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Abstract: Ultrasound is the primary tool for evaluating salivary gland tumors (SGTs); however, tumor
diagnosis currently relies on subjective features. This study aimed to establish an objective ultrasound
diagnostic method using deep learning. We collected 446 benign and 223 malignant SGT ultrasound
images in the training/validation set and 119 benign and 44 malignant SGT ultrasound images in
the testing set. We trained convolutional neural network (CNN) models from scratch and employed
transfer learning (TL) with fine-tuning and gradual unfreezing to classify malignant and benign SGTs.
The diagnostic performances of these models were compared. By utilizing the pretrained ResNet50V2
with fine-tuning and gradual unfreezing, we achieved a 5-fold average validation accuracy of 0.920.
The diagnostic performance on the testing set demonstrated an accuracy of 89.0%, a sensitivity of
81.8%, a specificity of 91.6%, a positive predictive value of 78.3%, and a negative predictive value of
93.2%. This performance surpasses that of other models in our study. The corresponding Grad-CAM
visualizations were also presented to provide explanations for the diagnosis. This study presents an
effective and objective ultrasound method for distinguishing between malignant and benign SGTs,
which could assist in preoperative evaluation.

Keywords: salivary gland tumor; ultrasound; deep learning; convolutional neural network; transfer
learning; gradient-weighted class activation mapping (Grad-CAM)

1. Introduction

Salivary gland tumors (SGTs) refer to the abnormal growth of cells within the salivary
glands, which can present as swelling near the auricular region or below the jaw [1]. The
incidence of SGTs ranges from 0.4 to 13.5 cases per 100,000 people [2–4]. According to
the 5th Edition World Health Organization classification, there are 15 types of benign
SGTs and 22 types of malignant SGTs [5]. However, diagnoses of SGTs can be challenging
due to the heterogeneous histology and varying degrees of malignancy among different
SGTs, even with the aid of imaging examinations and fine needle aspiration cytology
(FNAC) [6,7]. The diagnosis of SGT is crucial for treatment planning. Benign tumors may
only require monitoring or surgical removal, while malignant tumors typically necessitate
more aggressive treatments [8]. The significance of noninvasive diagnostic tools has been
highlighted in previous studies [9,10]. Among imaging examinations, ultrasound (US)
remains the primary imaging tool for evaluating SGTs due to its affordability, lack of
radiation exposure, and capability to perform FNAC simultaneously. However, diagnosing
SGTs using US relies on subjective features (Figure 1) [11–13]. Different specialists may
interpret the same images differently. Therefore, our aim was to establish objective methods
that can assist in the diagnosis of SGTs using US images.
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Figure 1. The subjective ultrasound features of SGTs. Note: (A) Benign SGTs are usually charac-
terized by well-defined, homogeneous, and solid masses with posterior enhancement (arrow-
heads). (B) On the other hand, malignant SGTs tend to exhibit indistinct boundaries, irregular 
shapes (arrowheads), the presence of calcifications (arrows), and a lack of posterior enhancement. 
Abbreviation: SGT: salivary gland tumor. 

With advancements in computing power and GPUs, deep learning (DL) has become 
increasingly utilized in medical image analysis [14]. Convolutional neural networks 
(CNNs), which consist of convolutional layers, pooling layers, and fully connected layers, 
are widely used for medical image classification [15]. In CNNs, convolutional layers ex-
tract feature maps from input images using kernels, while pooling layers reduce the di-
mensions of the feature map by consolidating multiple pixels into a single value. These 
processes enable the selection of high-level features from the input image to aid in clas-
sification. However, training a deep CNN requires a large quantity of labeled data, which 
can be difficult to obtain, especially in fields such as medical image analysis, where ex-
pert annotation is needed [16]. Transfer learning (TL) represents using a model trained 
on one task and applying it to a different task [17]. In medical image analysis, TL often 
employs a pretrained model from a large dataset, such as ImageNet, and applies it to a 
new task with a small sample size, such as US image classification [18]. Although US 
images are grayscale, which differs from the color images in imageNet, the pretrained 
model still performs well in grayscale image classification [19]. One study utilized several 
TL models to evaluate SGTs using US images [20]. They included 176 SGTs in the train-
ing set and 75 SGTs in the validation set. The diagnostic accuracy for differentiating be-
tween malignant and benign SGTs was 79% for ResNet50, 77% for DenseNet121, 80% for 
EfficientNetB3, 81% for ViT-B\16, and 77% for experienced radiologists. However, these 
results are still not satisfactory. 

Fine-tuning is a technique that involves freezing some of the bottom layers of a 
network and only training the top layers on new data [21]. Studies have demonstrated 
that TL with fine-tuning can achieve higher diagnostic performance than training a CNN 
from scratch [22]. Another technique is gradual unfreezing [23], which was initially in-
troduced in the ULMFit model [24]. This technique gradually unfreezes layers from top 
to bottom during the training process. By doing so, the model can update its weights 
while retaining its previous knowledge when applied to a new task [22,25]. In this study, 
our goal was to provide an objective US diagnostic method by utilizing both a CNN 
trained from scratch and TL with fine-tuning and gradual unfreezing to differentiate 
between malignant and benign SGTs. We aimed to assess the diagnostic potential of ul-
trasound imaging alone when encountering a newly diagnosed SGT. We included all 
types of tumors found within the salivary gland, including metastatic carcinoma and 

Figure 1. The subjective ultrasound features of SGTs. Note: (A) Benign SGTs are usually characterized
by well-defined, homogeneous, and solid masses with posterior enhancement (arrowheads). (B) On
the other hand, malignant SGTs tend to exhibit indistinct boundaries, irregular shapes (arrowheads),
the presence of calcifications (arrows), and a lack of posterior enhancement. Abbreviation: SGT:
salivary gland tumor.

With advancements in computing power and GPUs, deep learning (DL) has become in-
creasingly utilized in medical image analysis [14]. Convolutional neural networks (CNNs),
which consist of convolutional layers, pooling layers, and fully connected layers, are widely
used for medical image classification [15]. In CNNs, convolutional layers extract feature
maps from input images using kernels, while pooling layers reduce the dimensions of the
feature map by consolidating multiple pixels into a single value. These processes enable the
selection of high-level features from the input image to aid in classification. However, train-
ing a deep CNN requires a large quantity of labeled data, which can be difficult to obtain,
especially in fields such as medical image analysis, where expert annotation is needed [16].
Transfer learning (TL) represents using a model trained on one task and applying it to a
different task [17]. In medical image analysis, TL often employs a pretrained model from
a large dataset, such as ImageNet, and applies it to a new task with a small sample size,
such as US image classification [18]. Although US images are grayscale, which differs
from the color images in imageNet, the pretrained model still performs well in grayscale
image classification [19]. One study utilized several TL models to evaluate SGTs using US
images [20]. They included 176 SGTs in the training set and 75 SGTs in the validation set.
The diagnostic accuracy for differentiating between malignant and benign SGTs was 79%
for ResNet50, 77% for DenseNet121, 80% for EfficientNetB3, 81% for ViT-B\16, and 77% for
experienced radiologists. However, these results are still not satisfactory.

Fine-tuning is a technique that involves freezing some of the bottom layers of a
network and only training the top layers on new data [21]. Studies have demonstrated that
TL with fine-tuning can achieve higher diagnostic performance than training a CNN from
scratch [22]. Another technique is gradual unfreezing [23], which was initially introduced
in the ULMFit model [24]. This technique gradually unfreezes layers from top to bottom
during the training process. By doing so, the model can update its weights while retaining
its previous knowledge when applied to a new task [22,25]. In this study, our goal was to
provide an objective US diagnostic method by utilizing both a CNN trained from scratch
and TL with fine-tuning and gradual unfreezing to differentiate between malignant and
benign SGTs. We aimed to assess the diagnostic potential of ultrasound imaging alone
when encountering a newly diagnosed SGT. We included all types of tumors found within
the salivary gland, including metastatic carcinoma and lymphoma. Factors such as the
stage of cancer, a patient’s cancer history, or the presence of adjacent lymphadenopathy or
distant metastasis were not considered during our analysis. Additionally, we employed
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gradient-weighted class activation mapping (Grad-CAM) to visualize the regions that the
model focuses on [26]. Grad-CAM uses the gradients with respect to the feature maps
of the last convolutional layer to generate a map highlighting the regions that the model
focuses on. This can provide a better understanding of what the model has learned.

2. Materials and Methods
2.1. Ethical Considerations

This study was performed in accordance with the Declaration of Helsinki and obtained
approval from the institutional ethical review board (IRB No. 111199-E and No. 112136-E).
Informed consent was waived due to retrospective and anonymous study design. The
study did not impact the patients’ treatment or outcome.

2.2. Inclusion Criteria

This retrospective study was conducted at a tertiary medical center. We reviewed
patients who visited our outpatient department between January 2007 and December 2022
and underwent US examinations for suspected major salivary gland tumors. The US
examinations were performed by experienced otolaryngologists. We included 337 adult
patients, aged 20 years or older, who underwent further operations or core needle biopsies
(CNB) and for whom pathological reports were obtained. CNB was performed when
patients were deemed unsuitable for open surgery. Pathological diagnoses based on
pathological reports were used as the ground truth for classifying tumors as malignant or
benign. Patients without US images or with poor image quality were excluded. The flow
chart of the inclusion and exclusion criteria is shown in Figure 2.

Diagnostics 2023, 13, x FOR PEER REVIEW 4 of 14 
 

 

 
Figure 2. Flow chart to illustrate the study’s inclusion and exclusion criteria. Abbreviation: US, ul-
trasound; SGT, salivary gland tumor. 

2.4. Data Preparation 
The study protocol is presented in Figure 3. First, to reduce the noise signal in the US 

images and focus specifically on the tumor, the images were cropped to encompass the 
entire tumor and its surrounding region in a rectangular region. Second, to address var-
iations in brightness settings among different otolaryngologists, histogram equalization 
was applied to all cropped US images. The resulting images were labeled either as be-
nign or malignant according to the pathological diagnosis for the subsequent experi-
ments, with class 0 indicating benignity and class 1 indicating malignancy. 

2.5. Model Establishment 
We trained our model using the Python framework on Google Colaboratory (Colab) 

with an NVIDIA T4 GPU (NVIDIA Corp., Santa Clara, CA, USA). Colab provides free 
GPU resources and serves as an online Jupyter Notebook. The input image was resized 
to 150 x 150 grayscale for the following experiments. The optimal model was determined 
based on the results of the validation set. We employed binary cross-entropy as the loss 
function, which is defined as follows: 

𝐿  =  − 1𝑁 ((𝑌 ∗ log(𝑃 ) + ( 1 − 𝑌 ) ∗ log(1 − 𝑃 )) 

where N represents the total sample size. For a random sample, YI represents its truth 
label, PI represents its prediction probability of class 1, and (1 – PI) represents its predic-
tion probability of class 0. 

Figure 2. Flow chart to illustrate the study’s inclusion and exclusion criteria. Abbreviation: US,
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2.3. Data Collection

To effectively build and evaluate the model, we divided the patients into two sets.
The training/validation set, which consisted of 264 patients diagnosed between January
2007 and December 2020, was used to establish and validate the model. The testing set,
which included 73 patients diagnosed between January 2021 and December 2022, was used
to assess the model’s ability to make predictions. We collected demographic data (age
and sex), tumor characteristics (side, location, and size), and pathological reports for the
included patients (Supplementary Table S1). US examinations were performed using a
Toshiba Aplio 500 (Canon Medical Systems, Tochigi-ken, Japan) with a 5–14 MHz linear-
array transducer in B-mode. The US images were retrieved from the picture archiving
and communication system (PACS). The training/validation set comprised 222 benign
and 42 malignant SGTs, and the testing set comprised 64 benign and 9 malignant SGTs.
To address the data imbalance, we collected a larger number of US images for malignant
SGTs and a smaller number for benign SGTs. The collected US images encompassed
different views of the tumors, including the long or short axis and horizontal or vertical
view, along with the neighboring regions. As a result, we collected a total of 446 benign and
223 malignant US images in the training/validation set and 119 benign and 44 malignant
US images in the testing set (Figure 2).

2.4. Data Preparation

The study protocol is presented in Figure 3. First, to reduce the noise signal in the
US images and focus specifically on the tumor, the images were cropped to encompass
the entire tumor and its surrounding region in a rectangular region. Second, to address
variations in brightness settings among different otolaryngologists, histogram equalization
was applied to all cropped US images. The resulting images were labeled either as benign
or malignant according to the pathological diagnosis for the subsequent experiments, with
class 0 indicating benignity and class 1 indicating malignancy.

2.5. Model Establishment

We trained our model using the Python framework on Google Colaboratory (Colab)
with an NVIDIA T4 GPU (NVIDIA Corp., Santa Clara, CA, USA). Colab provides free
GPU resources and serves as an online Jupyter Notebook. The input image was resized
to 150 × 150 grayscale for the following experiments. The optimal model was determined
based on the results of the validation set. We employed binary cross-entropy as the loss
function, which is defined as follows:

LBCE = − 1
N

N

∑
i=1

((YI ∗ log(PI) + (1−YI) ∗ log(1− PI))

where N represents the total sample size. For a random sample, YI represents its truth
label, PI represents its prediction probability of class 1, and (1 – PI) represents its prediction
probability of class 0.

In the first section, we built the prediction model from scratch. For this experiment,
we randomly split the training/validation set into 20% for training and 80% for validation.
A CNN model was constructed from two alternating convolution layers and max pool-
ing layers, followed by a classification layer. The detailed information of the model and
the number of neurons is as follows: convolution (16), max-pooling (2 × 2), convolution
(32), max-pooling (2 × 2), flatten, dense (512), and classification. We examined different
optimizers, the number of convolution layers, kernel sizes, the presence of the dropout
layer, dropout percentages, and the presence of batch normalization. The optimizer options
included SGD, RMSprop, Adagrad, Adadelta, Adam, Adamax, and Nadam. The convolu-
tion layers ranged from two to six layers. The kernel size options were 3 × 3, 5 × 5, and
7 × 7. The dropout layer was tested with percentages of 10%, 30%, and 50%. The batch size
was set to 16, and the epoch was set to 30 for training. The goal of this experiment was to
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determine the most suitable optimizer for classifying SGTs in the newly added layer of the
second section and evaluate the diagnostic performance of these handcrafted models.
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Figure 3. The study protocol. Note: In the first section of our model establishment process, we
constructed a prediction model from scratch. This was carried out to identify the optimal optimizer
for the newly added layer in the subsequent section. In the second section, we utilized transfer
learning, incorporating fine-tuning and gradual unfreezing techniques. We selected nine pre-trained
models and added new layers to them. The model that demonstrated the highest validation accuracy
was chosen for further evaluation of its diagnostic performance on the testing set. Abbreviation: Mal,
malignant; TL, transfer learning.

In the second section, we employed TL with fine-tuning and gradual unfreezing using
a pre-trained model. The input grayscale image was converted to the RGB channel by
replicating grayscale image pixels. The pretrained model used in this study included those
that were ever applied in the classification of liver US images (ResNet50V2, MobileNetV2,
EfficientNetB0, DenseNet121, NASNetMobile, and InceptionResNetV2) [27–29], breast
US images (Xception and InceptionV3) [30], and thyroid US images (VGG16 and Incep-
tionV3) [31,32]. We removed the top layer of these pretrained models and connected them
to a new dense layer (512 neurons), a dropout layer (20%), and a classification layer. Due to
the limited dataset size, we applied 5-fold cross-validation to select models with superior
performance. The batch size was set to 16, and the training epoch was set to 40. Three
models with higher accuracy were chosen for fine-tuning and gradual unfreezing. During
the fine-tuning process with gradual unfreezing, we unfroze the layers of the pretrained
model from top to bottom in a step-by-step manner. Initially, all layers of the pretrained
model were frozen, and only the dense and classification layers were trained. Subsequently,
the last block of the pretrained model was unfrozen and retrained. We continued unfreezing
more layers and evaluated the 5-fold cross-validation results at each stage. If no further
improvement in the 5-fold average validation accuracy was observed, we stopped training
and utilized the previous training parameters for further evaluation. The batch size was set
to 16, and the training epoch was set to 20. Finally, we selected the model with the highest
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validation accuracy to assess its diagnostic performance on the testing set. To visualize the
model’s predictions, we utilized Grad-CAM.

2.6. Statistical Analysis

All statistical analyses were performed using STATA software, version 14.0 (Stata
Corporation, College Station, TX, USA). The clinical characteristics are presented as the
mean and standard deviation (SD) or number and percentage (%). Categorical data were
compared using the chi-square test, while continuous data were compared using the t-test.
A confusion matrix with accuracy, sensitivity, specificity, positive predictive value (PPV),
and negative predictive value (NPV) was obtained by applying the model with the highest
validation accuracy to the testing set. A p-value less than 0.05 was considered statistically
significant in this study.

3. Results

The flow chart of the inclusion and exclusion criteria is presented in Figure 2. We
included 264 patients in the training/validation set and 73 patients in the testing set. The
clinical characteristics are summarized in Table 1. There were no significant differences
in age, sex, tumor side, tumor location, or tumor size between the training/validation set
and the testing set (all p values > 0.05). Among these patients, 286 had benign tumors, and
51 had malignant SGTs (Table 2). The most common benign tumors were pleomorphic
adenoma (40%) and Warthin’s tumor (37%), while poorly differentiated or undifferentiated
carcinoma (26%) was the most common malignant tumor.

Table 1. Comparing the clinical characteristics between the training/validation and testing sets.

Demographic Data (Mean (SD) or N (%)) Training/Validation Testing p Value

N = 264 N = 73

Age, year 53 (14) 54 (15) 0.493
Sex 0.453

Female 110 (42%) 34 (47%)
Male 154 (58%) 39 (53%)
Side 0.837

Right 141 (53%) 38 (52%)
Left 123 (47%) 35 (48%)

Location 0.302
Parotid gland 206 (78%) 61 (84%)

Submandibular gland 58 (22%) 12 (16%)
Tumor size

Short axis, cm 1.7 (0.6) 1.6 (0.6) 0.336
Long axis, cm 2.5 (1.0) 2.4 (0.9) 0.461

Short–long-axis ratio 0.7 (0.2) 0.7 (0.1) 0.586
Pathological diagnoses 0.450

Benign tumors 222 (84%) 64 (88%)
Malignant tumors 42 (16%) 9 (12%)

For the subsequent experiments, we collected a total of 446 benign and 223 malignant
US images of SGTs in the training/validation set and 119 benign and 44 malignant US
images of SGTs in the testing set. First, we constructed the CNN model from scratch
(Table 3). The results indicated that the Adam optimizer achieved higher training and
validation accuracy than the other optimizers. However, other methods, such as increasing
layers, changing kernel size, or incorporating dropout or batch normalization, did not
significantly improve the validation accuracy.
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Table 2. Pathological reports for the patients included in the study.

Pathological Reports All Training/Validation Testing

N = 337 N = 264 N = 73

Benign salivary gland tumors 286 222 64
Pleomorphic adenoma 114 (40%) 91 (41%) 23 (36%)

Warthin’s tumor 106 (37%) 83 (37%) 23 (36%)
Other benign tumors (basal cell adenoma,

oncocytoma, hemangioma, chronic sialadenitis,
IgG4-associated sialadenitis, etc.)

66 (23%) 48 (22%) 18 (28%)

Malignant salivary gland tumors 51 42 9
Poorly differentiated/undifferentiated

carcinoma 13 (26%) 12 (29%) 1 (11%)

Mucoepidermoid carcinoma 12 (24%) 7 (17%) 5 (56%)
Metastatic carcinoma 10 (20%) 9 (22%) 1 (11%)

Lymphoma 5 (10%) 5 (12%) 0 (0%)
Lymphoepithelial carcinoma 4 (8%) 3 (7%) 1 (11%)

Adenoid cystic carcinoma 2 (4%) 2 (5%) 0 (0%)
Adenocarcinoma, 2 (4%) 1 (2%) 1 (11%)

Acinic cell carcinoma 1 (2%) 1 (2%) 0 (0%)
Carcinoma ex pleomorphic adenoma 1 (2%) 1 (2%) 0 (0%)

Salivary duct carcinoma 1 (2%) 1 (2%) 0 (0%)

Table 3. Constructing CNNs from scratch and evaluating their performance.

Optimizer SGD RMSprop Adagrad Adadelta Adam Adamax Nadam

ACC 0.71 0.93 0.70 0.67 0.99 0.86 0.99
LOSS 0.56 0.21 0.59 0.62 0.04 0.33 0.05

VAL_ACC 0.61 0.62 0.67 0.67 0.68 * 0.68 0.63
VAL_LOSS 0.70 1.01 0.67 0.63 1.54 0.69 1.49

Layer 2 3 4 5

ACC 0.99 0.97 0.79 0.63
LOSS 0.04 0.09 0.47 0.61

VAL_ACC 0.68 * 0.60 0.72 0.67
VAL_LOSS 1.54 1.71 0.85 0.63

Kernel size 3 × 3 5 × 5 7 × 7

ACC 0.99 0.98 0.97
LOSS 0.04 0.07 0.07

VAL_ACC 0.68 * 0.63 0.51
VAL_LOSS 1.54 1.86 1.89

Dropout No 10% 30% 50%

ACC 0.99 0.92 0.83 0.78
VAL_ACC 0.68 * 0.59 0.66 0.68

Batch normalization No Yes +dropout 10% +dropout 50%

ACC 0.99 0.90 0.81 0.73
VAL_ACC 0.68 * 0.68 0.51 0.56

Note. * Variables with the highest diagnostic performance (higher accuracy and lower loss) in each experiment.
Abbreviation: ACC: accuracy; VAL_ACC: validation accuracy; VAL_LOSS: validation loss.

Second, due to the limited dataset, we applied TL with 5-fold cross-validation (Table 4).
Among the nine pretrained models evaluated in this study, DenseNet121, VGG16, and
ResNet50V2 demonstrated higher average validation accuracies (0.798, 0.789, and 0.771,
respectively) during 5-fold cross-validation. Therefore, we selected these three models
for further fine-tuning and gradual unfreezing under 5-fold cross-validation (Table 5).
The results indicated that ResNet50V2 and DenseNet121 had similar average validation
accuracies (0.920 vs. 0.919). However, in the testing set, ResNet50V2 exhibited higher
accuracy than DenseNet121 (0.890 vs. 0.753). By utilizing the pretrained ResNet50V2 model
with fine-tuning and gradual unfreezing, the diagnostic performance on the testing set
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achieved an accuracy of 89.0%, a sensitivity of 81.8%, a specificity of 91.6%, a PPV of 78.3%,
and an NPV of 93.2% (Table 6). Grad-CAM was employed to visualize the model’s outputs.
Figure 4 illustrates the Grad-CAM in the testing set, showing the important regions that
the model used to classify the SGT.
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Grad-CAM images (B). The third line depicts US images of malignant SGTs (C), and the fourth line
presents their Grad-CAM images (D). Abbreviation: Grad-CAM, gradient-weighted class activation
mapping; US, ultrasound; SGT, salivary gland tumor.
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Table 4. Transfer learning with feature extraction and 5-fold cross-validation is employed to select
models with superior diagnostic performance.

Model VGG16 ResNet50V2 MobileNetV2 EfficientNetB0 DenseNet121 Xception NASNetMobile InceptionV3 InceptionResNetV2

AVG_ACC 0.999 0.999 0.540 0.473 0.996 0.992 0.997 0.998 0.995
AVG_LOSS 0.030 0.007 0.924 0.924 0.020 0.032 0.018 0.019 0.033

AVG_VAL_ACC 0.789 * 0.771 * 0.505 0.693 0.798 * 0.767 0.741 0.737 0.756
AVG_VAL_LOSS 0.633 1.348 0.694 0.441 0.720 1.022 0.981 0.996 0.967

Note. * Models with higher 5-fold average validation accuracy. Data of each fold were included in Supplementary
Table S2. Abbreviation: AVG_ACC: average accuracy; AVG_LOSS: average loss; AVG_VAL_ACC: average
validation accuracy; AVG_VAL_LOSS: average validation loss.

Table 5. Transfer learning with fine-tuning and gradual unfreezing, combined with 5-fold cross-
validation, is employed to enhance the diagnostic performance of selected models.

Model DenseNet121 VGG16 ResNet50V2

Unfreeze layer conv4_block13_0_bn Block4_conv1 conv4_block5_preact_bn
Learning rate 0.00001 0.0001 0.0001

AVG_ACC 1.000 0.732 0.996
AVG_LOSS 0.005 0.376 0.021

AVG_VAL_ACC 0.919 0.618 0.920 *
AVG_VAL_LOSS 0.237 0.998 0.566

TEST_ACC 0.753 0.667 0.890
TEST_LOSS 0.543 0.692 0.527

Note. * Models with the highest 5-fold average validation accuracy. Data of each fine-tuning were included in the
Supplementary Table S3. Abbreviation: AVG_ACC: average accuracy; AVG_LOSS: average loss; AVG_VAL_ACC:
average validation accuracy; AVG_VAL_LOSS: average validation loss; TEST_ACC: testing accuracy; TEST_LOSS:
testing loss.

Table 6. The diagnostic results and performance of ResNet50V2 with fine-tuning and gradual
unfreezing in the testing set.

ResNet50V2 with Fine-Tuning and Gradual Unfreezing Testing Set

Diagnostic result
True positive 36
False negative 8
False positive 10
True negative 109

Diagnostic performance
Accuracy 89.0%
Sensitivity 81.8%
Specificity 91.6%
Positive predictive value, PPV 78.3%
Negative predictive value, NPV 93.2%

4. Discussion

This study compared the diagnostic performance of the CNN trained from scratch
and TL with fine-tuning and gradually unfreezing for differentiating between malignant
and benign SGTs based on US images. A separate testing set, collected between January
2021 and December 2022, was used to evaluate the model’s performance. The results
demonstrated that TL with fine-tuning and gradual unfreezing outperformed the CNN
trained from scratch (Tables 3–5). Specifically, the ResNet50V2 model with fine-tuning and
gradual unfreezing achieved the highest diagnostic accuracy compared to DenseNet121
and VGG16 (Table 4). In the testing set, the model demonstrated much higher sensitivity
(81.8%) and accuracy (89.0%) with similar specificity (91.6%) compared to the subjective US
features reported in a previous meta-analysis, which had a pooled sensitivity of 62.9% and
specificity of 92.0% [7]. These findings indicate that our model is an effective and objective
diagnostic method for accurately classifying SGTs using US images and may offer better
diagnostic performance than subjective US features.
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The presence of various benign and malignant tumor types (Table 2), as well as the
varying degrees of malignancy, poses a challenge for diagnosing SGTs based on US images
alone [5]. Traditional subjective US features used to identify malignant SGTs include vague
boundaries, irregular shapes, the presence of calcification, the presence of lymphadenopa-
thy, and the absence of posterior acoustic enhancement [11,13]. In our previous study, we
evaluated these subjective US features for differentiating between malignant and benign
SGTs, resulting in a sensitivity of 58%, specificity of 89%, and accuracy of 85% [13]. We also
assessed US elastography, including shear wave elastography and strain elastography, but
observed poor diagnostic performance. In our current study, the ResNet50V2 model with
fine-tuning and gradual unfreezing demonstrated higher sensitivity (81.8%), specificity
(91.6%), and accuracy (89.0%) compared to our previous study, which relied on subjective
US features [13]. Moreover, this performance was comparable to that of CT (pooled sensi-
tivity of 83.0% and specificity of 85.1%) and MRI (pooled sensitivity of 80.7% and specificity
of 88.6%), as reported in previous meta-analyses [7]. Our model demonstrated the potential
to classify SGTs more effectively than subjective US features, with a diagnostic performance
similar to that of CT or MRI. By using the feature maps learned by kernel filters, our model
offers a distinct perspective from the subjective US features in diagnosing SGTs, potentially
leading to a more reliable diagnostic outcome.

TL has been gradually used in US image classification for organs, such as the thy-
roid [33], breast [34], and liver [35], but it is less commonly used for SGT. Wang et al.
reported the first study on the application of TL in diagnosing SGTs using US images [20].
They compared different TL models and reported diagnostic accuracies of 79% for ResNet50,
77% for DenseNet121, and 80% for EfficientNetB3. In our study, we collected as many
pretrained models as possible to select those with the highest applicability to our dataset.
We then used fine-tuning and gradual unfreezing to further train these models. Fine-tuning
trains selected layers of the pretrained model along with the newly added top layers during
the training process. Combined with gradual unfreezing, the model can gradually train
newly unfrozen layers to achieve higher diagnostic performance. Another method em-
ployed in our study is K-fold cross-validation, which is commonly used in DL for medical
image classification, including thyroid US images [36,37]. K-fold cross-validation helps mit-
igate selection bias in small sample sizes by dividing the data into k subsets and iteratively
using one subset as the validation data while the remaining subsets serve as the training
data. This approach allows for obtaining an average performance of the model and reduces
overfitting to a specific subset of the data. We evaluated nine pretrained models using
TL with 5-fold cross-validation and selected three models with higher average validation
accuracy (78.9% for VGG16, 77.1% for ResNet50V2, and 79.8% for DenseNet121; Table 4).
After fine-tuning and gradual unfreezing, the 5-fold average validation accuracy improved
to 92.0% for ResNet50V2 and 91.9% for DenseNet121 (Table 5). This result confirmed the
additional effect of fine-tuning and gradual unfreezing on TL. By implementing fine-tuning
with gradual unfreezing and K-fold validation, our model achieved a better diagnostic
performance in the testing set, with an accuracy of 89.0%, a sensitivity of 81.8%, a specificity
of 91.6%, a PPV of 78.3%, and an NPV of 93.2%. These results outperformed those of the
previous study [20].

Furthermore, for the enhanced interpretability of our model, we employed grad-CAM
to visualize the decision-making process. Grad-CAM identifies the regions that the model
focuses on by utilizing the gradients between the output and the last convolutional layer.
These gradients are multiplied by their corresponding feature maps and combined to
generate a heatmap. By overlaying the heatmap on the original image, a Grad-CAM
image is created. Grad-CAM highlights the area that contributes the most to the predicted
class, facilitating a better understanding of the model’s prediction. As shown in Figure 4,
the region that our model focused on was mostly located in the middle and right lower
portion of the tumor. Our model demonstrated its ability to objectively classify SGTs, which
could assist in preoperative evaluation. If the tumor is determined to be benign, then
extracapsular dissection or superficial parotidectomy may be adequate. However, if the
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tumor is determined to be malignant, then wide excision with lymph node dissection may
be necessary.

5. Limitations

There were several limitations to this study. First, this study was a retrospective
study and not a randomized controlled trial, which may have introduced selection bias
and limited the generalizability of our findings. Second, the sample size was relatively
small, consisting of 337 patients with 832 US images of SGTs. While we employed K-fold
cross-validation to mitigate the impact of the small sample size, the model developed
based on this dataset may not accurately represent other populations. Third, we obtained
a larger number of ultrasound images from patients with malignant tumors than from
those with benign tumors. This discrepancy may introduce selection bias into our study.
Fourth, despite the application of histogram equalization, we could not entirely eliminate
the potential effects of operator variability. Furthermore, variations in US machines across
different hospitals may also influence the model’s predictions. Therefore, it is crucial to
conduct further prospective studies and involve multiple facilities to effectively validate
and apply this model.

6. Conclusions

In this study, we evaluated CNN models trained from scratch and TL with various
pretrained models using the online platform Colab. Our findings demonstrated that the
pretrained ResNet50V2 model with fine-tuning and gradual unfreezing exhibited superior
diagnostic accuracy compared to other models. Additionally, we employed Grad-CAM to
elucidate the underlying reasons behind the model’s diagnoses. Our study provides an
effective and objective US method for distinguishing between malignant and benign SGTs.
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//www.mdpi.com/article/10.3390/diagnostics13213333/s1, Supplementary Table S1: Clinical char-
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