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Abstract: Lung cancer is a prevalent malignancy that impacts individuals of all genders and is often
diagnosed late due to delayed symptoms. To catch it early, researchers are developing algorithms
to study lung cancer images. The primary objective of this work is to propose a novel approach
for the detection of lung cancer using histopathological images. In this work, the histopathological
images underwent preprocessing, followed by segmentation using a modified approach of KFCM-
based segmentation and the segmented image intensity values were dimensionally reduced using
Particle Swarm Optimization (PSO) and Grey Wolf Optimization (GWO). Algorithms such as KL
Divergence and Invasive Weed Optimization (IWO) are used for feature selection. Seven different
classifiers such as SVM, KNN, Random Forest, Decision Tree, Softmax Discriminant, Multilayer
Perceptron, and BLDC were used to analyze and classify the images as benign or malignant. Results
were compared using standard metrics, and kappa analysis assessed classifier agreement. The
Decision Tree Classifier with GWO feature extraction achieved good accuracy of 85.01% without
feature selection and hyperparameter tuning approaches. Furthermore, we present a methodology to
enhance the accuracy of the classifiers by employing hyperparameter tuning algorithms based on
Adam and RAdam. By combining features from GWO and IWO, and using the RAdam algorithm,
the Decision Tree classifier achieves the commendable accuracy of 91.57%.

Keywords: histopathology; benign; adenocarcinoma; PSO; GWO; KL divergence; IWO; multilayer
perceptron; bayesian linear discriminant analysis classifier

1. Introduction

Cancer is increasingly common, and doctors use blood tests, biopsies, and image
analysis for its diagnosis. It originates from damaged cells and varies among individuals.
Understanding its source helps us comprehend its condition [1]. Lung cancer, often tied
to smoking or harmful exposures, is a prevalent cancer type causing rising death tolls
globally [2]. It affects both genders and has a low survival rate. Early detection is crucial for
better outcomes. The five-year survival rate is approximately 34% for surgically removable
early-stage cancer, compared to less than 10% for inoperable cases. Lung cancer treatment
depends on histological characteristics, categorized as small cell (SCLC) and non-small
cell (NSCLC) types, of which 80% to 85% are NSCLC and the rest are SCLC [3]. NSCLC
has subtypes such as benign, adenocarcinoma (ACA), and squamous cell carcinoma (SCC).
SCC displays characteristics such as the presence of clusters of polyhedral cells, keratiniza-
tion, and the formulation of keratin pearls. Once the tissue type is identified, suitable
treatments can be selected: either surgery, chemotherapy, radiation, targeted therapy, or
immunotherapy.

Early detection and treatment of cancer are vital for better patient outcomes. Tradi-
tional diagnostic methods involve clinical assessments, lab tests, imaging, and a procedure
called biopsy [4], which is considered the gold standard. During biopsy, tissue samples
are taken and examined under a microscope using techniques such as hematoxylin and
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eosin staining. This histopathological analysis helps identify abnormal tissue growth
and cell characteristics. Accurate identification and classification of individual cell nuclei
are of utmost importance when evaluating tissue samples for cancer diagnosis. Pathol-
ogists inspect these samples at different magnifications, looking for signs of malignancy
such as irregular cell shape, dark nuclei, and increased mitotic figures [5], and count to
generate reliable results [6]. Manual histopathological examination is a time-consuming
process due to the frequent presence of numerous nuclei from diverse categories clustered
together in histopathological images, which can result in disagreements among patholo-
gists [7], prompting the development of automated systems. Researchers have utilized
image processing, pattern recognition, and machine learning/deep learning techniques to
create computer-aided diagnostic (CAD) systems. These systems aim to detect and clas-
sify carcinomas quickly and reliably [8]. Machine learning and deep learning algorithms
improve CAD performance as they learn from more data. These approaches use either
microscopic images or whole slide images (WSIs) and extract features to aid in diagnosis.
The challenge is to create a novel, versatile, and fully automated CAD system that can
handle both microscopic images and WSIs, regardless of any imaging artifacts. Automated
analysis of microscopic images is vital for evaluating digitized specimens, reducing inter-
observer variations, and improving objectivity and reproducibility, as emphasized by Foran
et al. [9]. This advancement can enable comparative studies of diseases and potentially aid
in diagnostic decision-making.

Different imaging techniques, such as ultrasounds, MRIs, CT scans, X-rays, and needle
biopsies, are used to diagnose lung cancer. X-ray imaging, considered a fundamental tech-
nique for lung examination, possesses restricted resolution and the potential to overlook
specific areas of interest [10]. CT scans are commonly used to detect early stages of lung
cancer and locate tumors before surgery, but they expose patients to harmful radiation with
repeated scans. MRI demonstrates notable sensitivity and specificity, valuable for identify-
ing bone metastases, although it is not advisable for diagnosing lung cancer. Ultrasound, a
non-invasive method, proves adept at identifying postoperative lung issues and surpasses
X-rays in effectiveness [11]. While image examination aids in diagnosis, staging, treatment
evaluation, and prognosis assessment, histopathological examination remains the most
reliable method to determine tumor characteristics and clinical stages. Histopathological
images offer an intricate view of cellular and tissue-level transformations linked in differen-
tiating between various conditions and cancer types, empowering pathologists to deliver
precise and reliable diagnoses. Moreover, they are invaluable for pinpointing distinct
biomarkers linked to various cancer types and grades, facilitating tumor classification and
subtyping. Histopathological images form a dependable diagnostic framework known for
its consistency and reliability in cancer diagnosis [12]. By harnessing extensive datasets
of annotated histopathological images, it becomes feasible to create highly dependable
algorithms for automated cancer diagnosis. These algorithms effectively streamline the
diagnostic process, reducing the necessity for extensive manual examination [13].

The objective of this study is to create a classification framework that can analyze
histopathological images data related to lung cancer. The goal is to accurately classify
individuals as either having cancer or not, using machine learning techniques and meta-
heuristic algorithms for tasks such as feature extraction, feature selection, and classification.
The following subsection analyzes various methods for cancer detection and classification
using image processing and classification techniques.

Review of Previous Work

In recent times, the research community has shown significant interest in diagnosing
Lung Cancer through histopathological images. Numerous methodologies have been
explored, utilizing a range of machine learning and deep learning techniques, across
diverse datasets to detect instances of lung cancer.

Various strategies have been proposed to identify irregularities in lung-related images,
encompassing chest radiographs, CT scans, ultrasound images, histopathological images,
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and microarray data. Ozekes and Camurcu [14] utilized template matching, while Schilham
et al. devised a computer-aided detection (CAD) system that encompasses preprocessing,
the identification of candidate nodules, feature extraction, and cancer classification [15].
Wang et al. [16] executed the classification of pathology images concerning lung cancer
using a convolutional neural network (CNN) methodology, incorporating cell segmentation.
The final layer of the CNN model integrated the Softmax activation function to enhance
the classification process. Through the application of the region of interest (ROI) technique
as a preliminary step, they focused on cell areas containing relevant tumors. The achieved
classification accuracy for the three-class image dataset reached 90.1%. Dehmeshki et al. [17]
employed a genetic algorithm based on shapes for template matching, while Suarez-Cuenca
et al. used an iris filter for CT image discrimination [18]. Murphy et al. used a K-nearest
neighbor (KNN) classifier for nodule detection [19], and Giger et al. used geometric features
in their CAD system for CT images.

Wei et al. [20] undertook the categorization of histopathological images depicting
six classes of lung cancer utilizing CNNs. They specifically employed ResNet models for
their investigation. The ResNet models were integrated with pre-trained approaches from
ImageNet and COCO image databases. Prior to the model training phase, the input data
underwent preprocessing, which included the application of augmentation techniques. The
study’s achievement in terms of classification F-score reached a notable 90.4%. Mohammed
Al-Jabber et al. [21] employed histopathological images from the LC25000 dataset, employ-
ing both ANN and the GoogLeNet and VGG-19 models. This combination yielded an
impressive accuracy of 99.64%. Teramoto et al. [22] effectively distinguished histopatholog-
ical images spanning three types of lung cancer through the application of a deep learning
model. They implemented an augmentation approach that involved rotating, flipping, and
applying filters to each image. Following this, they employed their developed deep CNN
model to carry out the classification process. The outcomes of their classification efforts
yielded an accuracy of around 70%. Shapcott et al. [23] conducted their model training by
initially subjecting the input data to a preprocessing stage, integrating the augmentation
technique. They employed a deep learning methodology for classifying histopathological
images related to colon cancer. The dataset encompassed four distinct classes. To facilitate
cell identification, a cell patches algorithm was employed on each image. The images were
segmented into specific dimensions through segmentation procedures. The classification
process was then conducted using the CNN model based on the defined cell patches. The
obtained correlation accuracy rates ranged between 90% and 96.9%.

Barker et al. an automated system to classify brain tumors using digital pathology
images [24]. Ojansivu et al. explored an automated method for categorizing breast cancer
from tissue samples [25]. Ficsor et al. proposed an automated classification method for
colon inflammation using digital microscopy images of histological sections [26]. The
authors of a study, Mouelhi et al. [27], used various techniques such as Haralick’s textures,
histogram of oriented gradients (HOG), and color-based statistical moments (CCSM) to
extract features from biopsy images and classify cancerous cells. The features included
energy, correlation, homogeneity, contrast, GLCM texture features, as well as RGB, gray
level, and HSV color components. Huang and Lai [28] focused on histology image analysis,
employing texture features and KNN, SVM for image classification and segmentation. Their
approach achieved a classification accuracy of 90.07% and 92.8%. Gessert et al. [29] executed
the classification procedure employing CNN models based on transfer learning, leveraging
microscopic images of colon cancer. Their study employed a dataset that comprised both
benign and malignant images. They trained the dataset using various models including
Inception, VGG, and DenseNet. Among these, the DenseNet model yielded the most
promising classification outcome, achieving a classification accuracy of 91.2%.

Sinha and Ramkrishan [30] studied small biopsy images, analyzing cell characteristics
such as shape, size, color, and other properties. Four classification methods were com-
pared: Bayesian, KNN, neural networks, and SVM. The last two methods achieved the
highest accuracy rates of 94.1%, while the first two had lower rates of 82.3% and 70.6%.
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Kasmin et al. [31] examined microscopic biopsy images, considering characteristics such as
cell/nuclei size, cell boundary length, minimum polygon area enclosing a cell, major axis
length of an ellipse fitted to a cell, filled cell area, and average cytoplasmic intensity. They
used neural networks and achieved classification accuracies of 86% and 92%. Chia-Hung
Chen et al. [32] used a convolutional neural network to diagnose endobronchial ultrasound
images, achieving an improved accuracy of 85.4% compared to traditional methods. Azka
Khoirunnia et al. [33] developed a lung cancer detection system using a combination of
CNN and RNN with Microarray data. In their research, CNN achieved 83% accuracy, RNN
reached 71%, and the fusion of CNN and RNN (CRNN) attained the highest accuracy at
91%. Shahid Mehmood et al. [34] focused on classifying histopathological images of lung
and colon cancers. By using AlexNet along with a technique called Class-Selective Contrast
Enhancement, they achieved an impressive accuracy of 98.4%.

This paper is structured as follows: Section 2 focuses on the methodology employed
for detecting lung cancer. Section 3 explores the feature extraction techniques including
Particle Swarm Optimization and Grey Wolf Optimization whereas Section 4 explores the
feature selection techniques, such as KL Divergence, and Invasive Weed Optimization.
Section 5 explains the different classifiers used and hyper parameter updating method and
its implementation. Section 6 presents the cumulative results, and Section 7 concludes
the paper.

The following section deals with the methodology employed for identifying lung
cancer through histopathological images.

2. Methodology for Lung Cancer Detection

This study employed lung histopathological images sourced from the LC25000 Dataset,
which is available online. Andrew Borkowski and his colleagues from James Hospital
Tampa, University of South Florida, and the Moffitt Cancer Center in Florida, USA, worked
together to collectively assemble this dataset. The dataset encompasses histopathological
images representing lung and colon cancer cases. Excluding colon cancer cases, the col-
lection includes a total of 500 lung tissue images, divided equally between Benign Lung
tissue and Lung Adenocarcinomas. These images were originally captured from pathology
glass slides and were later resized to square dimensions of 768 × 768 pixels, down from
their original size of 1024 × 768 pixels. The dataset underwent augmentation, resulting in
an expansion to a comprehensive set of 10,000 lung histopathological color images which
are categorized into two classes: Benign (N) and Adenocarcinoma (ACA), each consist-
ing of 5000 images. These images are resized to a standard size of 256 × 256 followed
by converting into a grey scale image. Notably, the images portray lung benign tissue
characterized by abnormality but not indicative of cancer, while lung adenocarcinoma, the
most prevalent form of lung cancer in the United States and notably linked to smoking,
forms the second category.

Figure 1 shows the general schematic diagram for identifying and categorizing lung
cancer in histopathological images. The input histopathological image will undergo conver-
sion into a linear vector comprising 65,536 elements (due to the image’s size of [256 × 256]).
The procedure involves image pre-processing and a modified KFCM-based segmentation.
During segmentation process approximately as [190× 190] of the original image (i.e., nearly
36,100 intensity values) are segmented and used for further processing. These values will
be directly employed to initialize the positions of birds in the Particle Swarm Optimization
(PSO) and grey wolves in the Grey Wolf Optimization (GWO) algorithms. Optimization
algorithms such as PSO and GWO are used to obtain a matrix of [512 × 10] dimensionally
reduced intensity values from the segmented images. These dimensionally reduced fea-
tures undergo feature selection techniques such as KL divergence and IWO. The selected
features are then inputted into classifiers to evaluate their performance of the classifiers.
Furthermore, an enhancement in the accuracy of lung cancer classification across various
classifiers including SVM, KNN, Random Forest, Decision Tree, Softmax Discriminant,
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Multilayer Perceptron, and BLDC classifiers is achieved through the implementation of a
Hyper Parameter Updation algorithm based on the RAdam technique.
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Figure 1. Schematic representation for detecting lung abnormalities from Histopathological Images.

2.1. Histopathological Image Preprocessing

Histopathological analysis serves as the definitive standard for evaluating the quality
and clinical staging of tumors [35]. In the realm of diagnosing and treating medical
conditions, healthcare professionals heavily rely on histopathological images. These images
establish a crucial cornerstone for predicting patient survival rates [36].

As per available reports, histopathological images present several challenges:

• The images exhibit intricate geometric structures and complex textures that arise from
the vast diversity in structural morphology [37].

• Notably, histopathological images are susceptible to color inconsistencies and noise
due to external factors such as variations in illumination conditions [38].
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• Variations in microscope magnification, equipment settings, and other variables con-
tribute to inconsistencies in image sizes and resolutions within histopathological
images [39].

• Elements of significance, such as local micro-vessels with distinctive textural char-
acteristics, significantly influence disease diagnosis within histopathological images.
Extracting these features is of paramount importance in supporting the classification
and diagnosis of lung cancer [40].

Due to these factors, the histopathological images we encounter are frequently not
perfect and these images show that image quality is affected by noise during acquisition
and artifacts during sample preparation and slide digitization. Preprocessing methods are
employed in histopathological images to enhance image quality, rectify anomalies, amplify
pertinent characteristics, and establish uniformity, ultimately resulting in heightened pre-
cision and dependability of diagnostic outcomes. The study demonstrates that using an
efficient adaptive median filter enhances image quality, reduces artifacts, and facilitates
accurate diagnosis and analysis. However, when subjected to an adaptive median filter,
these images tend to become smoother and exhibit reduced noise, rendering them suitable
for our forthcoming investigations. After artifact removal, the filtered histopathological
images are used for segmentation. Here, the size of the selected region of interest (ROI) is
256 × 256 which is the complete original image.

2.2. Histopathological Image Segmentation

A Modified Kernel Fuzzy C-Means methodology is employed to effectively segment
normal and abnormal regions in histopathological images even though outliers are encoun-
tered. Image segmentation is the process of dividing an image into distinct regions based
on certain image characteristics, with the goal of isolating and identifying specific regions
within the image [41]. In this scenario, we have an input histopathological image denoted
as H, which consists of a set of color images xi at pixel i (i = 1, 2, . . . N) and these color im-
ages are represented as X = {x1, x2, . . . , xN } ⊂ Rk, in the k-dimensional space. The clus-
ter centers within the histopathological images are represented as Y = {y1, y2, . . . , yc },
where c is a positive integer (2 < c� N), and mij represents the membership value for
each pixel i in the j-th cluster (j = 1, 2, . . . c). In the Kernel Fuzzy C-Means algorithm,
clusters are formed in the image space by assigning distinct membership values to all
pixels. The objective function or general equation for the Kernel Fuzzy C-Means algorithm
is expressed as follows in the Equation (1):

OKFCM =
N

∑
i=1

c

∑
j=1

mn
ij ‖xi − yj‖2, 1 ≤ n ≤ ∞ (1)

where n represent an exponent used for regularization, with the condition that, n > 1, and∥∥xi − yj
∥∥2 denotes the squared grayscale Euclidean distance between xi and yj, which is

given in Equation (2):

c

∑
j=1

mij = 1 , mij ∈ [0, 1] , 0 ≤
N

∑
i=1

mij ≤ N (2)

Using the membership function derived from the alternate optimization approach,
the process of iteratively updating the cluster centers is carried out according to the
Equations (3) and (4).

mij =
1

∑c
k=1

(
‖xi − yj‖2/‖xi − yk‖2

)1/(n−1)
(3)
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yj =
∑N

i=1 mn
ijxi

∑N
i=1 mn

ij
(4)

To reduce the impact of noise, the Equation (5) incorporates the spatial information of
neighboring pixels,

OKFCM−S =
N

∑
i=1

c

∑
j=1

mn
ij ‖xi − yj‖2 +

α

NR

N

∑
i=1

c

∑
j=1

mn
ij

(
∑

r∈Ni

‖xi − yj‖2

)
(5)

Here, the spatial information is denoted by α, Ni represents the set of pixels and its
cardinality is defined as NR, the neighborhood function is substituted by

∥∥x́i − yj
∥∥2, in place

of 1
NR

∑
r∈NR

∥∥xi − yj
∥∥2, where, x́ represents a color scale-filtered image, and the Euclidean

distance is replaced with the correlation distance measure to avoid the neighborhood
function. The updated equation is represented in Equation (6):

OKFCM−S(1,2) =
N

∑
i=1

c

∑
j=1

mn
ij ‖xi − yj‖2 + α

N

∑
i=1

c

∑
j=1

mn
ij

(
‖x′i − yj‖

2
)

(6)

In this study, a modified version of KFCM computes the parameter ηj for each cluster
at every iteration to substitute for α [42]. The calculation of this parameter utilizes the
correlation function, as outlined in the Equation (7):

ηj =
minj′ 6=j

(
1− C

(
y′ j, yj

))
maxk (1− C(yk, x′))

(7)

Here C represents the correlation function or correlation distance measure. Here,
determining the precise characteristics of C typically necessitates a large number of patterns
and numerous cluster centers to identify optimal value for ηj. To address this challenge, a
solution is devised by integrating spatial context and scale information through the incor-
poration of fuzzy factor. The objective function of the KFCM, as presented in Equation (8),
incorporates the inclusion of the fuzzy factor Fij.

OC−KFCM =
N

∑
i=1

c

∑
j=1

[
m |ijn| ‖xi − yj‖2 + Fij

]
(8)

Then the altered fuzzy factor F′ij is derived using Equation (9).

F
′
ij = ∑

C∈N, i 6=k
wik
(
1−mij

)m (9)

This adjusted fuzzy factor plays a crucial role in influencing local neighbor relation-
ships and substituting the traditional distance metric with a correlation function. Here, wik
represents the fuzzy factor for cluster i, and 1− C

(
xi − yj

)
signifies the correlation metric

function. Since the histopathological images contain variation in intensities, gradients,
and complex backgrounds, it becomes imperative to employ a modified KFCM-based seg-
mentation method to distinguish between the region of interest (ROI) and the background
in the image. Figure 2 illustrates the sequence of the original image, the filtered image,
the identified ROI within the ACA image, and the segmented image generated using the
modified KFCM for the Adenocarcinoma (ACA) class.
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The following section focuses on the methods utilized for extracting dimensionally
reduced image features, aimed at enhancing the classification and detection of lung cancer
using histopathological images.

3. Feature Extraction

Feature extraction techniques condense essential information from images into com-
pact feature vectors, enabling the effective classification of complex image datasets using
linear algorithms [43]. As the abundant features within histopathological images serve
as a fundamental resource for clinicians to conduct diagnoses, the proficient extraction
of these image features stands as a pivotal factor in enhancing the precision of computer-
aided diagnosis [44]. This study delves into the impact of two distinct feature extraction
techniques such as PSO and GWO on the classification of histopathological images related
to lung cancer.

3.1. Particle Swarm Optimization (PSO)

Kennedy and Eberhart introduced the PSO algorithm in 1995, which draws inspiration
from the hunting behavior of birds. This optimization method relies on a population and
leverages the social dynamics of bird flocks. It starts by creating particles and setting key
parameters for the optimization process. [45].

Every particle has a unique position that is traced by the following equation:

xk
i =

(
xk

i1, xk
i2, . . . , xk

iq

)
(10)

The velocity is traced by the following equation:

yk
i =

(
yk

i1, yk
i2, . . . , yk

iq

)
(11)

Each particle’s velocity is updated as:

yk+1
i = wiyk

i + c1r1

(
pbesti − xk

i

)
+ c2r2

(
gbesti − xk

i

)
(12)

Here, r1 and r2 represent randomly selected values within the range of 0 to 1. The
acceleration coefficients, denoted as c1 and c2, play a role in analyzing the motion of
particles. The weight function is expressed as:

wi =
wmax − wmin

kmax
× k (13)

The position of each particle is given by:

xk+1
i = xk

i + yk+1
i (14)
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The particle that possesses the optimal position progresses to the next level. The best
position for an individual particle is represented by the letters “p-best”, while the letters
“g-best” represent the best position among all particles. The weight parameter “wi” is
chosen between 0.45–0.9, maximum iteration values are 100–1000, both r1 and r2 are set to
0.85, cognitive component ( c1) and Social Component ( c2) are chosen between 1.0–2.0. The
above values are determined based on the trial-and-error method.

3.2. Grey Wolf Optimization (GWO)

Grey wolves are known for living and hunting in groups called packs [46]. The
process of searching and hunting involves plotting to track and approach a target efficiently.
This optimization technique, inspired by the search and hunting patterns of gray wolves,
employs symbols such as Alpha (α), Beta (β), and Gamma (γ) to represent the best, next
best, and third best solutions in mathematical modeling. Lambdas are presumed to be
the remaining possible solutions and they guide the alpha, beta, and gamma wolves in
searching and surrounding the prey. Three coefficients, A, B, and C are suggested to
describe the encircling behavior. The equation of hunting strategy is formulated as follows:

Dα = |B1·Xα − X(t)| (15)

Dβ =
∣∣B2·Xβ − X(t)

∣∣ (16)

Dγ = |B3·Xγ − X(t)| (17)

where Dα, Dβ and Dγ denotes the adjusted distance variables from the alpha, beta, and
delta positions to the other wolves, B1, B2 and B3 are coefficients that assist in adapting
these distance variables, t signifies the ongoing iteration, X indicates the position of the
grey wolf and it follows as,

X1 = |Xα − A1Dα| (18)

X2 =
∣∣Xβ − A2Dβ

∣∣ (19)

X3 = |Xγ − A3Dγ| (20)

X(t) =
X1 + X2 + X3

3
(21)

The parameters A and B can be mathematically expressed as follows:

A = 2i·r1 − i (22)

B = 2·r2 (23)

The control parameter i chases A, which eventually drives the lambda wolves to
flee from the dominant wolves such as α, β and γ. When there are multiple dominant
wolves (|A| > 1), the grey wolves run away from them, allowing lambda wolves to
search extensively and explore more during optimization. However, when there are fewer
dominant wolves (|A| < 1), the grey wolves approach them and follow their guidance
in hunting, which is called local search in optimization. During the iterations, the control
parameter i is linearly decreased from 2 to 0, and is represented as,

i = 2− (iter)· 2
max_iter

(24)

where max_iter indicates the maximum iteration, and it is started from the beginning.
In the context of the classification problem, the introduction of randomness through

variables r1 and r2 leads to heightened fluctuations in the wolves’ positions. Consequently,
their ability to effectively converge towards the target (prey) becomes hindered. To address
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this issue, a decision has been made to treat the values of r1 and r2 in Equations (9) and (10)
as control parameters within a confined range of [0, 1], rather than allowing them to
remain purely random. Through empirical experimentation, it has been determined that
the optimal performance of the Grey Wolf Optimization (GWO) algorithm is achieved
when both r1 and r2 are set to 0.8. This adjustment enhances the accuracy of the GWO
algorithm in tackling the classification problem.

3.3. Statistical Analysis

To enhance the accuracy of cancer prediction using dimensionally reduced features,
it is advisable to calculate statistical parameters from the region of interest. The intensity
values, which have been reduced in dimensionality through methods such as PSO (Particle
Swarm Optimization) and GWO (Grey Wolf Optimization), are then examined using
statistical measures such as Mean, Variance, Skewness, Kurtosis, Pearson Correlation
Coefficient (PCC), and CCA (Canonical Correlation Analysis). These statistical parameters
help determine whether the outcomes accurately reflect the inherent properties of lung
cancer data within the subspace. These attributes were derived for both normal and
malignant classes.

The statistical parameters of cancer data, extracted using the PSO and GWO methods,
are shown in Table 1. Variance quantifies data spread. Notably, Table 1 reveals lower mean
values for normal cases using both PSO and GWO, while higher mean values are evident
for malignant cases using both methods. Furthermore, the Malignant group demonstrates
greater data spread compared to the Normal group as indicated by Table 1. GWO shows a
Pearson correlation coefficient of 1 for both cases, implying strong intra-class correlation.
Skewness and kurtosis are highly skewed for both normal and malignant instances. When
CCA values exceed 0.5, strong inter-class correlation is present. However, Table 1 indicates
that PSO and GWO methods exhibit the lowest inter-class correlation. Consequently, the
analysis of these extracted features emphasizes the need for improved classifiers.

Table 1. Statistical Parameters in PSO and GWO for Feature Extraction in Malignant and
Normal Data.

Statistical Parameters
PSO GWO

Malignant Normal Malignant Normal

Mean 0.8598080214 0.1109701363 0.01878313748 0.01751341349

Variance 0.05867975074 0.07425036326 0.07492946326 0.07494543857

Skewness 19.87029488 19.83047771 22.52231557 22.56212107

Kurtosis 441.8828416 444.9961882 509.1565306 510.3537192

Pearson CC 0.9019022281 0.9269991469 0.9985202125 0.997858273

CCA 0.12309 0.11291

In cases where the features exhibit linear separability, a straightforward binary thresh-
olding approach can be employed for the classification of Histopathological Lung images
into two distinct classes: N and ACA. The characteristics of malignancy exhibit non-linear
and non-Gaussian features that overlap with each other. To analyze these dimensionally re-
duced values which was obtained from PSO and GWO methods, histogram and scatterplot
plots are used as illustrated in Figures 3 and 4.
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The histogram plot in Figure 3 illustrates the distribution of PSO feature data for
normal and malignant cancer cases. The histogram illustrates PSO features characterized
by outliers, substantial gaps, downward trends, and a non-Gaussian distribution. From
Table 1, In the PSO-based extraction technique, the Canonical Correlation Coefficient (CCA)
value is significantly low at 0.12309, suggesting a non-linear relationship between normal
and malignant cases. Figure 4 showcases the histogram plot for GWO feature distribution,
indicating skewed Poisson distributed data, and a non-linear nature.

Figures 5 and 6 display scatterplots demonstrating the feature output of normal and
malignant cancer data utilizing the PSO and GWO methods. Scatter plots are useful for
identifying data clustering, detecting nonlinearity, and overlapping. Both figures indicate
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the presence of nonlinearity and overlapping in the data. Therefore, from the histogram
and scatterplot it is evident to employ accurate classifiers capable of distinguishing between
normal and cancer cases in lung data using PSO and GWO features. The next section centers
on the techniques applied to choose optimal image features, with the goal of improving the
classification and identification of lung cancer in histopathological images.
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4. Feature Selection

Feature selection aims to reduce input variables, excluding irrelevant characteristics for
a more accurate, less complex, and unbiased model. Optimal feature selection is crucial for
creating an effective, accurate machine learning model with high generalization ability [40].
In this paper, Feature Selection is performed using the KL Divergence and Invasive Weed
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Optimization (IWO) methods. Following the feature extraction procedures as described in
Section 3, which involves Particle Swarm Optimization (PSO) and Grey Wolf Optimization
(GWO). After feature extraction method [256 × 256] is dimensionally reduced to [512 × 10]
per histopathological image. These [512 × 10] intensity values per image serve as the initial
input for the Feature Selection techniques namely KL Divergence and IWO. However, the
application of Feature Selection techniques is a further dimensionality reduction method
only. After PSO and GWO feature extraction methods through KL Divergence and IWO
process [512 × 10] intensity values per image is reduced to [100 × 12] which represents the
most relevant intensity values of the images are retained as input given to the classifier for
the subsequent classification process. The histopathological images are represented as a
relevant intensity value in matrix form as described above.

4.1. KL Divergence

KL Divergence, also known as relative entropy, measures disparities between probabil-
ity distributions, but in an asymmetric manner. The KL divergence between a probability
distribution q = (q1, q2, . . . , qn) and another distribution p = (p1, p2, . . . , pn) is defined as,

DKL(q || p) =
m

∑
j=1

qjlog
qj

pj
(25)

The integral form of the KL divergence for continuous distributions is expressed as
follows:

DKL(q || p) =
∫ ∞

−∞
qjlog

qj

pj
dx (26)

The KL divergence exhibits mutual convexity for both discrete and continuous distri-
butions. The following are the properties of the KL divergence measure:

DKL(q || p) =


0, i f q = p
c, c > 0, i f partially overlapping
+∞, i f non− overlapping

(27)

From the above equation, it can be observed that when the KL divergence is smaller,
the two compared distributions are more similar.

4.2. Invasive Weed Optimization

The invasive weed optimization algorithm is a popular population-based metaheuris-
tic approach [47]. The dynamic and versatile characteristics of weed colonies have sparked
the creation of an optimization algorithm that imitates their behavior. By leveraging the
qualities of weeds, a straightforward and efficient optimization technique can be developed.
This method, called the IWO algorithm, incorporates phases such as seeding, growth, and
competition. The following are the strategy for simulating weed habitat behavior:

1. Primary Population Initialization: A few seeds are dispersed to start the search.
2. Reproduction process: Seeds have the potential to grow into flowering plants, which

then choose and spread the fittest seeds for survival and reproduction. The quantity
of grass grain grains decreases in a linear fashion from Ymax to Ymin as follows:

n(weedj) =
Ymax(max_ f it− f it(weedj)) + Ymin( f it(weedj)−min_ f it)

max_ f it−min_ f it
(28)

3. Spectral Spread Method: The group’s seeds are distributed normally with a mean
planting position and standard deviation (SD) determined by the equation below.

σt =

(
N − t

N

)m(
σintital − σf inal

)
+ σf inal (29)
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4. Competitive Deprivation: If the colony has more grasses than the maximum limit
(Smax), the grass with the lowest fitness is eliminated to maintain a consistent number
of herbs.

5. The process continues until the maximum iteration is reached, keeping the lowest
cost value of the grasses.

The upcoming next section revolves around the utilization of classification methods to
categorize lung cancer images within histopathological images.

5. Classifiers for the Detection of Lung Cancer

Classifiers have a crucial role in categorizing data effectively. An optimal classifier is
characterized by its ability to achieve high accuracy and low error rates while maintaining
manageable computational complexity. Addressing the classification challenge involves
constructing a model for the purpose of classifying images and assigning them appropriate
class labels. The following sections of this paper delve into the classifiers that were used
for this purpose.

5.1. Support Vector Machine

SVM is known for its scalability and classification performance [42]. It aims to create a
hyperplane that maximizes class separation by minimizing the cost function. It is given by
the following expression:

Minimize,
1
2
‖w‖2 + C

m

∑
k=1

µk (30)

Subject to zk

(
wTxk + f

)3
≥ 1− µk,µk ≥ 0

where wT , xk ∈ R2 and f ∈ R, ‖w‖2 = w
T

w.
C represents the trade-off between the margin and the error. The training data’s size is

represented by ∑k, and the class label for each sample is represented as zk. SVM is a flexible
classifier suitable for linear and nonlinear cases. To handle nonlinear data, we employ
Polynomial, RBF, and Sigmoid kernel functions. In this study, we exclusively enhance the
classification accuracy by utilizing the SVM-RBF kernel.

5.2. K-Nearest Neighbor

KNN stands as a widely utilized and efficient non-parametric classification technique.
In KNN, the symbol ‘k’ denotes the count of nearest neighbors involved in the voting
process. To enhance prediction accuracy, employing an odd value for k is recommended.
KNN determines the classification of a test sample by conducting a majority vote among
neighboring training samples. Measuring distances between individuals is crucial, and the
Euclidean distance is commonly used for this purpose [48]. For example, in the Euclidean
space if u and v are the two points and it is assumed that u = (u1, u2, u3, . . . , un) and
v = (v1, v2, v3, . . . , vn), then the Euclidean distance of line segment can be expressed
as follows:

Dist(u, y) =
√
(u1 − v1)2 + (u2 − v2)2 + . . . + (un − vn)2 =

√
n

∑
i=1

(ui − vi)2 (31)

5.3. Random Forest

This tree-based ensemble learning algorithm is highly accurate and resilient in im-
age classification [49]. It utilizes multiple decision trees that work independently. Two
important parameters for the algorithm are the number of decision trees and the number of
predictive variables used in each tree’s decision-making process. By combining the votes of
multiple decision trees, a random forest can accurately predict binary tasks. For a training
set × consisting of M samples, each containing N features and a classification label Y. The
following steps are involved in the construction of Random Forest.
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1. Randomly select M samples from × using the Bootstrap method.
2. Choose n random features (where n < N) to split a decision tree node. Determine the

split criterion by selecting the feature with the lowest Gini value. Gini is computed
using the formula:

Gini = 1−
c

∑
i=1

(
pi)

2 (32)

where pi represents the relative frequency of dataset features and c represents the
number of classes.

3. Generate M decision trees by repeating steps 1 and 2, M times.
4. Create a random forest by combining the decision trees and utilize voting to determine

the classification outcome.

5.4. Decision Tree

It is a well-known machine learning algorithm that partitions input data recursively [50].
A decision tree starts with a root node and branches. This work utilizes CART, which splits
the data based on its ability to distinguish between groups. The process continues until all
data groups have the same label or match the training set. CART uses the Gini impurity
measure at each node to determine the best split. The data at node ‘d’ are divided into two
subsets, X-left and X-right, based on the splitting features and a threshold determined by
CART and the amount of data X.

At node ‘d’ the input is computed through impurity measure Gini as ∑k pdk(1− pdk)
with the proportion of class k observation in the node ‘d’. Construction time of a decision
tree depends on the dataset’s size (samples and features). Overfitting can occur if the tree is
built using CART and results in few samples per leaf. To prevent overfitting and improve
accuracy, a pruning algorithm can be used to simplify the tree, reducing construction time
while maintaining performance.

5.5. Softmax Discriminant Classifier

SDC’s main objective is to classify a given test specimen [51] by comparing its dis-
tance to the training sample within its category. The process entails gauging the dis-
tance between training and test samples belonging to the same class to derive the out-
come. Supposing, the training set M = [M1, M2, . . . , Mq] ∈ Rc×d comes from q distinct
classes. Mq = [M1q, M2q, . . . Mdqq] ∈ Rc×dq Indicates dq samples from the qth class where
∑

q
j=1 dj = d. Assuming wεRc×1 represents the test sample, within the classifier, we employ

samples from class q to recognize the test sample, aiming to minimize the reconstruction
error. To uphold the principle of SDC, we can enhance the non-linear transformation linking
the q class samples and the test sample. Therefore, the SDC can be defined as follows:

h(w) = argmax
j

zj
w (33)

h(w) = argmax
j

log

 dj

∑
j=1

exp
(
−λ

∥∥∥w− wj
k

∥∥∥
2

) (34)

where h (w) defines the distance between the jth class and the test sample. The value of
λ should be greater than zero, to provide a penalty cost. If w relates to the jth class, then
w and wj

k would have likely same characteristics and so
∥∥∥w− wj

k

∥∥∥
2

is progressing close

towards zero and hence maximizing zj
w can achieve the maximum possible value in an

asymptotic manner.

5.6. Multilayer Perceptron

MLP is often used to approximate functions such as regression [52]. It consists of an
input layer with n nodes, a hidden layer, and an output layer. The given input and output
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pairs be denoted as (m p, np

)
, p = 1, 2, . . . , m, where mp =

(
mp1, mp2, . . . , mpn

)
and

yp are the input vector and the corresponding desired output value, respectively. Sigmoid
function is commonly used for hidden and output nodes, producing values from 0 to 1.

The kth hidden node in the MLP calculates its output when the input is given. The
output value is computed as

cpk= f s

(
n

∑
j=1

wjkmpj + θk

)
(35)

The output value of the output node is determined by the sigmoid function ( f s), along

with bias (θk ), and connection weight (w jk

)
associated with the corresponding hidden

node. Then the final output value is computed as,

cp= fs

(
l

∑
k=1

wkcpk + θ

)
(36)

The number of hidden nodes is denoted by l, the bias to the output node is represented
by θ, and wk signifies the connection weight from the kth hidden node to the output
node. This results in a total of (n + 2)l + 1 synaptic connections. To train the Multilayer
Perceptron (MLP), the following cost function can be utilized.

E =
1
2

t

∑
j=1

(
np − cp

)2 (37)

where t denotes the number of training patterns. In our study, we used a three-layer model,
which is known to effectively approximate any continuous function with high accuracy [53].

5.7. Bayesian Linear Discriminant Classifier

The BLDC, or Bayesian Linear Discriminant Classifier, can distinguish between mul-
tiple classes. It uses the Fisher linear discriminant and applies the Bayes decision rule to
estimate the error probability [54]. Bayesian regression assumes that the target variable y is
a linear combination of vector k, and Gaussian noise m. This relationship is expressed as
y = qTk + m, where q represents the weight coefficients.

The given expression represents the likelihood function,

p
(

C
β, q

)
=

(
β

2π

)m/2

exp
(
− β

2

∥∥∥MTq− y
∥∥∥2
)

(38)

In the above equation, y is the target values for regression, M is a matrix made by
combining the training feature vectors horizontally, and C is the combination of {M, y}.
β represents the noise’s inverse variance, and T is the total number of samples in the
training set.

5.8. Methods for Updating Hyperparameters in Various Classifiers

The performance of a classifier greatly depends on the values assigned to its hyperpa-
rameters [55]. To find the best hyperparameter values, different methods such as Stochastic
Gradient Descent (SGD), Grid Search (GS), and Adaptive Moment Estimation Method
(ADAM) can be used. This study introduces a new approach called R-Adam, which aims
to enhance lung cancer classification accuracy for the Decision Tree classifier and other
classifiers. While Adam is a prevalent choice for hyperparameter selection in deep learning
networks, this study introduces R-Adam, an adapted version proposed for hyperparam-
eter selection across diverse classifiers. Utilizing controlled randomness, the envisioned
R-Adam algorithm aims to discover hyperparameter values in proximity to the optimal
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values recommended by the Adam method. The investigation assesses the classification
performance using both Adam and the newly introduced R-Adam technique.

5.8.1. Adam Approach

The Adam approach involves employing squared gradients and exponential moving
averages. The validation of hyperparameters is achieved based on the expressions provided
below [56]:

xt+1 = xt −
Lr

ε +

√
ˆ
Pt

∗
ˆ

Mt (39)

where xt represents the previous hyperparameters, xt+1 denotes the updated hyperparam-
eters, Lr signifies the learning rate, and ε is a small constant used to avoid division by zero.
The constants in the Adam method are Z1 and Z2.

M̂t =
mt

1 − Zt
1

(40)

P̂t =
pt

1 − Zt
2

(41)

mt = Z1 ∗mt−1 + (1− Z1) ∗
∂L
∂xt

(42)

pt = Z2 ∗ pt−1 + (1− Z2) ∗
(

∂L
∂xt

)2
(43)

where ∂L
∂xt

signifies the derivative of the loss function with respect to x. Thus, the mathe-
matical representation of the loss function is as follows:

∂L
∂xtr

=
ERtr

xin
, i f tr = 1 (44)

∂L
∂xtr

=
ERtr − ERtr−1

xtr − xtr−1
, i f tr > 1 (45)

where ER stands for the error rate, tr indicates the current iteration and tr − 1 denotes
the previous iteration of in the Adam approach. Algorithm 1 outlines the process of uti-
lizing the Adam optimizer to update hyperparameters in a Decision Tree model, aiming
to minimize the error rate, which serves as the loss function. In Decision Tree, the key
hyperparameters include maximum depth and criterion. In Decision tree, the hyperparam-
eters are set as maximum depth = 20 and criterion = MSE. The Adam’s approach employs
specific constants in this work: Lr = 0.001, Z1 = 0.89, Z2 = 0.9 and ε = 10−9. Through
experimentation, the optimal number of iterations for the Adam approach was determined
to be 40. This iterative process aims to uncover the lowest error rate, helping identify
the best hyperparameters. Notably, similar approaches involving SVM, KNN, Random
Forest, SDC, MLP, and BLDC models could also leverage the Adam optimizer to update
hyperparameters in a comparable manner.
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Algorithm 1. Adam Approach

1. Initialization: Set initial values for hyperparameters:

Target value, maximum iterations, maximum depth and criterion for Decision Tree, maximum
iterations for Adam, Lr, Z1, Z2, ε.

2. Hyperparameter Tuning Loop:

(a) For tr = 1 to maximum iterations for Adam

• Calculate maximum depth.
• Determine the criterion.

(b) For t = 1 to maximum iterations for Decision Tree

• Update values for maximum depth
• Criterion is set to MSE.
• Determine the optimal values for maximum depth.

end for.

3. Formulate a confusion matrix and compute the error rate (ER).
4. Compute the loss gradient using Equation (45).
5. Establish new optimal hyperparameter values using Equation (39) through (43).

end for.

5.8.2. RAdam’s Approach

The Randomized Adam (RAdam) technique is tailored to enhance the precision of
the Decision Tree classifier. Algorithm 2 presents a methodology for implementing the
Decision Tree using the RAdam approach. RAdam amalgamates two core components:
the Adam method and controlled randomization. The controlled randomization process is
pivotal in elevating classification performance. Within each iteration of the Adam method,
hyperparameters are updated. The Adam process, which meticulously refines hyperpa-
rameter ranges, is nested within the iterative controlled randomization. This controlled
randomization strategy integrates two control parameters—solution considering rate and
solution adjusting rate—to fulfill its objective. Constants for R-Adam are defined as follows:
bandwidth is set at 0.0098, the maximum number of iterations for randomization is 15,
solution considering rate is 0.6, and solution adjusting rate is 0.92. In Algorithm 2, random-
ization 1, randomization 2, randomization 5, and randomization 6 indicate random values
from the range [0, 1], while randomization 3 and randomization 4 correspond to random
values within [0, 0.1]. Following this iterative process, the lowest error rate is found, leading
to the identification of optimal hyperparameters. Significantly, analogous methodologies
that pertain to SVM, KNN, Random Forest, SDC, MLP, and BLDC models could also make
use of the Adam optimizer for adjusting hyperparameters in a similar fashion.

The following section pertains to the outcomes derived from employing diverse
classification techniques for the categorization of lung cancer images within histopathologi-
cal images.
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Algorithm 2. RAdam’s Approach

1. Initialization: Set initial values for hyperparameters:

Target value, maximum iterations, maximum depth and criterion for Decision Tree, maximum
iterations for Adam, Lr, Z1, Z2, ε, solution considering rate, solution adjusting rate and bandwidth.

2. Hyperparameter Tuning Loop:

(a) For tr = 1 to maximum iterations for Adam

• Calculate maximum depth.
• Determine the criterion.

(b) For t = 1 to maximum iterations for Decision Tree

• Update values for maximum depth
• Criterion is set to MSE.
• Determine the optimal values for maximum depth.

end for.

3. Formulate a confusion matrix and compute the error rate (ER).
4. Compute the loss gradient using Equation (45).
5. Establish new optimal hyperparameter values using Equation (39) through (43).

end for.
6. For each iteration: current iterations for randomization = 1 to maximum iterations for

randomization
If randomization 1 < solution considering rate.
Set r1 for this iteration as r1′
Set r2 for this iteration as r2′
If randomization 2 < solution adjusting rate.
Set r1 for this iteration as r1′+bandwidth× randomization 3.
Set r2 for this iteration as = r2′+bandwidth× randomization 4.
end if.
If r1 for this iteration is less than the lower bound, set it to the lower bound.
end if.
If r2 for this iteration is less than the lower bound, set it to the lower bound.
end if.
If r1 for this iteration is less than the upper bound, set it to the upper bound.
end if.
If r2 for this iteration is less than the upper bound, set it to the upper bound.
end if.
Set r1 for this iteration as lower bound + (bandwidth × randomization 5).
Set r2 for this iteration as lower bound + (bandwidth × randomization 6).
end if.

7. Repeat.

• Calculate maximum depth.
• Determine the criterion.

8. For each iteration t from 1 to maximum iterations for Decision Tree

• Update the values of maximum depth.
• Set the criterion to MSE.
• Determine the optimal values for maximum depth.
end for.

9. Formulate a confusion matrix and compute the error rate (ER).
10. Compute the ER using r1 & r2 as hyperparameters. end for.

6. Results and Discussion

This section explores the efficacy of different classifiers based on their benchmark
parameters. A higher classification accuracy combined with a decreased error rate signifies
robust performance of the classifier. As a result, the classifiers underwent training and
testing using the extracted and chosen feature values within the Lung Histopathological
Image Dataset.
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6.1. Training and Testing of the Classifiers

The training and testing of the classifiers constitute crucial phases within classification
procedures. Training facilitates the acquisition of patterns linked to the provided dimen-
sionally reduced intensity values of the histopathological images by the classifier. In this
study, the entire dataset, comprising histopathological image values related to lung cancer
detection and classification, is divided into 10 equal folds. The analysis involves a series
of iterations. During each iteration, one-fold is designated as the testing set, while the
remaining nine folds are combined and used as the training set. In essence, 10% of the
data is reserved for testing in each iteration, and the remaining 90% is utilized for training.
Various performance metrics are computed for each iteration. The results obtained from
all 10 iterations are collected and aggregated. This aggregation often involves calculating
average values for the performance metrics. The conclusion of training and testing for the
classifiers was established based on the mean square error (MSE) acting as the termination
criterion. The mathematical expression for MSE is given below:

MSE =
1
M

M

∑
i=1

(Oi − Tk)
2 (46)

where Oi signifies the value observed at a definite time; Tk indicates the target value for
model k, with “k” ranging from 1 to 15; and the value of M is assumed to be 5000 and
indicates the total number of images.

6.2. Selection of the Optimal Parameters for the Classifiers

In this study, seven classifiers were used to categorize images into benign or adenocar-
cinoma based on the target selection. The target selection for the benign case

(
Tbenign

)
is

represented as follows:
1
M

M

∑
k=1

µk ≤Tbenign (47)

The characteristics of the entire set of benign lung data (M) were subjected to nor-
malization, and their average is denoted as µk as outlined in Equation (38), applicable for
classification purposes.

The average of the normalized features is denoted as µk. For benign images, a target
value of 0.1 was selected, which falls within the lower end of the 0–1 scale.

The condition for choosing a target in a case of adenocarcinoma (aca) is:

1
N

N

∑
i=1

µi ≤Taca (48)

The characteristics of the entire set of lung adenocarcinoma data (N) were subjected
to normalization, and their average is denoted as µi as outlined in Equation (39), applicable
for classification purposes.

To enhance adenocarcinoma classification, the target selection should exceed the mean
value µk, which represents the average of normalized features across N images. Improving
classification requires a target value of 0.5 or higher, as specified by the condition:(∥∥∥Taca − Tbenign

∥∥∥ ≥ 0.5
)

(49)

Depending on the criteria described in Equation (40), the selected targets for this
study were set at 0.1 for benign cases and 0.85 for adenocarcinoma cases. The classifiers
underwent training using a 10-fold cross validation training and testing approach, with
the stopping criterion being an MSE value of

(
10−5) or a maximum operation of 1000,

whichever was achieved first. The selection of optimal parameters for the classifiers during
the training process is outlined in Table 2. In the case of SVM (RBF) classifier the parameters
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are selected through the trial-and-error method. The classifiers parameters are α, Kernel
width parameter (σ), w, and b are selected with the constraint of minimum MSE. In the
case of KNN, K value indicates the number of clusters and in this case, it is K = 5 is
selected randomly. With Euclidean Distance measure as the cluster coefficient with weight
w = 0.5 is selected with the constrain of minimum MSE. In the case of Random Forest, the
parameters such as Number of trees, Maximum depth and Bootstrap sample are initialized
with random selection. Similarly in the case of Decision Tree, the parameter maximum
depth is initialized with random selection. Since it is a binary classification problem, the
class weight value for Random Forest is settled at 0.45, whereas for Decision tree, the
class weight is settled at 0.4. In the case of Softmax Discriminant Classifier, it is a binary
classification problem, so the λ value is settled at 0.5 along with the mean of each class
target values as 0.1 and 0.85. In the case of Multilayer Perceptron Classifier, the network is
trained using LM (Levenberg-Marquardt) algorithm to minimize the square output error.
This error back propagation algorithm is used to calculate the weights updates in each layer
of the network. As the number of hidden units gradually increased from its initial value,
then there will be a reduction in the minimum Mean Squared Error (MSE) on the testing set.
The optimal number of hidden units is the one that results in the lowest MSE. If the number
of hidden units is increased beyond this point, the model’s performance does not show any
further improvement; instead, it often starts to decline. This decline occurs since the neural
network becomes unnecessarily complex, exceeding the complexity necessary to solve
the problem effectively. The choice of the learning rate as 0.3 is determined based on the
distribution of training patterns and their associated MSE. In case of BLDC, the parameters
such as prior probability p(x) − 0.5, Class mean µx = 0.8 and µy = 0.1 are selected with
constrain of minimum MSE. The training process demonstrated that the MSE value was
attained either as low as 1.0× 10−10 or after 1000 iterations.

Table 2. Selection of the Optimal Parameters for the Classifiers.

Classifiers Optimal Parameters of the Classifiers

Support Vector Machine Kernel—RBF; α—1; Kernel width parameter (σ)—100;
w—0.85; b—0.01; Convergence Criterion—MSE.

K-Nearest Neighbor K—5; Distance Metric—Euclidian; w—0.5; Criterion—MSE.

Random Forest Number of Trees—200; Maximum Depth—10;
Bootstrap Sample—20; Class Weight—0.45.

Decision Tree Maximum Depth—20; Impurity Criterion—MSE;
Class Weight—0.4.

Softmax Discriminant Classifier λ = 0.5 along with mean of each class target values as 0.1 and 0.85.

Multilayer Perceptron Learning rate—0.3; Learning Algorithm—LM; Criterion—MSE.

Bayesian Linear Discriminant Classifier Prior Probability P(x)—0.5; Class mean µx = 0.8 and µy = 0.1, Criterion = MSE.

6.3. Performance Metrics of the Classifiers

The primary objective of the classifier was to effectively distinguish between cancer
cells and normal data samples in the dataset. As this research focuses on binary classifica-
tion, it is essential to select appropriate performance metrics. In binary classification tasks,
one of the key evaluation tools is the confusion matrix. This matrix provides a concise
summary of the model’s predictions in relation to the actual labels of the dataset. The
confusion matrix consists of four elements: True Positive (TP), True Negative (TN), False
Positive (FP), and False Negative (FN). TP indicates the presence of lung cancer, while
TN indicates its absence, both representing correct classification. FP and FN represent
misclassification, where lung cancer is incorrectly predicted as present (FP), or lung cancer
is present but wrongly classified as not present (FN).

Table 3 displays TP, TN, FP, FN values, and average MSE for PSO and GWO features
along with seven classifiers without employing Feature Selection Methods. Achieving the
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lowest MSE serves as an indicator for improved classifier performance, while a higher MSE
value results in inferior classifier performance, regardless of the employed feature selection
methods. PSO features show Decision Tree Classifier with the lowest MSE (3.60 × 10−7)
and Random Forest Classifier with the highest MSE (1.60 × 10−5). GWO features show
Bayesian LDC Classifier with the minimum MSE (2.50 × 10−7) and KNN Classifier with
the maximum MSE (1.44 × 10−5).

Table 3. Confusion Matrix for Classifiers without Feature Selection.

Feature
Extraction Classifiers

Confusion Matrix
MSE

TP TN FP FN

PSO

SVM 3944 4009 991 1056 7.29 × 10−6

KNN 4267 3725 1275 733 4.49 × 10−5

Random Forest 2692 2933 2067 2308 1.60 × 10−5

Decision Tree 3184 3217 1783 1816 3.60 × 10−7

Softmax Discriminant 4033 3750 1250 967 4.00 × 10−8

Multilayer Perceptron 3425 3675 1325 1575 2.25 × 10−6

Bayesian LDC 4367 3975 1025 633 5.63 × 10−5

GWO

SVM 3617 4175 825 1383 5.76 × 10−6

KNN 3500 3725 1275 1500 1.44 × 10−5

Random Forest 3967 3817 1183 1033 3.36 × 10−5

Decision Tree 4517 3984 1016 483 8.41 × 10−6

Softmax Discriminant 4083 4275 725 917 1.96 × 10−4

Multilayer Perceptron 4050 4384 616 950 4.84 × 10−4

Bayesian LDC 3967 3692 1308 1033 2.50 × 10−7

The features extracted were given to seven classifiers for performance analysis, follow-
ing feature selection methods. Table 4 shows the average MSE and confusion matrix for
PSO Feature Extraction with KL Divergence and IWO feature selection. The Decision Tree
had the lowest MSE (9.00 × 10−6) using PSO with KL Divergence, while the Bayesian LDC
had the highest MSE (1.02 × 10−5). With PSO and IWO, the Decision Tree had the lowest
MSE (7.84 × 10−6), while the Softmax Discriminant had the highest MSE (1.22 × 10−5).

Table 5 displays the average MSE and confusion matrix for GWO Feature Extraction
with KL Divergence and IWO feature selection methods. The results include SVM, KNN,
Random Forest, Decision Tree, Softmax Discriminant, Multilayer Perceptron, and Bayesian
LDC classifiers. In the GWO with KL Divergence approach, Bayesian LDC achieves the
lowest MSE (1.00 × 10−8), while the Multilayer Perceptron Classifier has the highest MSE
(2.03 × 10−5). Similarly, in the PSO with IWO approach, SVM achieves the minimum MSE
(4.90 × 10−7), while the Random Forest Classifier has the maximum MSE (1.52 × 10−5).

Table 6 presents the mean Mean Squared Error (MSE) and confusion matrix outcomes
for PSO Feature Extraction using KL Divergence and IWO feature selection techniques
in Adam Hyperparameter Tuning. Among these, Bayesian LDC achieved the smallest
MSE (8.41 × 10−6) through PSO with KL Divergence, whereas Random Forest showed
the highest MSE (2.72 × 10−4). When considering PSO and IWO, Random Forest demon-
strated the lowest MSE (9.00 × 10−8), whereas Softmax Discriminant had the highest MSE
(4.00 × 10−4).
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Table 4. Confusion Matrix for Classifiers for PSO with KL Divergence and IWO.

Feature
Selection Classifiers

Confusion Matrix
MSE

TP TN FP FN

KL
Divergence

SVM 3297 2747 2253 1703 3.24 × 10−6

KNN 3978 2605 2395 1022 8.41 × 10−6

Random Forest 4115 3294 1706 885 2.30 × 10−5

Decision Tree 3919 4089 911 1081 9.00 × 10−6

Softmax Discriminant 4089 4258 742 911 4.84 × 10−6

Multilayer Perceptron 4271 3633 1367 729 2.56 × 10−6

Bayesian LDC 3298 3311 1690 1702 1.02 × 10−5

IWO

SVM 3854 3503 1497 1146 2.21 × 10−5

KNN 3490 3985 1016 1510 3.36 × 10−5

Random Forest 3574 2757 2243 1426 1.94 × 10−5

Decision Tree 2982 2871 2129 2018 7.84 × 10−6

Softmax Discriminant 2734 3047 1953 2266 1.22 × 10−5

Multilayer Perceptron 3047 2592 2408 1953 1.00 × 10−6

Bayesian LDC 2681 2698 2302 2319 1.85 × 10−5

Table 5. Confusion Matrix for Classifiers for GWO with KL Divergence and IWO.

Feature
Selection Classifiers

Confusion Matrix
MSE

TP TN FP FN

KL
Divergence

SVM 4029 2742 2258 971 1.00 × 10−6

KNN 3789 4147 853 1211 4.90 × 10−5

Random Forest 3490 4089 911 1510 6.40 × 10−7

Decision Tree 3594 4147 853 1406 2.50 × 10−7

Softmax Discriminant 4896 2668 2333 104 1.00 × 10−6

Multilayer Perceptron 3737 2982 2018 1263 2.03 × 10−5

Bayesian LDC 3460 2767 2233 1540 1.00 × 10−8

IWO

SVM 4401 3262 1738 599 4.90 × 10−7

KNN 3203 3880 1120 1797 1.60 × 10−5

Random Forest 4440 2735 2265 560 1.52 × 10−5

Decision Tree 4167 2620 2380 833 5.29 × 10−6

Softmax Discriminant 4219 2687 2313 781 2.30 × 10−5

Multilayer Perceptron 4375 2747 2253 625 9.61 × 10−6

Bayesian LDC 3216 2760 2240 1784 6.89 × 10−5

Table 7 displays the average Mean Squared Error (MSE) and the results of the con-
fusion matrices obtained from GWO Feature Extraction using KL Divergence and IWO
feature selection techniques in Adam Hyperparameter Tuning. Among these approaches,
Multilayer Perceptron achieved the smallest MSE of 6.40 × 10−7 using GWO with KL
Divergence, while SVM exhibited the highest MSE of 1.23 × 10−5. Considering both GWO
and IWO, Decision Tree showcased the lowest MSE of 6.40 × 10−7, whereas Softmax
Discriminant had the highest MSE of 1.04 × 10−4.
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Table 6. Confusion Matrix for Classifiers: PSO with KL Divergence and IWO for Adam Hyperparam-
eter Tuning.

Feature
Selection Classifiers

Confusion Matrix
MSE

TP TN FP FN

KL
Divergence

SVM 4089 3568 1433 911 6.61 × 10−4

KNN 4184 4487 514 817 1.44 × 10−5

Random Forest 4555 3520 1480 445 2.72 × 10−4

Decision Tree 3815 3809 1191 1185 6.72 × 10−5

Softmax Discriminant 4392 3948 1052 608 2.40 × 10−5

Multilayer Perceptron 3881 4048 952 1119 1.96 × 10−6

Bayesian LDC 4156 3947 1053 844 8.41 × 10−6

IWO

SVM 3599 4085 915 1401 8.10 × 10−5

KNN 4058 4375 625 942 7.23 × 10−5

Random Forest 4129 4038 962 871 9.00 × 10−8

Decision Tree 3713 4308 692 1288 6.40 × 10−5

Softmax Discriminant 4129 4161 839 871 4.00 × 10−4

Multilayer Perceptron 4539 4024 976 461 2.50 × 10−5

Bayesian LDC 3817 3797 1203 1183 1.44 × 10−5

Table 7. Confusion Matrix for Classifiers: GWO with KL Divergence and IWO for Adam Hyperpa-
rameter Tuning.

Feature
Selection Classifiers

Confusion Matrix
MSE

TP TN FP FN

KL
Divergence

SVM 3653 4466 534 1347 1.23 × 10−5

KNN 4139 4948 52 862 7.23 × 10−5

Random Forest 4044 3913 1088 956 1.30 × 10−5

Decision Tree 3635 3985 1016 1365 6.89 × 10−5

Softmax Discriminant 3565 4297 703 1435 1.37 × 10−5

Multilayer Perceptron 3740 4034 966 1260 6.40 × 10−7

Bayesian LDC 3775 3987 1013 1225 4.90 × 10−7

IWO

SVM 4339 4617 383 661 1.94 × 10−5

KNN 4129 4321 680 871 5.76 × 10−6

Random Forest 4509 4466 534 491 7.57 × 10−5

Decision Tree 4617 4390 610 383 6.40 × 10−7

Softmax Discriminant 4409 4005 995 592 1.04 × 10−4

Multilayer Perceptron 4409 3913 1088 592 4.49 × 10−5

Bayesian LDC 4754 3973 1027 246 4.90 × 10−7

Table 8 presents the average Mean Squared Error (MSE) and the results of confusion
matrices obtained by using PSO Feature Extraction with KL Divergence and IWO feature
selection techniques during R-Adam Hyperparameter Tuning. Among these methods,
SVM achieved the smallest MSE of 6.56 × 10−5 when using GWO with KL Divergence,
while Random Forest had the highest MSE of 1.09 × 10−5. Considering both PSO and IWO,
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Random Forest had the lowest MSE of 4.49 × 10−5, while Softmax Discriminant had the
highest MSE of 1.10 × 10−4.

Table 8. Confusion Matrix for Classifiers: PSO with KL Divergence and IWO for RAdam Hyperpa-
rameter Tuning.

Feature
Selection Classifiers

Confusion Matrix
MSE

TP TN FP FN

KL
Divergence

SVM 4144 3668 1333 856 6.56 × 10−5

KNN 4209 4537 464 792 2.92 × 10−5

Random Forest 4575 3620 1380 425 1.09 × 10−5

Decision Tree 3950 3859 1141 1050 5.93 × 10−5

Softmax Discriminant 4417 4098 902 583 1.60 × 10−5

Multilayer Perceptron 4011 4198 802 989 3.03 × 10−5

Bayesian LDC 4245 4047 953 755 3.97 × 10−5

IWO

SVM 3710 4235 765 1290 1.37 × 10−5

KNN 4208 4375 625 792 4.22 × 10−5

Random Forest 4229 4188 812 771 4.49 × 10−5

Decision Tree 3813 4408 592 1188 4.36 × 10−5

Softmax Discriminant 4229 4211 789 771 1.10 × 10−4

Multilayer Perceptron 4558 4074 926 443 2.30 × 10−5

Bayesian LDC 3917 3897 1103 1083 3.02 × 10−5

Table 9 displays the average Mean Squared Error (MSE) and the outcomes of confusion
matrices. These were derived using GWO Feature Extraction with KL Divergence and IWO
feature selection methods within R-Adam Hyperparameter Tuning. Among the techniques,
Bayesian LDC achieved the lowest MSE of 9.61 × 10−6 with GWO and KL Divergence.
Conversely, Random Forest had the highest MSE of 1.02 × 10−5. When considering both
GWO and IWO, KNN displayed the smallest MSE of 5.48 × 10−5, while Random Forest
exhibited the highest MSE of 1.90 × 10−4.

Table 10 presents the metrics used to evaluate the performance of classifiers, including
Accuracy, Error Rate, F1 Score, MCC, Jaccard Index, g-Mean, and Kappa. The mathematical
expressions for these metrics are also provided.

The lung cancer data are processed using PSO and GWO techniques to extract fea-
tures from normal and malignant data. These features are then used as inputs for seven
classification models. Table 11 shows the performance of the classifiers without Feature
Selection. The Decision Tree Classifier stands out with the highest accuracy of 85.01% for
GWO features. It also achieves the highest F1 score (85.77%), MCC value (0.70), Jaccard
Index (75.08%), g-mean (85.33%), kappa score (0.70), and the lowest error rate (14.99%). In
contrast, the Random Forest classifier performs poorly for PSO features, with an accuracy of
56.25%, F1 score of 55.17%, MCC value of 0.13, Jaccard Index of 38.09%, g-mean of 56.26%,
kappa value of 0.13, and the highest error rate of 43.75%. Without feature selection, the
Decision Tree Classifier with GWO feature extraction method achieves the best accuracy
and outperforms other classifiers.

The performance of a random forest model heavily relies on the quality of individual
trees and the diversity among them. If a random forest includes subpar or correlated
trees, it can result in reduced overall accuracy. Correlation among trees can introduce
redundant information, hampering the model’s ability to generalize effectively to new data
and causing a drop in accuracy.
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Table 9. Confusion Matrix for Classifiers: GWO with KL Divergence and IWO for RAdam Hyperpa-
rameter Tuning.

Feature
Selection Classifiers

Confusion Matrix
MSE

TP TN FP FN

KL
Divergence

SVM 3758 4466 534 1242 1.37 × 10−5

KNN 4159 4948 52 842 2.40 × 10−5

Random Forest 4094 4063 938 906 1.02 × 10−5

Decision Tree 3750 3985 1016 1250 1.23 × 10−5

Softmax Discriminant 3670 4297 703 1330 4.76 × 10−5

Multilayer Perceptron 3860 4084 916 1140 2.12 × 10−5

Bayesian LDC 3905 4137 863 1095 9.61 × 10−6

IWO

SVM 4439 4667 333 561 4.36 × 10−5

KNN 4229 4321 680 771 5.48 × 10−5

Random Forest 4559 4466 534 441 1.90 × 10−4

Decision Tree 4667 4490 510 333 2.40 × 10−5

Softmax Discriminant 4459 4055 945 542 5.33 × 10−5

Multilayer Perceptron 4459 4063 938 542 5.04 × 10−5

Bayesian LDC 4789 4073 927 211 1.09 × 10−5

Table 10. Standard Benchmark Parameters.

Performance Metrics Equation Significance

Accuracy (%) Accuracy = TP+TN
TP+TN+FP+FN

Average positive-to-negative
sample ratio.

Error Rate Err = FP+FN
TP+TN+FP+FN

The number of incorrect
predictions, based on recorded

observations.

F1 Score (%) F1 = 2TP
2TP+FP+FN

Average of precision and recall to obtain the
classification accuracy of a specific class.

MCC MCC =
TN×TP−FN×FP√

(TP+FP)(TP+FN)(TN+FP)(TN+FN)

Pearson correlation between the
actual output and the achieved

output.

Jaccard Index (%) Jaccard = TP
TP+FP+FN

The number of predicted true
positives exceeded the number of actual positives,

regardless of whether they were real or
predicted.

g-mean (%) g−mean =
√

TP
TP+FN ∗

TN
TN+FP

Combination of sensitivity and specificity into a single
value that balances both objectives.

Kappa Kappa =
Pr(a)−Pr(e)

1−Pr(e)
Inter-rater agreement measure for assessing agreement

between two methods in categorizing cancer cases.

In Table 11, the Random Forest Classifier, when paired with the feature extraction
technique of Particle Swarm Optimization (PSO), achieves a lower accuracy of 56.25%
compared to the Genetic Wolf Optimization (GWO) approach, which achieves an accuracy
of 77.84%. This discrepancy is primarily due to PSO selecting suboptimal intensity values
of the segmented image, including less informative or irrelevant intensity values in the
random forest model. Effective selection of intensity values is crucial for any classifier to
yield better results. If the process of selecting intensity values fails to filter out irrelevant
ones, it can negatively impact the performance of the Random Forest model. And also,
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PSO selects intensity values that are highly specific to the training dataset, resulting in a
model that performs well on the training data but struggles to generalize to new, unseen
data. Furthermore, the computational demands of PSO can lead to longer tree construction
times, affecting the overall classifier’s performance.

Table 11. Performance Analysis of the Classifiers without Feature Selection.

Feature
Extraction Classifiers Accuracy

(%)
Error

Rate (%)
F1 Score

(%) MCC Jaccard
Index (%)

g-Mean
(%) Kappa

PSO

SVM 79.53 20.47 79.40 0.59 65.83 79.53 0.59

KNN 79.92 20.08 80.95 0.60 68.00 80.21 0.60

Random Forest 56.25 43.75 55.17 0.13 38.09 56.26 0.13

Decision Tree 64.01 35.99 63.89 0.28 46.94 64.01 0.28

Softmax Discriminant 77.83 22.17 78.44 0.56 64.53 77.90 0.56

Multilayer Perceptron 71 29 70.26 0.42 54.15 71.04 0.42

Bayesian LDC 83.42 16.58 84.05 0.67 72.48 83.59 0.67

GWO

SVM 77.92 22.08 76.62 0.56 62.09 78.21 0.56

KNN 72.25 27.75 71.61 0.45 55.78 72.29 0.45

Random Forest 77.84 22.16 78.17 0.56 64.16 77.86 0.56

Decision Tree 85.01 14.99 85.77 0.70 75.08 85.33 0.70

Softmax Discriminant 83.58 16.42 83.26 0.67 71.32 83.62 0.67

Multilayer Perceptron 84.34 15.66 83.80 0.69 72.12 84.46 0.69

Bayesian LDC 76.59 23.41 77.22 0.53 62.89 76.66 0.53

Table 12 compares the performance of seven classifiers with PSO, KL Divergence,
and IWO Feature Selection. The Softmax Discriminant Classifier stands out with superior
results for KL Divergence features, achieving an accuracy of 83.47%, the highest F1 score
of 83.18%, MCC of 0.67, Jaccard Index of 71.21%, g-mean of 83.50%, Kappa score of 0.67,
and the lowest error rate of 16.53%. Conversely, the Bayesian LDC classifier performs
poorly with IWO features, obtaining an accuracy of 53.79%, F1 score of 53.71%, MCC of
0.08, Jaccard Index of 36.72%, g-mean of 53.79%, Kappa of 0.08, and the highest error rate of
46.21%. Overall, the Softmax Discriminant Classifier using PSO and KL Divergence Feature
selection achieves the highest accuracy and outperforms other classifiers.

Table 13 presents the performance of seven classifiers using GWO features, KL Diver-
gence, and IWO Feature Selection. The KNN Classifier achieves the highest accuracy of
79.36% with KL Divergence features. It also obtains the highest F1 score (78.60%), MCC
value (0.59), Jaccard Index (64.74%), g-mean (79.49%), kappa score (0.59), and lowest error
rate (20.64%) among all classifiers. However, the Bayesian LDC classifier performs poorly
with IWO features, achieving an accuracy of 59.76%, F1 score of 61.52%, MCC value of 0.20,
Jaccard Index of 44.42%, g-mean of 59.84%, kappa value of 0.20, and the highest error rate
(40.24%). The KNN Classifier with GWO and KL Divergence Feature selection method
demonstrates the best accuracy and outperforms other classifiers.

Table 14 presents a comprehensive performance analysis of various classifiers, utilizing
PSO with KL Divergence and IWO in combination with Adam Hyperparameter Tuning.
The findings highlight that the K-Nearest Neighbors (KNN) Classifier attains the highest
accuracy at 86.70% when incorporating KL Divergence features. This classifier also excels in
other evaluation metrics, boasting the highest F1 score (86.30%), MCC value (0.74), Jaccard
Index (75.96%), geometric mean (g-mean) (86.81%), kappa score (0.73), and displaying the
lowest error rate (13.30%) compared to all other classifiers. Conversely, the performance
of the Bayesian Linear Discriminant Classifier (LDC) is notably subpar when employing
IWO features, achieving an accuracy of 76.14%, an F1 score of 76.19%, an MCC value
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of 0.52, a Jaccard Index of 61.54%, a g-mean of 76.14%, a kappa value of 0.52, and the
highest error rate (23.86%) among the classifiers considered. Overall, the KNN Classifier
in conjunction with PSO and the KL Divergence Feature selection method emerges as the
standout performer, showcasing superior accuracy and outclassing the other classifiers in
the evaluation.

Table 12. Performance Analysis of the Classifiers for PSO with KL Divergence and IWO.

Feature
Selection Classifiers Accuracy

(%)
Error

Rate (%)
F1 Score

(%) MCC Jaccard
Index (%)

g-mean
(%) Kappa

KL
Divergence

SVM 60.44 39.56 62.51 0.21 45.46 60.56 0.21

KNN 65.83 34.17 69.96 0.33 53.79 66.96 0.32

Random Forest 74.09 25.91 76.05 0.49 61.36 74.65 0.48

Decision Tree 80.08 19.92 79.74 0.60 66.30 80.11 0.60

Softmax Discriminant 83.47 16.53 83.18 0.67 71.21 83.50 0.67

Multilayer Perceptron 79.04 20.96 80.30 0.59 67.08 79.43 0.58

Bayesian LDC 66.08 33.92 66.04 0.32 49.30 66.08 0.32

IWO

SVM 73.57 26.43 74.47 0.47 59.32 73.67 0.47

KNN 74.74 25.26 73.43 0.50 58.01 74.95 0.49

Random Forest 63.31 36.69 66.09 0.27 49.35 63.64 0.27

Decision Tree 58.53 41.47 58.99 0.17 41.83 58.54 0.17

Softmax Discriminant 57.81 42.19 56.45 0.16 39.32 57.84 0.16

Multilayer Perceptron 56.39 43.61 58.29 0.13 41.13 56.44 0.13

Bayesian LDC 53.79 46.21 53.71 0.08 36.72 53.79 0.08

Table 13. Performance Analysis of the Classifiers for GWO with KL Divergence and IWO.

Feature
Selection Classifiers Accuracy

(%)
Error

Rate (%)
F1 Score

(%) MCC Jaccard
Index (%)

g-mean
(%) Kappa

KL
Divergence

SVM 67.72 32.28 71.40 0.37 55.52 68.80 0.35

KNN 79.36 20.64 78.60 0.59 64.74 79.49 0.59

Random Forest 75.78 24.22 74.24 0.52 59.03 76.09 0.52

Decision Tree 77.41 22.59 76.09 0.55 61.41 77.69 0.55

Softmax Discriminant 75.64 24.37 80.08 0.57 66.77 80.74 0.51

Multilayer Perceptron 67.19 32.81 69.49 0.35 53.25 67.54 0.34

Bayesian LDC 62.27 37.73 64.72 0.25 47.84 62.49 0.25

IWO

SVM 76.63 23.37 79.02 0.55 65.31 77.82 0.53

KNN 70.83 29.17 68.71 0.42 52.34 71.16 0.42

Random Forest 71.75 28.25 75.87 0.46 61.12 74.14 0.43

Decision Tree 67.87 32.13 72.18 0.38 56.47 69.50 0.36

Softmax Discriminant 69.06 30.94 73.17 0.40 57.69 70.74 0.38

Multilayer Perceptron 71.22 28.78 75.25 0.45 60.32 73.33 0.42

Bayesian LDC 59.76 40.24 61.52 0.20 44.42 59.84 0.20
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Table 14. Performance Analysis of the Classifiers: PSO with KL Divergence and IWO for Adam
Hyperparameter Tuning.

Feature
Selection Classifiers Accuracy

(%)
Error

Rate (%)
F1 Score

(%) MCC Jaccard
Index (%)

g-mean
(%) Kappa

KL
Divergence

SVM 76.56 23.44 77.72 0.53 63.56 76.80 0.53

KNN 86.70 13.30 86.30 0.74 75.96 86.81 0.73

Random Forest 80.75 19.25 82.56 0.63 70.30 81.86 0.62

Decision Tree 76.24 23.76 76.26 0.52 61.63 76.24 0.53

Softmax Discriminant 83.40 16.60 84.11 0.67 72.58 83.62 0.67

Multilayer Perceptron 79.28 20.72 78.93 0.59 65.20 79.31 0.59

Bayesian LDC 81.03 18.97 81.42 0.62 68.67 81.08 0.62

IWO

SVM 76.84 23.16 75.66 0.54 61.84 77.05 0.54

KNN 84.33 15.67 83.82 0.69 72.14 84.44 0.69

Random Forest 81.67 18.33 81.83 0.63 69.25 81.68 0.63

Decision Tree 80.21 19.79 78.95 0.61 65.23 80.56 0.60

Softmax Discriminant 82.90 17.10 82.84 0.66 70.71 82.90 0.66

Multilayer Perceptron 85.64 14.36 86.28 0.72 75.88 85.94 0.71

Bayesian LDC 76.14 23.86 76.19 0.52 61.54 76.14 0.52

Table 15 provides a comprehensive analysis of classifier performance, utilizing a
combination of PSO with KL Divergence and IWO along with R-Adam Hyperparameter
Tuning. The results highlight that the K-Nearest Neighbors (KNN) Classifier achieves the
highest accuracy of 87.45% when incorporating KL Divergence features. This classifier
also excels across various evaluation metrics, including the highest F1 score (87.02%),
MCC value (0.75), Jaccard Index (77.03%), geometric mean (g-mean) (87.58%), kappa score
(0.75), and the lowest error rate (12.55%) compared to other classifiers. On the other hand,
the Decision Tree’s performance is notably weaker when using KL Divergence features,
with an accuracy of 78.09%, F1 score of 78.19%, MCC value of 0.55, Jaccard Index of
64.19%, g-mean of 78.10%, kappa value of 0.54, and the highest error rate (21.91%) among
considered classifiers. In summary, the KNN Classifier, in combination with PSO and the
KL Divergence Feature selection method, stands out as the top performer, showcasing
exceptional accuracy and surpassing other classifiers in the evaluation.

Table 16 provides a comprehensive analysis of classifier performance, utilizing GWO
with KL Divergence and IWO along with Adam Hyperparameter Tuning. The results
emphasize that the K-Nearest Neighbors (KNN) Classifier achieves the highest accuracy at
90.87% when incorporating KL Divergence features. This classifier also excels in various
evaluation metrics, recording the highest F1 score (90.06%), MCC value (0.83), Jaccard Index
(81.92%), geometric mean (g-mean) (91.71%), kappa score (0.82), and demonstrating the
lowest error rate (9.14%) compared to alternative classifiers. In contrast, the performance of
the Decision Tree is notably below par when utilizing KL Divergence features, attaining an
accuracy of 76.20%, an F1 score of 75.33%, an MCC value of 0.53, a Jaccard Index of 60.43%,
a g-mean of 76.30%, a kappa score of 0.52, and the highest error rate (23.81%) among the
considered classifiers. In summary, the KNN Classifier, combined with GWO and the
KL Divergence Feature selection approach, stands out as the top performer, showcasing
remarkable accuracy and surpassing the other classifiers in the evaluation.
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Table 15. Performance Analysis of the Classifiers: PSO with KL Divergence and IWO for RAdam
Hyperparameter Tuning.

Feature
Selection Classifiers Accuracy

(%)
Error

Rate (%)
F1 Score

(%) MCC Jaccard
Index (%)

g-mean
(%) Kappa

KL
Divergence

SVM 78.11 21.89 79.11 0.56 65.44 78.32 0.56

KNN 87.45 12.55 87.02 0.75 77.03 87.58 0.75

Random Forest 81.95 18.05 83.53 0.65 71.71 82.92 0.64

Decision Tree 78.09 21.91 78.19 0.55 64.19 78.10 0.54

Softmax Discriminant 85.15 14.85 85.61 0.70 74.84 85.27 0.70

Multilayer Perceptron 82.09 17.91 81.75 0.64 69.13 82.12 0.64

Bayesian LDC 82.92 17.08 83.25 0.66 71.31 82.96 0.66

IWO

SVM 79.45 20.55 78.31 0.59 64.35 79.72 0.59

KNN 85.83 14.17 85.59 0.72 74.81 85.86 0.72

Random Forest 84.17 15.83 84.23 0.68 72.76 84.17 0.68

Decision Tree 82.21 17.79 81.08 0.65 68.18 82.58 0.64

Softmax Discriminant 84.40 15.60 84.43 0.69 73.05 84.40 0.69

Multilayer Perceptron 86.32 13.68 86.95 0.73 76.91 86.59 0.73

Bayesian LDC 78.14 21.86 78.29 0.56 64.21 78.14 0.56

Table 16. Performance Analysis of the Classifiers: GWO with KL Divergence and IWO for Adam
Hyperparameter Tuning.

Feature
Selection Classifiers Accuracy

(%)
Error

Rate (%)
F1 Score

(%) MCC Jaccard
Index (%)

g-mean
(%) Kappa

KL
Divergence

SVM 81.19 18.81 79.53 0.63 66.02 81.88 0.62

KNN 90.87 9.14 90.06 0.83 81.92 91.71 0.82

Random Forest 79.56 20.44 79.83 0.59 66.43 79.58 0.59

Decision Tree 76.20 23.81 75.33 0.53 60.43 76.30 0.52

Softmax Discriminant 78.62 21.38 76.93 0.58 62.51 79.13 0.57

Multilayer Perceptron 77.74 22.26 77.07 0.56 62.69 77.82 0.55

Bayesian LDC 77.62 22.38 77.14 0.55 62.78 77.66 0.55

IWO

SVM 89.56 10.44 89.27 0.79 80.61 89.66 0.79

KNN 84.50 15.51 84.19 0.69 72.70 84.54 0.69

Random Forest 89.76 10.24 89.80 0.80 81.49 89.76 0.80

Decision Tree 90.07 9.93 90.29 0.80 81.30 90.13 0.80

Softmax Discriminant 84.13 15.87 84.75 0.68 73.54 84.31 0.68

Multilayer Perceptron 83.21 16.79 84.00 0.67 72.42 83.47 0.66

Bayesian LDC 87.27 12.73 88.19 0.75 78.88 88.00 0.75

Table 17 presents a comprehensive analysis of classifier performance, utilizing GWO
with KL Divergence, and IWO alongside R-Adam Hyperparameter Tuning. The outcomes
underscore the Decision Tree Classifier’s exceptional performance, achieving the highest ac-
curacy at 91.57% when integrating KL Divergence features. This classifier also outperforms
others across various evaluation metrics, achieving the highest F1 score (91.71%), MCC
value (0.83), Jaccard Index (84.70%), geometric mean (g-mean) (91.87%), kappa score (0.83),
and demonstrating the lowest error rate (8.43%) compared to alternative classifiers. In
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contrast, the performance of the Decision Tree notably drops when utilizing IWO, with an
accuracy of 77.35%, an F1 score of 76.80%, an MCC value of 0.55, a Jaccard Index of 62.34%,
a g-mean of 77.39%, a kappa score of 0.55, and the highest error rate (22.66%) among the
considered classifiers. In recap, the Decision Tree classifier, combined with GWO and the
KL Divergence Feature selection approach, emerges as the leading performer, showcasing
remarkable accuracy and surpassing the other classifiers in the evaluation.

Table 17. Performance Analysis of the Classifiers: GWO with KL Divergence and IWO for RAdam
Hyperparameter Tuning.

Feature
Selection Classifiers Accuracy

(%)
Error

Rate (%)
F1 Score

(%) MCC Jaccard
Index (%)

g-mean
(%) Kappa

KL
Divergence

SVM 82.24 17.76 80.89 0.65 67.91 82.77 0.64

KNN 91.07 8.94 90.30 0.82 82.31 91.61 0.82

Random Forest 81.56 18.44 81.62 0.63 68.95 81.56 0.63

Decision Tree 77.35 22.66 76.80 0.55 62.34 77.39 0.55

Softmax Discriminant 79.67 20.33 78.31 0.60 64.35 80.05 0.59

Multilayer Perceptron 79.44 20.56 78.97 0.59 65.25 79.49 0.59

Bayesian LDC 80.42 19.58 79.96 0.61 66.61 80.47 0.61

IWO

SVM 91.06 8.94 90.86 0.82 83.24 91.13 0.82

KNN 85.50 14.51 85.36 0.71 74.46 85.50 0.71

Random Forest 90.26 9.74 90.35 0.81 82.39 90.27 0.81

Decision Tree 91.57 8.43 91.71 0.83 84.70 91.87 0.83

Softmax Discriminant 85.13 14.87 85.71 0.70 75.00 85.32 0.70

Multilayer Perceptron 85.21 14.79 85.77 0.71 75.09 85.39 0.70

Bayesian LDC 88.62 11.38 89.38 0.78 80.80 89.25 0.77

Table 18 presents a summary of the performance outcomes for each combination of
feature extraction and feature selection using Adam and R-Adam Hyperparameter tuning
methods across all seven classifiers. The highest accuracy of 91.57% in the Decision Tree
classifier was attained by combining GWO and IWO techniques, utilizing the RAdam
Hyperparameter tuning approach.

Figure 7 illustrates the comparative performance of classifiers in relation to Accuracy,
both with and without the integration of feature selection. As depicted in the graph, among
all of the classifier types, the Decision Tree classifier employing the GWO (Grey Wolf
Optimization) feature extraction method outperformed the rest in terms of achieving the
highest accuracy. When utilizing the KL Divergence feature selection technique, along
with PSO feature extraction technique, the Softmax Discriminant Classifier demonstrated
a commendable accuracy of 83.47%. Similarly, when employing the IWO (Invasive Weed
Optimization) feature selection technique, along with GWO feature extraction technique,
the SVM (Support Vector Machine) classifier exhibited a notable accuracy of 76.63%. In con-
trast, the Mathematical feature selection approaches yielded comparatively lower accuracy
when compared to scenarios where feature selection was not applied.

Figure 8 displays how classifiers perform when hyperparameter tuning methods such
as Adam and RAdam are used to enhance accuracy. Even after applying feature selection
techniques, there’s no significant improvement in classifier accuracy compared to using
no feature selection. To address this, hyperparameter update algorithms are introduced.
The accuracy achieved through the KL Divergence feature selection method is notably
high across all classifiers. However, for the IWO feature selection technique, accuracy
seems to be somewhat lower. This prompts the use of hyperparameter update algorithms
specifically for the IWO feature selection. As a result of employing these algorithms, there’s
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a substantial accuracy improvement for all classifiers using the IWO feature selection.
Notably, the Decision Tree classifier combined with GWO feature extraction and IWO
feature selection, along with the RAdam hyperparameter update algorithm, achieves the
highest accuracy at 91.57%.

Table 18. Performance Analysis of the classifiers for Maximum Accuracy.

S No Feature Extraction Feature Selection Classifiers Accuracy (%)

1 PSO - Bayesian LDC 83.42%

2 GWO - Decision Tree 85.01%

3 PSO KL Divergence Softmax Discriminant 83.47%

4 PSO IWO KNN 74.74%

5 GWO KL Divergence KNN 79.36%

6 GWO IWO SVM 76.63%

7 PSO KL Divergence KNN with Adam 86.70%

8 PSO IWO MLP with Adam 85.64%

9 PSO KL Divergence KNN with RAdam 87.45%

10 PSO IWO MLP with RAdam 86.32%

11 GWO KL Divergence KNN with Adam 90.87%

12 GWO IWO Decision Tree with Adam 90.07%

13 GWO KL Divergence KNN with RAdam 91.07%

14 GWO IWO Decision Tree with RAdam 91.57%
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Figure 9 illustrates the classifiers’ performance by analyzing the Deviation of MCC
and Kappa parameters in relation to their mean values. These parameters, MCC and
Kappa, serve as benchmarks for evaluating how classifiers respond to different inputs. The
study involves two input categories: features extracted using PSO and GWO, followed by
feature selection through KL Divergence and IWO. The selected features are then inputted
into the classifiers, and their effectiveness is evaluated through the resulting MCC and
Kappa values. The average MCC and Kappa values attained from the classifiers are 0.56661
and 0.56256, respectively. A methodology is devised to assess classifier performance by
examining the variability of MCC and Kappa values from their respective means. Notably,
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Figure 9 depicts a trend where MCC and Kappa values in the graph’s third quadrant
correspond to non-linear outcomes with lower performance metrics. Conversely, values
in the graph’s first quadrant indicate improved classifier performance, with MCC and
Kappa values surpassing the average. This pattern suggests an enhancement in classifier
performance for GWO inputs when coupled with IWO feature selection, particularly within
the context of the RAdam hyperparameter tuning approach. Figure 9 is also characterized
by a linear curve fitting described by the equation Y = 1.0017 X + 4 × 10−06, with an R2

value of 0.998.
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6.4. Computational Complexity Analysis of the Classifiers

Computational complexity also acts as a performance metric for classifiers, encom-
passing time and space complexities. This study utilizes the Big O notation to characterize
the computational complexity of feature extraction, feature selection, and classification
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methods. The assessment of Computational Complexity involves an input size labelled as
‘n’. When the input size is O(1), the computational complexity remains minimal. However,
as the input size increases, so does the computational complexity. The relationship between
input size and computational complexity is encapsulated by the Big O notation. Specifically,
if the complexity grows logarithmically with the increase in ‘n’, it is represented as O(log n).
The classifiers examined in this research integrate either feature extraction methods, feature
selection techniques, or a combination of both. Hence, computational complexity becomes
a blend of these hybrid methodologies. Table 19 offers an overview of the computational
complexity associated with the classifiers across diverse Feature Extraction and Feature
Selection Techniques.

Table 19. Computational Complexity of the classifiers among Feature Extraction, Feature Selection
and Hyperparameter Tuning approaches.

S No Classifiers
Without
Feature

Extraction

With Feature Extraction With Feature Selection
With Hyperparameter

Tuning of IWO Feature
Selection Method

PSO GWO KL
Divergence IWO Adam RAdam

1 SVM O
(
2n2) O

(
2n5) O

(
2n5) O

(
2n6) O

(
2n6log n

)
O
(
2n2log n

)
O
(

4n7log 5n
)

2 KNN O
(
n2) O

(
n5) O

(
n5) O

(
n6) O

(
n6log n

)
O
(
2n7log 2n

)
O
(
2n7log 5n

)
3 RF O (nlog n) O

(
n4log n

)
O
(
n4log n

)
O
(
n5log n

)
O
(
n5log 2n

)
O
(
2n6log 3n

)
O
(
2n6log 6n

)
4 DT O (log n) O

(
n3log n

)
O
(
n3log n

)
O
(
n4log n

)
O
(
n4log 2n

)
O
(
2n5log 3n

)
O
(
2n5log 6n

)
5 SDC O

(
n2) O

(
n5) O

(
n5) O

(
n6) O

(
n6log n

)
O
(
2n7log 2n

)
O
(
2n7log 5n

)
6 MLP O

(
n5) O

(
n8) O

(
n8) O

(
n9) O

(
n9log n

)
O
(

2n10log 2n
)

O
(

2n10log 5n
)

7 BLDC O
(
n2) O

(
n5) O

(
n5) O

(
n6) O

(
n6log n

)
O
(
2n7log 2n

)
O
(
2n7log 5n

)

As evident from Table 19, when feature extraction techniques are not employed, classi-
fiers such as SVM, KNN, Random Forest (RF), Decision Tree (DT), Softmax Discriminant
classifier (SDC), Multilayer Perceptron (MLP), and Bayesian LDC (BLDC) exhibit lower
levels of computational complexity. When utilizing the GWO feature extraction technique,
the Decision Tree classifier stands out with a computational complexity of O

(
n3log n

)
and

achieves a high accuracy of 85.01%. However, the BLDC classifier, with a computational
complexity of O

(
n6log n

)
for GWO feature extraction, performs poorly when IWO feature

selection methods are applied across the classifiers. The observed underperformance is
linked to outlier problems present in the GWO features. To improve classifier performance,
this study integrates hyperparameter tuning into the IWO feature selection method. Partic-
ularly, the Decision Tree classifier demonstrates remarkable performance with accuracies
of 90.07% and 91.57% when utilizing GWO feature extraction in conjunction with IWO.
These improvements come with a moderate computational complexity represented by
O
(
2n5log 3n

)
for the Adam Hyperparameter tuning approach and O

(
2n5log 6n

)
for the

RAdam Hyperparameter tuning approach.

6.5. Comparison of Previous Works

Comparison charts with different Machine Learning and Deep Learning models along
with classifiers are shown in the Table 20 for the different datasets of lung cancer. As
noted in the Table 20, that the classifier performance is analyzed for the four different
datasets, namely CRAG, LIDC-IDRI, LUNA16 and LC25000. The following classifiers
namely Ensemble, ResNet50, KNN, AlexNet and CNN were analyzed. As shown in the
Table 20., for the CRAG database, the ResNet50 attains the maximum accuracy of 93.91%
whereas for CT image database (LIDC-IDRI, LUNA16), the CNN-ALCDC model attains
the maximum accuracy of 97.2%. This is due to the smaller number of CT images as the
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data set. Similarly, for LC25000 database, for a binary classification problem, 5000 images
for each class are taken, which attains a commendable accuracy of 91.57%.

Table 20. Comparison of classifier performance with different datasets.

S No Authors Dataset Used Machine Learning
Models/Classifiers Accuracy (%)

1 Bukhari, S. et al. [57] CRAG Dataset ResNet-50 93.91%

2 Jinsa Kuruvilla. et al. [58] LIDC Dataset
(155 Patients—CT images)

Feed Forward Back Propagation
Neural Networks 93.3%

3 Dabass, M. et al. [59] CRAG Dataset Atrous Convolved Hybrid
Seg-Net Architecture 87.63%

4 Supriya, Suresh.et al. [60]
LIDC-IDRI
Repository
(CT scans)

CNN 93.9%

5 Wadood, Abdul. [61]
LIDC-IDRI
Repository
(CT scans)

CNN-ALCDC 97.2%

6 Rekka, Mastouri. et al. [62] LUNA16 Database
(3186 CT images) BCNN [VGG16, VGG19] 91.99%

7 Tasnim, Ahmed. et al. [63] LUNA16 Database 3D CNN 80%

8 Mesut Toğaçar. et al. [64] Cancer Imaging Archieve
(CT images) AlexNet and kNN classifier 98.74%

9 Anum, Masood. et al. [65] Biomedical
Datasets–IoT

CNN
DFCNet

77.6%
84.58%

10 Wahyudi, Setiawan. et al. [66] LC25000 Database CNN 87.16%

11 Manaswini, Pradhan. [67] LC25000 Database

Without Feature Selection
(EGOA)—KNN

With Feature Selection
(EGOA)–KNN

80.16%
81.59%

12 Phankokkruad, M [68] LC25000 Database Ensemble
ResNet50V2

91%
90%

13
Karthikeyan Shanmugam,

Harikumar
Rajaguru

LC25000 Database

Feature Extraction-GWO
Feature Selection—IWO

Decision tree with RAdam
Hyper parameter Updation

method

91.57%

7. Conclusions

Early diagnosis of lung cancer enhances patient life expectancy. This paper proposes
machine learning techniques to enhance classifier accuracy and enable early identification
using histopathological images. The primary aim is to achieve lung cancer classification
with high accuracy, while minimizing false positives and false negatives. The study applies
adaptive median filtering and a modified KFCM-based segmentation method to obtain the
segmented images for better classification results. Feature extraction involves optimization
techniques such as PSO and GWO which reduces the dimensionality of the segmented
image to [512 × 10], followed by statistical analysis. Feature selection reduces the number
of intensity values to [100 × 12] for lung cancer classification. Through the utilization of KL
Divergence and Invasive Weed Optimization to evaluate the dimensionally reduced fea-
tures, the datasets undergo classification with various classifiers to achieve better accuracy.
The classification process entails seven classifiers, coupled with Hyperparameter selection
using Adam and Radam methods, which are compared and analyzed. The Decision Tree
Classifier for GWO features without feature selection achieves a better accuracy of 85.01%.
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Mathematical feature selection methods had lower accuracy compared to scenarios without
feature selection. The results are further enhanced when the Hyperparameter Up-to-date
methods are employed which reveal that the combination of GWO-IWO-Decision Tree
classifier for RAdam outperforms all other classifiers, achieving an overall accuracy of
91.57% in classifying Benign and Adenocarcinoma classes. Future research directions will
explore diverse feature selection techniques, optimization methodologies, and the inclusion
of deep learning approaches such as CNN, DNN, and LSTM to further enhance lung cancer
classification.

Author Contributions: Conceptualization, K.S.; Methodology, H.R.; Software, K.S.; Validation, H.R.;
Formal analysis, K.S.; Investigation, H.R.; Resources, K.S.; Data curation, K.S.; Writing-original draft,
K.S.; Writing-review and editing, H.R.; Visualization, H.R.; Supervision, H.R. All authors have read
and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not Applicable.

Informed Consent Statement: Not Applicable.

Data Availability Statement: Not Applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Prabhakar, S.K.; Lee, S.W. An Integrated Approach for Ovarian Cancer Classification with the Application of Stochastic Optimiza-

tion. IEEE Access. 2020, 8, 127866–127882. [CrossRef]
2. Jemal, A.; Ward, E.M.; Johnson, C.J.; Cronin, K.A.; Ma, J.; Ryerson, A.B.; Mariotto, A.; Lake, A.J.; Wilson, R.; Sherman, R.L.;

et al. Annual Report to the Nation on the Status of Cancer, 1975–2014, Featuring Survival. J. Natl. Cancer Inst. 2017, 109, djx030.
[CrossRef] [PubMed]

3. Miki, T.; Yano, S.; Hanibuchi, M.; Sone, S. Bone Metastasis Model with Multiorgan Dissemination of Human Small-Cell Lung
Cancer (SBC-5) Cells in Natural Killer Cell-Depleted SCID Mice. Oncol. Res. Featur. Preclin. Clin. Cancer Ther. 2001, 12, 209–217.
[CrossRef] [PubMed]

4. Mahmood, H.; Shaban, M.; Indave, B.I.; Santos-Silva, A.R.; Rajpoot, N.; Khurram, S.A. Use of artificial intelligence in diagnosis of
head and neck precancerous and cancerous lesions: A systematic review. Oral Oncol. 2020, 110, 104885. [CrossRef] [PubMed]

5. He, L.; Long, L.R.; Antani, S.; Thoma, G.R. Histology image analysis for carcinoma detection and grading. Comput. Methods
Programs Biomed. 2012, 107, 538–556. [CrossRef] [PubMed]

6. Komura, D.; Ishikawa, S. Machine Learning Methods for Histopathological Image Analysis. Comput. Struct. Biotechnol. J. 2018, 16,
34–42. [CrossRef]

7. Andreadis, D.A.; Pavlou, A.M.; Panta, P. Biopsy and oral squamous cell carcinoma histopathology. In Oral Cancer Detection: Novel
Strategies and Clinical Impact; Springer International Publishing: Cham, Switzerland, 2019; pp. 133–151.

8. Gertych, A.; Swiderska-Chadaj, Z.; Ma, Z.; Ing, N.; Markiewicz, T.; Cierniak, S.; Salemi, H.; Guzman, S.; Walts, A.E.; Knudsen, B.S.
Convolutional neural networks can accurately distinguish four histologic growth patterns of lung adenocarcinoma in digital
slides. Sci. Rep. 2019, 9, 1483. [CrossRef]

9. Zhang, X.; Xing, F.; Su, H.; Yang, L.; Zhang, S. High-throughput histopathological image analysis via robust cell segmentation
and hashing. Med. Image Anal. 2015, 26, 306–315. [CrossRef]

10. Draelos, R.L.; Dov, D.; Mazurowski, M.A.; Lo, J.Y.; Henao, R.; Rubin, G.D.; Carin, L. Machine-learning-based multiple abnormality
prediction with large-scale chest computed tomography volumes. Med. Image Anal. 2021, 67, 101857. [CrossRef]
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