
Citation: Lawaetz, M.; Christensen,

A.; Juhl, K.; Lelkaitis, G.; Karnov, K.;

Carlsen, E.A.; Charabi, B.W.; Loft, A.;

Czyzewska, D.; Buchwald, C.v.; et al.

Diagnostic Value of Preoperative

uPAR-PET/CT in Regional Lymph

Node Staging of Oral and

Oropharyngeal Squamous Cell

Carcinoma: A Prospective Phase II

Trial. Diagnostics 2023, 13, 3303.

https://doi.org/10.3390/

diagnostics13213303

Academic Editor: Andor W. J.

M. Glaudemans

Received: 7 September 2023

Revised: 20 October 2023

Accepted: 20 October 2023

Published: 25 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

diagnostics

Article

Diagnostic Value of Preoperative uPAR-PET/CT in Regional
Lymph Node Staging of Oral and Oropharyngeal Squamous
Cell Carcinoma: A Prospective Phase II Trial
Mads Lawaetz 1,2, Anders Christensen 1,2, Karina Juhl 2, Giedrius Lelkaitis 3, Kirstine Karnov 1,2,†,
Esben Andreas Carlsen 2 , Birgitte W. Charabi 1, Annika Loft 2, Dorota Czyzewska 2, Christian von Buchwald 1

and Andreas Kjaer 2,*

1 Department of Otolaryngology, Head and Neck Surgery and Audiology, Rigshospitalet, Copenhagen
University Hospital, 2100 Copenhagen, Denmark; mads.lawaetz@regionh.dk (M.L.)

2 Department of Clinical Physiology, Nuclear Medicine and PET and Cluster for Molecular Imaging,
Copenhagen University Hospital—Rigshospitalet & Department of Biomedical Sciences, University of
Copenhagen, 2100 Copenhagen, Denmark; dorota.czyzewska@regionh.dk (D.C.)

3 Department of Pathology, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark
* Correspondence: akjaer@sund.ku.dk
† Kirstine Karnov sadly passed away before publication of this study.

Abstract: The detection of lymph node metastases is a major challenge in oral and oropharyngeal
squamous cell carcinoma (OSCC and OPSCC). 68Ga-NOTA-AE105 is a novel positron emission
tomography (PET) radioligand with high affinity to urokinase-type plasminogen activator receptor
(uPAR), a receptor expressed on the surfaces of tumor cells. The aim of this study was to investigate
the diagnostic value of uPAR-PET/CT (computerized tomography) in detecting regional metastatic
disease in patients with OSCC and OPSCC compared to the current imaging work-up. In this
phase II trial, patients with OSCC and OPSCC referred for surgical treatment were prospectively
enrolled. Before surgery, 68Ga-NOTA-AE105 uPAR-PET/CT was conducted, and SUVmax values
were obtained from the primary tumor and the suspected lymph nodes. Histology results from
lymph nodes were used as the standard of truth of metastatic disease. The diagnostic values
of 68Ga-uPAR-PET/CT were compared to conventional routine preoperative imaging results (CT
and/or MRI). The uPAR expression in resected primary tumors and metastases was determined
by immunohistochemistry and quantified digitally (H-score). A total of 61 patients underwent
uPAR-PET/CT. Of the 25 patients with histologically verified lymph node metastases, uPAR-PET/CT
correctly identified regional metastatic disease in 14 patients, with a median lymph node metastasis
size of 14 mm (range 3–27 mm). A significant correlation was found between SUVmax and the
product of the H-score and tumor depth (r = 0.67; p = 0.003). The sensitivity and specificity of uPAR-
PET/CT in detecting regional metastatic disease were 56% and 100%, respectively. When added to
CT/MRI, uPAR-PET was able to upstage 2/11 (18%) of patients with occult metastases and increase
the sensitivity to 64%. The sensitivity and specificity of 68Ga-NOTA-AE105 uPAR-PET/CT were
equivalent to those of CT/MRI. The significant correlation between SUVmax and uPAR expression
verified the target specificity of 68Ga-NOTA-AE105. Despite the target specificity, the sensitivity of
imaging is too low for nodal staging and it cannot replace neck dissection.

Keywords: urokinase-type plasminogen activator receptor (uPAR); PET/CT; 68Ga-NOTA-AE105;
lymph node metastases; head and neck cancer

1. Introduction

Oral (OSCC) and oropharyngeal (OPSCC) squamous cell carcinomas are two of the
most frequent malignancies of the head and neck [1]. The occurrence of cervical lymph
node metastases is the most important clinical prognostic factor [2–5]. The detection of
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lymph node metastases remains a major challenge in OSCC and OPSCC, where 21–33% of
patients without clinically suspicious regional lymph nodes (cN0 neck) have occult regional
metastases at the time of diagnosis that are not detected on magnetic resonance imaging
(MRI), computed tomography (CT) or ultrasound [6–8]. Other imaging modalities, like
18F-FDG-PET, play an important role in head and neck squamous cell carcinoma (HNSCC),
particularly in post-treatment evaluation, but lack the sensitivity to replace sentinel node
biopsy or elective neck dissection, for staging and surgical planning [9]. Sentinel node
biopsy is a minimally invasive method of staging the clinically and radiologically cN0 neck
in patients with early-stage OSCC or OPSCC, and it has demonstrated equivalency with
elective neck dissection [10]. The accurate and noninvasive identification of patients with
lymph node metastases is critical in selecting the most effective treatment and reducing
the frequency of unnecessary neck procedures. Unfortunately, there are currently no
noninvasive imaging methods that can accomplish this.

Urokinase-type plasminogen activator receptor (uPAR) is a glyciphosphatidyliunos-
itol (GPI)-anchored cell membrane receptor that facilitates cell invasion and metastasis
by converting plasminogen into plasmin at the cell surface and thus degrading the ex-
tracellular matrix [11]. uPAR has been found upregulated in tumor cells in many solid
cancers, including HNSCC, with low or absent expression in normal tissue [12–15]. Due to
the tumor-specific expression of uPAR and its significance in cancer, our research group
developed 68Ga-NOTA-AE105, a novel PET radioligand with a strong affinity to uPAR.
The biodistribution, safety and tumor detection ability of 68Ga-NOTA-AE105 have been
investigated in a phase I study [16], and recent phase II studies have shown the significant
prognostic value of uPAR-PET/CT in patients with HNSCC [17] and in patients with
neuroendocrine neoplasms [18]. However, the diagnostic value of uPAR-PET/CT in OSCC
and OPSCC has not yet been explored.

The aim of this phase II study was therefore to investigate the diagnostic value of
68Ga-NOTA-AE105 uPAR-PET/CT in detecting regional metastatic disease in patients with
OSCC and OPSCC compared to the current imaging work-up.

2. Materials and Methods
2.1. Study Design and Patients

In this prospective phase II trial, patients with biopsy-verified OSCC and OPSCC,
with or without suspicion of regional neck metastases, referred for primary surgery at
the Department of Otolaryngology, Head & Neck Surgery and Audiology, Rigshospitalet,
Copenhagen University Hospital, Denmark, were prospectively enrolled between Novem-
ber 2016 and January 2022. Patients between the ages of 18 and 85 years, who were able to
read, comprehend and provide informed consent, were eligible. Exclusion criteria were
previous surgery or radiation therapy to the neck, obesity (bodyweight > 140 kg), allergy to
68Ga-NOTA-AE105 or pregnancy. Patients were enrolled in this trial following a standard
evaluation and imaging work-up. The study design is shown in Figure 1. From patient
records, data on age, gender, stage, preoperative imaging modalities, laboratory findings
and histology results were obtained. Patients’ disease stage was classified according to
the 8th edition of the Union for International Cancer Control (UICC) staging manual [19].
Patients included between 2016 and 2018, i.e., prior to the introduction of the 8th edition
of the UICC staging manual, were subsequently reclassified according to this edition, so
that all patients were classified according to the most recent TNM staging manual. The
study was approved by the Danish Research Ethics Committee (protocol no. H-16032922)
and the Danish Medicines Agency (protocol no. 2016122500). The trial was registered
in the European Union Drug Regulating Authorities Clinical Trials Database (EudraCT
no. 2016-002360-14) and on ClinicalTrials.gov (Identifier: NCT02960724) and conducted in
compliance with the Good Clinical Practice (GCP) recommendations.
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and attenuation correction with 2 iterations, 21 subsets and a 2 mm Gaussian filter. The 
CT scan was carried out with 120 kV, 170 mAs and a pitch of 0.8. Any adverse events were 
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Figure 1. The study design. Patients, regardless of lymph node status, were included after routine
evaluation and imaging. Following uPAR-PET/CT, patients underwent surgical excision of the pri-
mary tumor and the removal of regional lymph nodes (sentinel node dissection and/or elective neck
dissection). uPAR-PET/CT-positive lymph nodes were finally compared to the pathology results.

2.2. Image Acquisition

The radioligand, 68Ga-NOTA-AE105, was produced in-house as previously pub-
lished [16]. Before surgery, patients underwent a whole-body PET/CT scan 20 min after
the injection of approximately 200 MBq (median 199 MBq, range 112–214 MBq) of 68Ga-
NOTA-AE105. Whole-body PET and diagnostic CT with iodine intravenous contrast (skull
base to proximal thigh) were performed in the same session with an integrated whole-
body PET/CT system (Siemens Biograph mCT 64 slice, Siemens, Munich, Germany) with
patients placed in a supine position. The PET data were reconstructed using an iterative
reconstruction technique that used time of flight, point spread function and attenuation
correction with 2 iterations, 21 subsets and a 2 mm Gaussian filter. The CT scan was carried
out with 120 kV, 170 mAs and a pitch of 0.8. Any adverse events were recorded within 24 h
following 68Ga-NOTA-AE105 injection.

2.3. Image Analysis

All 68Ga-uPAR-PET/CT scans were evaluated by an experienced physician in nuclear
medicine and an experienced radiologist working side by side, both blinded to all clinical
data, including the TNM stage and results from the previous routine imaging work-up
(CT/MRI). The lymph nodes were classified as positive if the team visually found higher
uptake in a lymph node compared with surrounding normal tissue. In the case of a positive
lymph node on uPAR-PET/CT, the volume of the entire lymph node was contoured and,
from this, the maximum standardized uptake value (SUVmax) was obtained. The radiologist
determined the anatomic lymph node level of each uPAR-PET/CT-positive lymph node.
Later, the neck uPAR-PET/CT results were compared to the histology report (considered the
gold standard) in which the dissected levels were documented. The diagnostic performance
of uPAR-PET/CT was determined as the presence or absence of lymph node metastases
in a neck region compared to the histology report. The results from uPAR-PET/CT were
compared with results from the previous routine imaging work-up (CT/MRI).

2.4. Tissue Selection and Immunohistochemistry

A specialized head and neck pathologist analyzed all resected primary tumor spec-
imens and lymph nodes. The maximum depth of the primary tumor was measured
microscopically. All resected tissue was formalin-fixated and paraffin-embedded. Smaller
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nodes were embedded in paraffin in toto, whereas larger nodes were divided and then
embedded. Representative diagnostic slides were obtained from alle blocks as part of the
routine pathology examination.

All formalin-fixated paraffin-embedded tumor samples from resected primary tumors
and lymph node metastases were collected for this study. uPAR expression was determined
by immunohistochemistry on 4 µm slides. Slides were incubated in 60 ◦C for 60 min and
afterwards deparaffinized with xylene and rehydrated in decreasing grades of alcohol.
Antigen retrieval was carried out in CC1 antigen retrieval buffer (Ventana Medical Systems,
Tucson, AZ, USA) for 10 min at 95 ◦C. Endogenous peroxidase was blocked for 8 min with
peroxidase-blocking solution (DAKO s2023). Blocking for unspecific antibody binding was
performed using 2% BSA. Slides were incubated with uPAR-specific antibody (GeneTex,
Irwine, CA, USA, product no. GTX100467, concentration 1:500) for 1 h. After this, the
slides were incubated with the secondary antibody (DAKO anti-rabbit K4003) for 45 min.
Staining was visualized using the DAB+ substrate chromogen system (DAKO K3468) and
the specimens were lastly stained with hematoxylin for 60 s. The primary antibody was
used at optimal dilution using positive and negative control staining.

2.5. Immunohistochemistry Scoring

An experienced head and neck pathologist digitally annotated the tumor compart-
ments in both primary tumors and lymph node metastases and excluded necrotic areas
using the open-source software Qupath version 0.3.2 [20]. Within the tumor compartment,
cells were digitally identified as positive or negative based on the mean DAB signal in
the cell cytoplasm. Cell expansion was set to 5 µm and the intensity threshold was set to
0.12 for weak intensity (+1), 0.25 for moderate intensity (+2) and 0.50 for strong intensity
(+3). From these settings, the positive proportion of tumor cells and the H-score within
the tumor compartment were calculated. The H-score ranged from 0 to 300 based on the
following formula: 3 × percentage of strongly stained cells + 2 × percentage of moderately
stained cells + percentage of poorly stained cells. The product of the H-score and tumor
depth were correlated to SUVmax for all primary tumors.

2.6. Statistical Analysis

Sensitivity, specificity and negative and positive predictive values (NPV and PPV)
were calculated per patient. McNemar’s test was used for comparison between uPAR-
PET/CT and standard-of-care tests (CT/MRI). Pathology results from surgery were used
as the gold standard. Correlation between SUVmax and the histology findings in primary
tumors was performed using Spearman’s rank correlation test. The Mann–Whitney U test
was used to compare the mean tumor depth between groups. All continuous values are
reported as the median and range or mean ± SD. A p-value less than 0.05 was regarded as
statistically significant. All statistical analyses were performed using IBM SPSS statistics
version 25.0.

3. Results
3.1. Patients

We included 66 patients with OSCC and OPSCC in this phase II trial between Novem-
ber 2016 and January 2022. Five patients were excluded due to failed radiopharmaceutical
production, leaving 61 patients with an 68Ga-NOTA-AE105uPAR-PET/CT for the final
analyses (Figure 2). No adverse reactions or clinically detectable side effects related to the
radioligand administration were observed. Patient characteristics are shown in Table 1.
The median age of patients was 66 years, and the majority (79%) were diagnosed with
OSCC. Sixty percent of patients were diagnosed in the early stage (stage I-II) and the vast
majority (79%) of patients had small (T1-T2) primary tumors. Of the 13 patients with
oropharyngeal cancer, ten patients had p16-positive tumors, eight of them with confirmed
HPV-positive status (two not tested). All patients underwent standard-of-care examina-
tions (CT and/or MRI), and 15/61 (23%) patients were preoperatively diagnosed with
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image- or pathology-verified lymph node metastases. The neck was managed with sentinel
node biopsy (39%), selective neck dissection (51%) or a combination of both (7%). Sen-
tinel node biopsies were only performed for patients with preoperative N0 neck. One of
the 24 patients who underwent sentinel node biopsy was diagnosed with a lymph node
metastasis. This patient was subsequently treated with a neck dissection, but no additional
lymph node metastases were found. Two patients elected observation over neck surgery,
leaving the N-stage histologically unconfirmed. Ten patients were upstaged to pN+ due to
the detection of subclinical lymph node metastases following surgery, bringing the total
number of patients with histologically verified regional metastases to 25 (41%). The median
time from uPAR-PET/CT to surgery was 2 days (range 1–12).
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Figure 2. CONSORT flow diagram of the study.

Table 1. Characteristics of included patients and their tumor stages. All included patients were treated
with primary surgery at the T-site. Neck interventions were performed as part of the primary surgery.

Characteristics Value

Age (years) Median, 66; range, 39–80

Male/female (n) 21/40 (34%/66%)

Primary site (n)
Oral cavity 48 (79%)
Oropharynx 13 (21%)
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Table 1. Cont.

Characteristics Value

Treatment on N-site
Sentinel node 24 (39%)

Oropharynx (N0/N+) 0/0
Oral (N0/N+) 23/1

Selective neck 31 (51%)
Combination 4 (7%)
No neck surgery 2 (3%)

Stage (n)
pI 34 (55%)
pII 6 (10%)
pIII 7 (11.5%)
pIV 14 (23%)

T-stage (n)
pT1 31 (51%)
pT2 17 (28%)
pT3 2 (3%)
pT4 11 (18%)

Preoperative N-stage (n)
cN0 46 (75%)
cN+ 15 (25%)

Postoperative N-stage (n)
pN0 36 (59%)
pN+ 25 (51%)

3.2. Diagnostic Value of uPAR-PET/CT

In total, 59 patients with a neck intervention and histology-defined neck status were
included in the calculation of sensitivity, specificity, PPV and NPV (Table 2). Among
the 25 patients with histologically verified lymph node metastases, uPAR-PET/CT found
regional metastatic disease in 14 patients (example shown in Figure 3). The same number
of patients were also identified with regional metastatic disease after standard-of-care
preoperative CT/MRI. However, there was a discordance between CT/MRI and uPAR-
PET/CT in four cases. In two patients, uPAR-PET/CT correctly detected lymph node
disease while CT/MRI was negative, whereas the inverse was observed in the two other
patients. The lymph node metastases not identified by uPAR-PET/CT were significantly
smaller than those detected (p = 0.006), with a median size in the undetected of 5 mm (range
0.1–10), compared to the median size in the detected of 14 mm (range 3–27 mm). For both
uPAR-PET/CT and CT/MRI, the sensitivity and specificity on a per patient basis were 56%
and 100%, respectively (no significant differences).

Table 2. Diagnostic accuracy of uPAR PET/CT compared to CT/MRI for assessment of regional
metastatic disease in patients with OSCC and OPSCC using pathology results as gold standard. uPAR:
urokinase-type plasminogen activator receptor. pN+: pathology-verified lymph node metastatic dis-
ease. pN0: no lymph node metastases after pathology assessment of surgically removed lymph nodes.

Pathology Results, n (%)

Imaging Modality Positive (pN+) Negative (pN0) Total

uPAR-PET/CT Positive 14 0 14
Negative 11 34 45

Total 25 34 59
Sensitivity = 56% Specificity = 100% PPV = 100% NPV = 76%
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Table 2. Cont.

Pathology Results, n (%)

Imaging Modality Positive (pN+) Negative (pN0) Total

CT/MRI
(standard

examinations)
Positive 14 0 14

Negative 11 34 45
Total 25 34 59

Sensitivity = 56% Specificity = 100% PPV = 100% NPV = 76%

uPAR-PET/CT and
CT/MRI

combined
Positive 16 0 16

Negative 9 34 43
Total 25 34 59

Sensitivity = 64% Specificity = 100% PPV = 100% NPV = 79%
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Figure 3. (A) 68Ga-NOTA-AE105 uPAR-PET/CT of a patient with lymph node metastasis, not
detected by routine imaging work-up (CT/MRI). (B) MRI from the same patient.

If standard-of-care examinations were combined with uPAR-PET/CT, the sensitivity
could be increased from 56% to 64% and the NPV from 76% to 79%. An additional 2 of
11 (18%) patients with occult metastases would have been upstaged. uPAR-PET/CT was
not able to detect additional metastases in patients with clinically N+ neck (patients with
cervical lymph nodes already detected by routine clinical/imaging work-up).

The median SUVmax for lymph node metastasis was 2.62 (range 1.81–4.57); for pri-
mary tumors, it was 2.82 (range 2.00–4.40). Due to the presence of several small and
superficial primary tumors, the image analysis team was only able to measure SUV values
for 18/61 primary tumors for the comparison of SUV values and uPAR expression. The
primary tumors identified by CT were significantly larger than the undetected tumors, with
a mean tumor depth of 10.2 ± 6.2 mm versus 4.6 ± 3.5 mm (p < 0.001), respectively.

3.3. Immunohistochemistry

All primary tumors and lymph node metastases detected by CT exhibited uPAR-
expression. Seventeen of the eighteen primary tumors with measurable SUV values were
available for immunohistochemical examination and were assessed digitally using Qupath
(Figure 4). The mean proportion of positive cells in the tumor compartments of the uPAR-
PET/CT-detected tumors was 44.7 ± 22.7% and they had an H-score of 66.9 ± 36.2. A
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significant correlation was found in primary tumors between the SUVmax and the product
of the H-score and tumor depth (p = 0.003; r = 0.67) (Figure 5). There was not sufficient
tissue available from lymph node metastases to obtain a meaningful correlation between
the SUV values and immunohistochemistry results.
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the product of H-score and tumor depth in 17 primary tumors.

4. Discussion

This prospective phase II trial including 61 patients is the first study to examine the
diagnostic value of uPAR-PET/CT in patients surgically treated for OSCC and OPSCC. We
found that 68Ga-NOTA-AE105 uPAR-PET/CT had, on a per-patient basis, sensitivity and
specificity in detecting regional metastatic disease of 56% and 100%. All patients with a
uPAR-PET/CT-positive neck had a histologically verified nodal malignancy, which resulted
in a positive predictive value of 100%. Additionally, we found a significant correlation
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between SUVmax in the primary tumor tissue and uPAR expression, demonstrating the
uPAR specificity of the PET signal.

uPAR-PET/CT and CT/MRI detected an equal number of individuals with lymph
node disease; however, a discordance was seen in four patients. As a result, the combination
of these modalities enhanced the diagnostic value and enabled the detection of 2/11 (18%)
patients with occult metastases, rendering the sentinel node procedure unnecessary for this
group. These findings suggest that uPAR-PET in combination with CT/MRI could be used
to enhance the diagnostic value for tumor tissue detection in OSCC and OPSCC.

In this study, we used the in-house-produced radiotracer composed of the uPAR-
specific peptide AE105, the chelator NOTA and the radiometal 68Ga. The advantage
of 68Ga-labeled peptides is that they can be produced without the need for a cyclotron
onsite [21]. However, the short half-life of 68Ga (T 1

2 = 68 min) also represents challenges
as it needs to be radiolabeled onsite, requiring radiochemistry laboratories. Using 64Cu
(T1/2: 12.7 h) instead would allow for the central production and distribution of the
radiopharmaceutical. Furthermore, the positron range for 68Ga (4 mm) is longer than
that of, e.g., 64Cu (1 mm), which could increase the detection of smaller tumor deposits
due to the increased spatial resolution, as demonstrated by our group in a head-to-head
comparison of 64Cu and 68Ga-based PET tracers in neuroendocrine tumors [22]. This issue
was also reported in a study using a 68Ga-labeled radiotracer for the PET/CT imaging
of lymph node metastases in prostate cancer, which concluded that the detection rate
was influenced by the metastasis size [23]. Prior animal and phase I studies have shown
good resolutions with the 64Cu-based uPAR-PET tracer 64Cu-DOTA-AE105. Accordingly,
it could be interesting to explore this uPAR-PET tracer in OSCC and OPSCC patients in
future studies to increase the detection of occult metastasis and smaller lesions [24,25].
In our study, indeed, we experienced a challenge in identifying smaller quantities of
tumor tissue, as both primary tumors and metastases not detected by 68Ga uPAR-PET/CT
were significantly smaller than those detected. Nonetheless, some primary tumors and
metastases of reasonable size were not detected by 68Ga-uPAR-PET/CT, indicating that
the magnitude of the PET signal is not dependent on the tumor size alone, but may be
a combination of the uPAR expression in tumor cells and the tumor volume. This was
supported by the significant correlation between SUVmax and the product of the H-score
and tumor depth (Figure 5). Furthermore, this correlation confirms findings from the
previous phase I study that the uPAR-PET-signal in tumors is uPAR-specific [24,26].

So far, the use of PET in HNSCC has focused on 18F-fluorodeoxyglucose (18F-FDG) [27].
It has been shown that the combination of 18F-FDG-PET and CT is useful in detecting
unknown primary tumors, secondary primary tumors and distant metastases [28,29],
but the detection of small metastases in patients with a clinically N0 neck has been a
challenge [30]. However, a recent prospective multicenter study investigating the diagnostic
value of 18F-FDG-PET/CT in patients with HNSCC showed a high negative predictive value
for N0 neck in patients with more advanced disease, i.e., T2–T4 tumors [31]. In recent years,
there has been increasing interest in a new PET tracer, 68Ga-labeled fibroblast activation
protein inhibitor (68Ga-FAPI), in different cancers, including head and neck. Fibroblast
activation protein (FAP) has, in immunohistochemical studies, been found upregulated
in various head and neck malignancies [32,33]. Imaging with 68Ga-FAPI PET/CT in head
and neck cancer has demonstrated high-contrast imaging in both primary tumors and
metastases and low uptake in healthy tissue [34]. For the staging of HNSCC, 68Ga-FAPI
PET/CT has also demonstrated promising results in prospective trials, and it was recently
found to outperform 18FDG-PET/CT in preoperative lymph node staging [35].

It was not possible to compare uPAR-PET/CT to 18F-FDG-PET/CT in our study due to
the short window of time between diagnosis and surgery and because 18F-FDG-PET is not
a part of the normal imaging work-up prior to surgery at our institution. However, neither
18F-FDG-PET/CT nor uPAR-PET/CT appear capable of replacing sentinel node biopsies or
elective neck dissection in the nodal staging of OPSCC and OSCC. However, uPAR-PET/CT
might have another role in patients with OSCC and OPSCC; a recent study investigating



Diagnostics 2023, 13, 3303 10 of 12

the prognostic value of 68Ga-NOTA-AE105 uPAR-PET/CT in HNSCC patients referred
for curatively intended radiotherapy revealed that the SUVmax value is a prognostic factor
for recurrence and may be a tool to identify patients with a high risk of recurrence [17].
Furthermore, uPAR-PET/CT has the potential to serve as a diagnostic tool to select patients
for uPAR-targeted optically guided surgery, a modality currently being tested in a phase
II trial in OSCC and OPSCC patients (EudraCT no. 2022-001361-12), or uPAR-targeted
radionuclide therapy, which has previously been demonstrated to be effective in animal
models of human prostate cancer [36] and colorectal cancer [37].

This study had some limitations. First, the CT/MRI was performed and described
as part of the clinical routine examination; thus, the radiologist was not blinded to the
clinical information gathered prior to imaging (e.g., clinical description, ultrasound or
fine needle aspiration). In contrast, the uPAR PET/CT operator was blinded to all clinical
data; consequently, there was a risk of uPAR PET/CT underperformance in comparison to
CT/MRI. Secondly, this was a relatively small study and some of the findings may need to
be substantiated in larger phase III studies.

5. Conclusions

This phase II study, evaluating the diagnostic value of 68Ga-NOTA-AE105 uPAR-
PET/CT in identifying lymph node metastases in patients with OSCC or OPSCC, showed
sensitivity and specificity equivalent to CT/MRI, with limitations in identifying smaller
volumes of tumor tissue. Adding uPAR-PET to the current imaging work-up led to the
identification of an additional 18% of patients with occult metastatic disease. In addition,
a strong correlation was found between the uPAR expression in primary tumors and the
68Ga-NOTA-AE105 uPAR-PET signal measured as SUVmax, confirming the uPAR specificity
of the radiotracer. However, despite the target specificity and the ability to increase the
sensitivity when added to CT/MRI, the sensitivity is too low for nodal staging and this
method cannot replace neck dissection.
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