments in the future when more patient data is acquired.

Our study demonstrates that the “real” breast density obtained from high-resolution
3D datasets is much lower than the common assumption for mammographic density, 50%,
that is applied for the radiation dose analysis and regulation [20-22] for mammographic
imaging. In our measurements, the PBD in the patient cohort most relevant for mammog-
raphy imaging between 40- and 75-year-old females was assessed to be 14 £ 13%. The
PBDs of all patient sub-cohorts ranged between 11% to 21% from the oldest to the youngest
cohort, respectively, which is substantially lower compared to the 50% assumption even for
the youngest cohort. The overestimation in mammographic density can possibly lead to
a considerable error in radiation dose estimation for MG, where the density assumption
plays a critical role. The mean glandular dose (MGD) for MG is commonly assessed by ap-
plying the MGD coefficient (DgN) corresponding to 50% breast density following the Dance
method [20,23,24], which decreases with an increase in glandularity [25]. An accurate MGD
estimation is essential for the assessment of the risk of cancer induction possibly caused by
ionizing radiation exposure. Considering the significantly lower breast density of the major-
ity of the patients compared to the assumption in the Dance method, the MGD values of MG
might have been underestimated in studies assessing the radiation dose of mammography.

Tumor occurrence is highest in the UOQ (51.5-55.4%), followed by the UIQ (15.6-16.8%),
LOQ (10.7-14.2%), LIQ (8.1-8.4%), or center (8.4-10.6%) based on the database in the CBCP
and the SEER Program of the United States [8,9]. In these retrospective studies, patients
with multicentric disease or breast cancers spanning multiple quadrants were excluded. The
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assessed quadrant MGV distribution in our study was in line with the previously assessed
tumor occurrence rates in the four breast quadrants, as both were the highest in UOQ and
the lowest in LOQ. However, a statistical correlation between the MGV distribution and
cancer occurrence in the different quadrants was not observed.

Previously, Chen [26] and Fwu [27] estimated the quadrant breast composition using
breast MRI images. The BTV, MGV, and PBD of the patient’s breasts were assessed on
the segmented breast MRI images by applying a Fuzzy C-means clustering or K-mean
clustering algorithm coupled with nonparametric normalization [28]. Chen analyzed
84 cases (47 Asian and 37 Caucasian women) with pathologically confirmed breast cancer,
and Fwu did 58 cases of Asian women without a pathological lesion. The analyzed quadrant
composition features in the studies were substantially different, which might partially be
attributed to the different ethnicities of the cohort. In the studies using MRI images, for
example, the largest MGV share and PBD ratio were assessed in the UOQ for the cohort of
Caucasian women, whereas they were assessed in the LOQ for the cohorts of Asian women
regardless of the presence of pathological lesions. Our study cohort included 517 women
without having a pathological lesion and mostly Caucasian and exhibited the largest MGV
share in the UOQ and the highest PBD ratio in the LOQ. However, quantification of the
quadrant breast composition using the segmented MRI images might have limited accuracy
for the analysis. Their composition analysis solely relies on the segmented two-class binary
map comprising voxels in 0.7-2.0 mm width, assuming the image has only two discrete
true gray levels and ignoring the continuous gray level values due to the partial volume
effect in voxels. Furthermore, the statistical segmentation method based on the gray levels
representing the relative contrast, which may be distorted by additional signal processing to
correct the bias field and intensity nonuniformity, imposes uncertainties in the segmentation
result. The estimated breast density based on the image segmentation might substantially
vary depending on the algorithm applied, as demonstrated in [29], which assessed the
variation of the estimated density up to 10%.

This study has limitations that could potentially be considered as uncertainties in the
analysis. Firstly, erroneous segmentation of skin, pectoralis muscle, or skin fold section
could cause a bias in the breast composition analysis. In order to minimize possible uncer-
tainty due to the segmentation error, the segmentation method was delicately developed
for an accurate segmentation of BCT images that was previously validated against the
references by radiologists [13]. Second, the positioning of the patient by the radiographer
is crucial to the measured quadrant composition features. Positioning, therefore, could
potentially have been a cause of error. However, the segmented images were previously
screened to ensure the segmentation quality and the correct nipple position. Third, the
patients” ages were retrieved in natural numbers, not in continuous numbers, as seen in
Figure 2, where datasets are plotted in lines instead of distributed in the cloud. This might
have imposed an uncertainty on regression model fitting.

The novelty of this study compared to previous mammographic density assessments
originates from the quantitative analysis of the breast density and amount of mammary glan-
dular tissue from high-resolution 3D datasets in a large cohort of patients. This study provides
further evidence for the previously observed breast density decrease with patients” age from
studies assessing the mammographic density based on the BI-RADS classification [7,10,11].
The study also presents unique anatomical information about how the breast composition is
distributed in each quadrant and quantifies the average distribution. The quantitative study
applying the diagnostic imager with the latest detector technology even discovered that the
real breast density is much less than the present assumption. We are able to further propose a
mathematical model to estimate the development of BTV, MGV, and PBD according to age.
This estimated breast composition features as a function of the patient’s age provide important
data in clinical or scientific assessments of breast imaging, in which breast density influences
the diagnostic accuracy or radiation dose exposure. Our data acquired in this study may be
further used in models estimating the individual breast cancer risk as breast density is an
important independent risk factor for the development of breast cancer [2-7].
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5. Conclusions

This study was able to quantitatively evaluate the amount of glandular tissue and
breast density based on the patient’s age from the largest patient cohort ever studied for an
epidemiological study using 3D breast images. We demonstrated a statistically significant
reduction in the amount of glandular tissue and breast density with the patient’s age
and systematically modeled the reduction that allows estimation of the breast density
according to the patient’s age. Our study further demonstrates that breast density in
women is substantially lower than the commonly accepted present mammographic density
assumption. We could quantitatively describe the heterogeneous gland distribution in the
breasts with the largest share in UOQ and demonstrate that glands homogeneously reduce
across quadrants with the patient’s age. However, in order to quantitatively relate the
breast cancer risk and breast density, further controlled studies are required.
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Appendix A

Table Al. The acquisition parameters of the BCT scans.

Parameters Value
Focus-Isocenter distance 500 mm
Detector-Isocenter distance 150 mm
Detector pixel size (100 pm)?
Number of projections per 360° 2000
Rotation time 2s
Focal spot size 0.3 (according to IEC 60336)
X-ray energy 60 kVp
Filtration 3mm Al
Tube current 32mA
Total collimation 31.53 mm
Pitch 1.05
Trajectory Spiral, but circular for the first rotation

Total acquisition time 7to12s
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Table A2. Quadrant BTV and their share in the entire breast according to age.

Quadrant  Value Age Range
40-44 45-49 50-54 55-59 6064 65-69 70-74
Mean 188 174 193 226 214 236 230
UOQ/cm?
SD 120 107 119 146 142 159 134
U0Q Mean 35 33 34 35 34 36 34
share/% SD 9 9 9 9 9 9 7
,  Mean 146 147 154 181 167 171 178
I
UIQ/em SD 101 91 97 123 106 108 122
U0 Mean 28 28 27 28 28 27 27
share/% SD 8 8 8 7 8 7 8
Mean 114 109 125 129 128 136 137
LOQ/cm?
SD 106 88 111 107 121 120 103
LOQ Mean 19 19 19 18 18 18 19
share/% SD 9 7 8 6 7 7 7
Mean 9% 109 118 120 118 119 131
LIQ/cm?®
SD 77 76 92 87 90 86 9%
LIQ Mean 18 20 20 19 19 19 19
share/% SD 7 7 7 7 7 7 5

Table A3. Quadrant MGV and their share in the entire breast according to age.

Quadrant  Value Age Range
40-44 45-49 50-54 55-59 60-64 65-69 70-74

, Mean 39 23 20 19 17 18 19
UoQ/em SD 53 23 19 17 15 23 16
U0oQ Mean 36 33 33 35 34 37 34
share/% SD 15 14 14 14 14 15 12
Mean 24 18 13 12 10 10 11

UIQ/cm?
SD 32 18 11 13 10 12 10
U1 Mean 22 23 21 21 21 21 20
share/% SD 9 11 11 11 10 11 10
Mean 27 21 19 15 14 13 17

LOQ/cm?
SD 42 21 28 19 15 20 17
LOQ Mean 26 26 27 26 27 25 28
share /% SD 16 11 14 12 13 11 15
Mean 20 15 12 10 10 8 9

LIQ/cm?
SD 44 15 15 14 11 9 7
LIQ Mean 16 18 19 18 18 17 17

share/% SD 9 10 11 10 10 10 8




Diagnostics 2023, 13, 3343 12 of 13

Table A4. The quadrant PBD and their ratio to the entire breast according to age.

Quadrant Value Age Range
40-44 45-49 50-54 55-59 60-64 65-69 70-74
Mean 25 16 13 12 12 10 11
UOQ/%
SD 22 14 11 14 13 9 10
UoQ Mean 100 99 96 99 97 104 100
ratio/ % SD 23 38 27 27 30 42 33
Mean 21 15 11 10 10 8 8
UIQ/ %
SD 22 14 11 13 11 8 8
UIQ Mean 78 80 75 74 72 72 74
ratio/% SD 25 32 28 27 24 28 25
Mean 31 24 20 17 18 14 17
LOQ/%
SD 24 20 16 17 17 12 15
LOQ Mean 136 140 143 140 148 138 147
ratio/% SD 51 42 44 46 51 49 41
Mean 21 17 13 12 12 9 9
LIQ/%
SD 21 15 13 14 14 9 9
LIQ Mean 86 90 91 92 95 91 920
ratio/ % SD 32 31 36 40 39 38 35
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