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Abstract: Radiation therapy using conventional or newer high-precision dose techniques, including
three-dimensional conformal radiotherapy, intensity-modulated radiation therapy, stereotactic body
radiation therapy, four-dimensional conformational radiotherapy, and proton therapy, is an important
component of treating patients with lung cancer. Knowledge of the radiation technique used and the
expected temporal evolution of radiation-induced lung injury, as well as patient-specific parameters
such as previous radiotherapy, concurrent chemoradiotherapy, or immunotherapy, is important
in image interpretation. This review discusses factors that affect the development and severity of
radiation-induced lung injury and its radiological manifestations, as well as the differences between
conventional and high-precision dose radiotherapy techniques.
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1. Introduction

Lung cancer, particularly non-small cell lung cancer (NSCLC), poses a formidable chal-
lenge to both patients and healthcare providers. Despite being the second-most-prevalent
form of cancer in both men and women, it remains the deadliest. In the United States
alone, there are about 200,000 new cases of lung cancer annually [1]. Late-stage diagnosis
and poor prognosis are common due to the elusive nature of symptoms. Fortunately, in
the United States, the number of new cases has been steadily declining, primarily due
to reduced rates of smoking—the leading risk factor for lung cancer. Unfortunately, this
positive trend is not mirrored in countries where smoking remains a common practice [2].
Moreover, the delayed development of lung cancer following tobacco exposure ensures
that the global burden of lung cancer will persist for many years [3].

Treatment options for NSCLC include surgery, chemotherapy, immunotherapy, and
radiation therapy (RT). While treatment regimens are tailored to individual cases, for early-
stage NSCLC, surgery remains the gold standard, including newer minimally invasive
techniques such as video-assisted thoracic surgery (VATS) and robot-assisted thoracic
surgery (RATS) [4]. Surgical treatment can even be performed in patients with some degree
of chronic pulmonary disease [5]. However, for patients who are medically inoperable
(such as those with more advanced chronic pulmonary disease) or who decline surgical
treatment, RT has emerged as a highly effective alternative for the treatment of early-stage
NSCLC [1,6,7]. Additionally, in advanced-stage inoperable disease, RT may be administered
in conjunction with chemotherapy or immunotherapy, as well as for palliation [8].
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The landscape of RT in NSCLC has evolved significantly over the last several decades.
Modern techniques of radiation therapy delivery offer enhanced precision and decreased
damage to adjacent normal tissues compared with conventional radiotherapy. This review
explores the gamut of newer RT modalities, including 3D conformational radiotherapy (3D-
CRT), intensity-modulated radiotherapy (IMRT), stereotactic body radiotherapy (SBRT),
4D conformational radiotherapy (4D-CRT), and proton therapy. These recent advances in
RT delivery offer new hope to patients for improved quality of life.

2. Types of Radiotherapy
2.1. Conventional Radiotherapy

Conventional radiotherapy, also known as 2D radiotherapy, was once the primary
form of radiotherapy available for patients with NSCLC. However, it is now predominantly
reserved for cases of palliation [9,10]. Conventional radiation therapy employs two parallel
opposed fields that form a rectangular field of radiation [11]. Due to the large radiation field,
a considerable volume of adjacent normal tissue receives radiation along with the tumor
(Figure 1). Thus, when the radiation dose is being determined, the benefits of irradiating
the tumor must be weighed against the risk of harm to the surrounding tissues.
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Figure 1. Conventional radiation treatment plan: This type of radiation therapy is easier to plan
and uses an anterior posterior field that includes normal tissues in the high-dose area, resulting in
increased toxicity to the adjacent normal tissues. The total dose is approximately 70 Gy, given 5 days
a week for 7 weeks.

2.2. Three-Dimensional Conformal Radiotherapy

Three-dimensional conformal radiotherapy, or 3D-CRT, was the first of the high-
precision modalities of radiotherapy to emerge. By using more beams in multiple directions,
3D-CRT allows for the radiation to conform to the shape of the tumor more closely than
conventional radiotherapy [9,12]. This allows for a higher radiation dosage to the targeted
tumor, as well as minimizing damage to the surrounding healthy tissue (Figure 2). Although
3D-CRT is superior to conventional radiotherapy in terms of tumor targeting and reduction
in healthy tissue toxicity, further advances in RT delivery now offer even greater conformity.
Thus, 3D-CRT is primarily used to treat tumors that are locally advanced and inoperable,
along with postoperative radiation therapy [9].
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Figure 2. Three-dimensional (3D) conformal radiation treatment (3D-CRT) plan: This type of plan
has less toxicity to the adjacent normal tissues compared to conventional radiation therapy; 3D-CRT
is used to treat locally advanced, inoperable tumors, as well as in the postoperative setting.

2.3. Intensity-Modulated Radiotherapy

Intensity-modulated radiotherapy (IMRT) uses multiple beams of radiation, each with
dynamic multileaf collimators, to conform more closely to the tumor compared to 2D
radiotherapy or even 3D-CRT (Figure 3). This flexibility allows for better conformity to
the tumor, and the dose to adjacent organs is reduced compared with 3D-CRT [9,13,14].
IMRT is commonly used in similar scenarios as 3D-CRT, but with enhanced results and less
toxicity [9,12].
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Figure 3. Intensity-modulated radiation treatment (IMRT) plan: IMRT is a form of 3D-CRT that uses
multileaf collimators and conforms better to the shape of the tumor, with a closer margin, resulting in
less toxicity to the adjacent tissues compared with conventional radiation therapy and 3D-CRT.



Diagnostics 2023, 13, 3283 4 of 17

2.4. Stereotactic Body Radiotherapy

Stereotactic body radiotherapy (SBRT) is currently the predominant modality of high-
precision radiation therapy utilized for early-stage NSCLC patients who are not surgical
candidates or who refuse surgical therapy [15,16] (Figure 4). SBRT utilizes ablative tech-
niques to target tumors, delivering a higher radiation dose per fraction over a shorter
treatment duration compared with conventional RT (SBRT 1–2 weeks vs. conventional
4–6 weeks) [9,10]. SBRT must be used with caution when targeting central tumors, due to
the potential for toxicity. An early trial reported toxicities and mortality for central tumors
treated with SBRT, which led to a recommendation of a 2 cm “no fly” zone surrounding the
central bronchial tree [17]. SBRT can be used for central lung cancers by lowering the dose
per fraction. SBRT offers decreased toxicity when compared with other forms of RT.
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Figure 4. Stereotactic body radiation treatment (SBRT) plan: SBRT targets the tumor, delivering
a more compact dose with a steep drop-off in all directions, thereby limiting the dose to normal
adjacent tissues. SBRT’s total dose depends on the size and site of the tumor targeted. For smaller
(<5 cm) peripheral tumors, the total treatment dose is approximately 25–50 Gy over 1–2 weeks. For
larger, more central tumors, the total dose is 60–70 Gy.

2.5. Four-Dimensional Conformal Radiotherapy

Four-dimensional conformal radiotherapy (4D-CRT) is a novel approach to delivering
radiation to the chest, in that it incorporates time and patient chest movements into the
treatment planning of lung tumors, which are mobile targets. Often used concurrently
with 3D-CRT, IMRT, and proton therapy, 4D-CRT integrates the volumetric images of the
tumor in each phase of the patient’s breathing cycle, generated by 4D-CT data acquisition.
Approaches to 4D-CRT include respiratory-synchronized techniques (i.e., gating or tracking)
and tumor-margin-based techniques (i.e., internal target volume or mid-position strategy).
These approaches accommodate the patient’s chest movements during respiration, thereby
reducing the irradiation of uninvolved tissue even more [12,13]. Further research is needed
to evaluate the benefits of these techniques.

2.6. Proton Therapy

Proton therapy is unique compared to the other high-precision radiation techniques, in
that it is particle-based rather than photon-based [9]. Consequently, it provides a very low
entrance dose of radiation, which steadily increases until it reaches its peak at the targeted
tumor (Bragg peak), with an abrupt drop-off in the dose distal to the tumor [9] (Figure 5).
This dosage curve accounts for proton therapy’s optimal dose conformation to the tumor,
with the least toxicity to the surrounding normal tissue among the high-precision radiation
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therapy techniques available [18,19] (Figure 6). Compared to SBRT, proton therapy is useful
when targeting tumors close to critical organs such as the heart, great vessels, trachea,
esophagus, and spinal cord [9,12]. Unfortunately, however, this technology is costly and
only available at limited centers.
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Figure 5. Differential depth–dose distribution of photons versus protons: The graph plots the relative
dose with respect to the penetration depth. The orange is the radiation dose with photons. With no
mass and no charge, photons can penetrate, but most of the radiation dose delivered is only in the
first 3 cm from the patient’s skin. Photons gradually lose this energy until they reach the target and
continue to deposit the dose as they exit the body, with potential collateral damage to adjacent critical
organs. In contrast, protons, shown in blue for single beam and in green for multiple beams spread
out, have a lower entrance dose. Protons are heavy charged particles that gradually slow down as
they interact with bodily tissues. The absorbed dose increases gradually, with a sharp rise to a peak
when the protons are stopped at the site of the tumor, where there is a large deposit of energy. This is
known as the Bragg peak. The abrupt decrease in dose distal to the tumor target yields a minimal
exit dose, sparing the adjacent critical organs.
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3. Post-Radiation Changes

Advancements in radiation therapy delivery techniques have significantly improved
the prognosis and quality of life for lung cancer patients in recent years. Despite the benefits
of these various forms of radiotherapy, all are associated with a spectrum of damage to
healthy adjacent tissue. Post-radiation lung changes are commonly seen following both
conventional and high-precision radiotherapy techniques.

Radiation-induced lung injury (RILI) is a well-recognized consequence of radiotherapy.
The extent of damage depends on various factors, including patient-specific risk factors,
radiation dosage, fractionation schedules, and the type of radiotherapy received. For all
types of RT, post-radiation changes are divided into two distinct stages: the acute exudative
phase (also called radiation pneumonitis) in the first 6 months after the completion of RT,
and the chronic fibrotic phase thereafter.

Patient-related risk factors contributing to RILI include smoking history, pre-existing
pulmonary conditions such as interstitial lung disease, and previous radiotherapy to the
chest. Risk is also dependent on the volume of lung tissue exposed to radiation, the radia-
tion dose and fractionation schedule, and the concurrent use of chemotherapy [9,20–23].
This intricate interplay between clinical and treatment-related variables underscores the
need for personalized approaches to synergize treatment potency, as well as to mitigate
adverse effects.

Emerging research has shed light on the impact of radiation dosage and fractionation
schedules on RILI. Studies comparing the use of hyperfractionation (i.e., dispensing lower
doses of radiotherapy more-than-once-daily) and hypofractionation (i.e., dispensing higher
doses of radiotherapy over a shorter period of time) have highlighted the importance of
optimizing the balance between tumor control and toxicity to adjacent healthy tissue [24,25].
A lower radiation dose delivered over a longer period of time reduces the biological effects
of the radiation, which leads to decreased toxicity to healthy tissues but may compromise
the antitumor effect. Further research is needed to establish the optimal strategy to achieve
therapeutic goals while minimizing adverse events.

Pathophysiologically, the acute exudative phase of RILI is defined by capillary injury,
vascular congestion, and inflammatory cell infiltration, subsequently resulting in collagen
fibril deposition [20,26] (Figure 7). Imaging manifestations of this phase predominantly
include ground-glass and consolidative opacities. Other less common but well-documented
imaging findings include the “crazy paving” and “reversed halo” signs. Crazy paving
describes the finding of interstitial septal thickening with associated ground-glass opacities,
while a reverse halo describes a crescent-shaped or peripheral rim of consolidation that
surrounds a ground-glass opacity. An array of pharmaceuticals have been evaluated
to mitigate lung injury related to radiotherapy. For patients experiencing symptomatic
radiation lung injury, inhaled, oral, or even intravenous corticosteroids are commonly
administered to provide relief from acute symptoms and potentially prevent progressive
fibrotic changes [20,21,27].

The transition of RILI to the chronic fibrotic phase is marked by extensive fibroblastic
proliferation with subsequent fibrous tissue deposition, vascular sclerosis, and ultimate col-
lapse/obliteration of alveolar spaces, leading to tissue fibrosis in the irradiated lung [20,26].
Imaging findings during this phase reveal evolving areas of consolidation with air bron-
chograms and traction bronchiectasis [9,27].

A spectrum of imaging findings has been observed in the lungs following conventional
and high-precision radiotherapy. Due to the more precise nature of radiation delivery,
high-precision radiotherapy displays post-radiation changes that conform more closely to
the original tumor site compared to conventional radiotherapy. Furthermore, the temporal
evolution of these changes differs. For conventional radiotherapy, acute exudative changes
are observed as early as 4 weeks and are usually present by 3 months. Chronic changes
will peak around 6–12 months, with the changes stabilized by 12–24 months. In contrast,
after high-precision radiotherapy, early findings do not typically present until 3 months
post-treatment, with only about 50% of RILI patients demonstrating imaging findings at
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6 months. Furthermore, many post-radiation changes after high-precision therapy continue
to evolve after 2 years [1,9,23]. These long-term changes, particularly when they involve
growth after 2 years, can raise concern for a recurrent tumor.
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Figure 7. The pathophysiology of radiation injury: Ionizing radiation induces free radicals and
DNA damage to promote oxidative stress, vascular damage, and inflammation, which manifest as
radiation pneumonitis. Persistent inflammation sustains alveolar epithelial and vascular endothelial
cell damage and contributes to pathological changes, including immune cell infiltration, capillary
permeability, and pulmonary edema. Prolonged alveolar and vascular damage lead to epithelial-
to-mesenchymal transition (EMT) and/or endothelial-to-mesenchymal transition (EndoMT) and
eventually culminate in fibrotic changes. Adapted from Hanania, AN. Chest 2019, (156): 150 [1].

4. Specific Imaging Patterns in RILI

There are a few specific imaging patterns of radiation-induced lung injury that are
more commonly encountered following high-precision radiotherapy as opposed to conven-
tional radiotherapy. These include the modified conventional pattern, the mass-like pattern,
the scar-like pattern, and organizing pneumonia [9,12,13]. The first three refer to patterns
described with SBRT but can also be seen with other high-precision dose techniques and
occur 6 months after the RT’s completion or later.

4.1. Modified Conventional Pattern

The modified conventional pattern is the most commonly encountered pattern of
fibrosis identified after high-precision dose radiotherapy. It is identified in 46–71% of
patients. The modified conventional pattern manifests as a focal area of consolidation,
volume loss, and bronchiectasis, similar in appearance to conventional radiation changes,
but is less extensive, owing to the closer conformation of radiation therapy to the tumor
with the high-precision dose techniques [28]. Compared with conventional radiotherapy,
air bronchograms may be less extensive and less frequent [12] (Figure 8).

Diagnostics 2023, 13, x FOR PEER REVIEW 8 of 19 
 

 

The modified conventional pattern is the most commonly encountered pattern of 
fibrosis identified after high-precision dose radiotherapy. It is identified in 46–71% of 
patients. The modified conventional pattern manifests as a focal area of consolidation, 
volume loss, and bronchiectasis, similar in appearance to conventional radiation changes, 
but is less extensive, owing to the closer conformation of radiation therapy to the tumor 
with the high-precision dose techniques [28]. Compared with conventional radiotherapy, 
air bronchograms may be less extensive and less frequent [12] (Figure 8).  

   
(A) (B) (C) 

Figure 8. Modified conventional pattern of lung injury following IMRT (60 Gy, 15 fractions): (A) 
Computed dosimetric axial reconstruction obtained for an IMRT plan, showing the central left 
upper lobe tumor and left mediastinal lymph node receiving the maximal isodose (64 Gy). (B) CT 
image 6 months after completion of RT, showing consolidative opacity with air bronchograms, 
consistent with radiation pneumonitis. (C) CT image 7 years after RT, showing consolidative 
opacity, volume loss, and traction bronchiectasis, similar to but less extensive than fibrosis seen 
with conventional radiation therapy. 

4.2. Mass-like Pattern 
The mass-like pattern is encountered in 7–20% of patients after the completion of 

high-precision dose radiation therapy. On CT, this pattern presents as a focal area of fi-
brosis that is compact or mass-like, sometimes larger than the originally treated tumor 
[28] (Figure 9). As the name suggests, this pattern often closely resembles a true mass and 
must be distinguished from tumor recurrence. The imaging findings of the mass-like 
pattern are believed to be a result of the multidirectional beams for high-precision radi-
otherapy delivery, resulting in a more three-dimensional radiation treatment field 
[12,29]. Typically, this pattern lacks features like air bronchograms and straight margins 
[30]. Temporal evolution of shape and location (towards or away from the hilum) has 
been observed due to lung retraction during the first year after the completion of radio-
therapy [12]. 
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lobe tumor and left mediastinal lymph node receiving the maximal isodose (64 Gy). (B) CT image
6 months after completion of RT, showing consolidative opacity with air bronchograms, consistent
with radiation pneumonitis. (C) CT image 7 years after RT, showing consolidative opacity, volume
loss, and traction bronchiectasis, similar to but less extensive than fibrosis seen with conventional
radiation therapy.

4.2. Mass-like Pattern

The mass-like pattern is encountered in 7–20% of patients after the completion of
high-precision dose radiation therapy. On CT, this pattern presents as a focal area of fibrosis
that is compact or mass-like, sometimes larger than the originally treated tumor [28]
(Figure 9). As the name suggests, this pattern often closely resembles a true mass and must
be distinguished from tumor recurrence. The imaging findings of the mass-like pattern
are believed to be a result of the multidirectional beams for high-precision radiotherapy
delivery, resulting in a more three-dimensional radiation treatment field [12,29]. Typically,
this pattern lacks features like air bronchograms and straight margins [30]. Temporal
evolution of shape and location (towards or away from the hilum) has been observed due
to lung retraction during the first year after the completion of radiotherapy [12].
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showing a left upper nodule (*). (B) Computed dosimetric axial reconstruction obtained for the 
SBRT plan, showing the primary lung malignancy receiving the maximal isodose (65 Gy). (C) CT 
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Radiation-induced lung injury can present with an organizing pneumonia pattern of 

injury. This pattern is believed to be immunologically mediated and generally occurs 

Figure 9. Mass-like pattern of lung injury after SBRT (70 Gy, 10 fractions): (A) CT before treatment,
showing a right upper lung cancer (*). (B) Computed dosimetric axial reconstruction obtained for the
SBRT plan, showing the primary lung malignancy receiving the maximal isodose (77 Gy). (C) CT
image 3 months after completion of RT, showing that the malignancy has slightly decreased in size,
with minimal radiation pneumonitis in the adjacent lung. (D) CT at 9 months after RT, showing
retraction of the treated primary tumor anteriorly abutting the anterior pleura, surrounded by a
peripheral solid rim with normal interspersed lung tissue forming a target sign. (E,F) CT images 3
and 4 years after RT, respectively, showing a triangular mass-like opacity. Note that evolution of the
radiological findings >2 years after SBRT completion is common, and mass-like fibrotic changes can
occur up to 4 years after and be misinterpreted as recurrence of malignancy.

4.3. Scar-like Pattern

The scar-like pattern of fibrosis occurs in 11–22% of patients after the completion of
high-precision dose radiation therapy. On CT, a thin linear opacity at the tumor site, usually
less than 1 cm in diameter, is associated with volume loss [23,28] (Figure 10).
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Figure 10. Scar-like pattern of lung injury after SBRT (54 Gy, 3 fractions): (A) CT before treatment,
showing a left upper nodule (*). (B) Computed dosimetric axial reconstruction obtained for the SBRT
plan, showing the primary lung malignancy receiving the maximal isodose (65 Gy). (C) CT image
36 months after completion of RT, showing a linear opacity in the radiation treatment plan, consistent
with a scar-like pattern of radiation injury.

4.4. Organizing Pneumonia

Radiation-induced lung injury can present with an organizing pneumonia pattern
of injury. This pattern is believed to be immunologically mediated and generally occurs
between six weeks and ten months after the completion of radiotherapy [31]. Organizing
pneumonia after radiation therapy has the appearance of patchy areas of ground-glass
and consolidative opacities that can be migratory, with a waxing and waning course, often
presenting outside of the radiation treatment area [32].

5. Imaging Modalities and Radiomics

Different imaging modalities are available for post-therapy follow-up. These include
radiography, computed tomography, positron emission tomography/computed tomogra-
phy, and magnetic resonance imaging.

5.1. Radiography

Chest radiography, being readily accessible and cost-effective, often serves as the
initial imaging modality when patients present with respiratory symptoms following
radiation therapy for lung cancer. Chest radiographs can typically detect RILI by the fourth
week following the completion of radiotherapy [9]. It should be noted that radiography
will usually not detect post-radiation changes unless the lung tissue received a radiation
dose greater than 40 Gy [33]. During the acute phase of RILI, radiography may manifest
heterogeneous opacities confined to the radiation field, while chronic fibrosis changes
appear as lung consolidations confined to the radiation treatment area, with associated
volume loss in the lung and traction bronchiectasis [27]. Radiography is tempered by
low specificity, often necessitating cross-sectional imaging modalities for comprehensive
post-radiotherapy assessment.

5.2. Computed Tomography

Computed tomography (CT) is more sensitive, surpassing radiography in the early de-
tection of post-radiation changes [1,6]. CT can detect ground-glass opacities, crazy paving,
and reverse halo patterns during the acute exudative phase of radiation pneumonitis [9].
When increased soft tissue is seen within an area of radiation fibrosis, CT is limited in
differentiating tumor recurrence versus infection or inflammation versus the mass-like
pattern of radiation fibrosis.

5.3. Positron Emission Tomography/Computed Tomography

FDG (18F-2-deoxy-D-glucose) positron emission tomography/computed tomography
(PET/CT) is a valuable adjunct to evaluate high-risk CT features of tumor recurrence
following radiotherapy. FDG, a glucose analog, serves as a useful radiotracer due to its
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rapid uptake into tissues exhibiting high metabolic activity, such as malignant cells [34,35].
Therefore, PET/CT can be used to evaluate increased soft tissue within areas of radiation
fibrosis to help differentiate between the mass-like pattern and tumor recurrence [7,36].

It is important to be aware of the limitations of PET/CT. FDG uptake is also noted
in areas of infection or inflammation; therefore, increased FDG uptake is expected during
the first few months following RT, due to radiation pneumonitis [1,16]. FDG-PET/CT is
therefore typically deferred until at least 6 months following the completion of radiotherapy,
or until after the onset of the chronic fibrotic phase of lung injury [1,16].

Future directions of research include the role of FDG PET/CT in the detection and
quantification of radiation-induced lung injury, with volumetric PET parameters serving as
potential biomarkers for assessing lung inflammation after RT. Global lung FDG uptake
after RT for patients with locally advanced NSCLC can be quantified by subtracting the tu-
mor uptake from the total lung FDG uptake using volume-based quantitative FDG PET/CT
parameters such as global lung glycolysis, total lesion glycolysis, and lung parenchyma
mean standardized uptake value [37].

5.4. Magnetic Resonance Imaging

Magnetic resonance imaging (MRI) employs strong magnetic fields instead of X-rays to
generate images, offering a promising alternative for patients who cannot tolerate iodinated
contrast or who wish to minimize their radiation dose. MRI is not currently commonly
used in the assessment of post-radiation changes [38]. MRI is sometimes used following
lung radiotherapy in the evaluation of cardiac toxicity [39]. Recent animal studies suggest
that using MRI following the administration of hyperpolarized noble gases may prove
beneficial in assessing alveolar and metabolic damage in lung tissue [40].

5.5. Radiomics

Radiomics is a quantitative approach to medical imaging that uses advanced math-
ematical analysis to enhance current imaging data. Through this form of artificial intel-
ligence, radiomics can quantify textural information on various imaging modalities [41].
This technique has been applied to help predict radiation-induced injury in a limited
number of tumors, which may provide options for the identification and quantification of
radiation-induced lung injury in the future [42].

6. Clinical Applications and Differential Diagnoses

Clinicians and radiologists grapple with the task of distinguishing between benign
and malignant conditions, particularly in the context of imaging following radiation ther-
apy. Knowledge of the spectrum of expected radiation-induced changes, timelines, and
patterns observed with conventional and high-precision radiotherapy is important to avoid
misinterpretation as infection or tumor recurrence.

6.1. Distinguishing Infection from the Acute Exudative Phase of RILI

Discerning acute post-radiation changes from infection often represents a diagnostic
conundrum, as both conditions may present with ground-glass opacities or consolidations.
However, the temporal evolution of these changes following either conventional or high-
precision radiotherapy can serve as a valuable discriminant. Ground-glass or consolidative
opacities that emerge prior to the completion of radiotherapy suggest infection, rather
than radiation-induced changes. The acute phase of RILI generally demonstrates gradual
onset of ground-glass or consolidative opacities that are confined within the radiation
treatment area, although they may breach anatomic boundaries like pleural fissures. In
distinction, infectious processes, which can also present with ground-glass or consolidative
opacities, develop more rapidly, are usually located outside the radiation treatment area,
and typically respect anatomical borders [9,12].

Tree-in-bud is a pattern of centrilobular bronchial dilatation seen on thin-section chest
CT, and the bronchiolar luminal filling by mucus, pus, fluid, or tumor resembles a budding
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tree. Tree-in-bud opacities are classically described in the setting of infectious processes
(notably, typical and atypical mycobacterial disease) and aspiration [12,43]. In the post-
therapy setting, tree-in-bud opacities are usually due to infection or inflammation, and less
commonly due to central obstructing tumors and tumor emboli.

Cavitation can pose a diagnostic dilemma in the post-therapy setting. Cavitary lesions
can be seen with typical and atypical infectious processes—primary malignancy, as well
as metastasis [12,44]. It is worth noting, however, that radiation therapy, chemotherapy,
targeted therapy, and immunotherapy can result in cavitation, which can be difficult to
delineate from infection or tumor [23] (Figure 11). PET/CT, unfortunately, is of limited
benefit, as the finding can be FDG-avid in tumors and infection/inflammation.
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Figure 11. Acute radiation pneumonitis in a patient treated with concurrent chemotherapy (proton
therapy: 72 Gy, 30 fractions) followed by immunotherapy with durvalumab: (A) PET/CT showing
the FDG-avid primary tumor in the central aspect of the right middle lobe, associated with post-
obstructive pneumonia. (B) Computed dosimetric axial reconstruction obtained for the proton plan,
showing the primary malignancy receiving the maximal isodose. (C) CT 3 months after proton
therapy completion, showing ground-glass and cavitary consolidative opacities adjacent to the
treated primary tumor. A spectrum of radiation injury findings in the acute phase is seen with both
conventional RT and high-precision dose techniques such as proton therapy. When the consolidative
and GG opacities are greater than 5 cm, this is considered diffuse; when they are less than or equal to
5 cm, this is considered patchy.

6.2. Distinguishing Tumor Recurrence from the Chronic Mass-like Pattern of RILI

The interpretation of imaging studies in patients treated with high-precision dose RT
is challenging in the context of response assessment. Historically, the Response Evalua-
tion Criteria in Solid Tumors (RECIST) were the primary framework for assessing tumor
responses to therapy. First published in 2000, and subsequently revised in 2009 (now
referred to as RECIST 1.1), these criteria define the evaluation of tumors following therapy,
with definitions of stable disease, partial response, complete response, and progressive
disease [45,46]. In RECIST 1.1., lung tumors are measured by the long-axis diameter, and
progressive disease is defined as an increase in tumor size/burden of greater than or equal
to 20%. On CT, the mass-like pattern of radiation fibrosis can evolve and show an increase
in size beyond 2 years after RT completion. This increase in size raises suspicion for tumor
recurrence and can meet the criteria for progressive disease [29,47,48].

To address this dilemma, Huang et al. introduced the concept of high-risk features
(HRFs) delineating specific CT imaging features associated with a higher likelihood of
tumor recurrence [10,15] (Table 1). Patient management is based on risk stratification:
low-risk patients with no HRFs can be imaged every 3–6 months for 1 year, after which
an imaging interval of 6–12 months can be considered; intermediate-risk patients with the
presence of 1–2 HRFs can benefit from an FDG PET/CT (if available) and close follow-up;
patients at high risk of recurrence with the presence of more than three HRFs can undergo
biopsy or can proceed directly to salvage treatment (Table 2). The most sensitive and
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specific imaging findings suggesting tumor recurrence include enlargement more than
12 months after the completion of radiotherapy and cephalocaudal growth of more than
5 mm and/or 20% [10]. Other CT findings that are suggestive of tumor recurrence include
loss of air bronchogram, the obliteration of bronchi that were previously aerated, and a
bulging margin or lobulated contour of radiation changes [10,16,27,49,50] (Figure 12).

Table 1. CT findings predictive of local recurrence of malignancy in the radiated lung after SBRT
(adapted from Hanania, AN. Chest 2019, (156): 150) [1].

Enlarging Opacity at the Primary Site

Sequential enlargement

Enlargement 12 months after RT completion

Bulging margins

Linear margin disappearance

Loss of air bronchogram

Craniocaudal growth of ≥5 mm and ≥20%

Table 2. Practical management guidelines to evaluate for local recurrence of malignancy after SBRT.

Risk Level Number of High-Risk Features Management

Low 0 CT every 3 to 6 months for 1 year,
and every 6 to 12 months thereafter

Intermediate 1–2 CT at 3 months or FDG PET/CT

High ≥3 Biopsy or salvage therapy
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Figure 12. Local recurrence of malignancy after IMRT (52.5 Gy, 15 fractions) to the left upper lobe:
(A,B) CT before treatment showing a 1.5 cm left upper nodule (arrow) in (A) and a biopsy-proven
satellite 0.6 cm nodule in the left apex posteriorly (arrow) in (B); metastatic disease to the bone is
not shown. (C) Computed dosimetric axial reconstruction obtained for IMRT planning, showing a
malignancy in the left apex receiving the maximal isodose (56 Gy). (D) CT 1 year after RT showing a
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focal consolidative opacity with traction bronchiectasis, associated with volume loss and architectural
distortion in a scar-like pattern of fibrosis. (E) CT 2 years after RT showing loss of visualization of
the air bronchogram in the area of fibrosis suspicious for tumor recurrence. (F) PET/CT showing
FDG-avid focus within the enlarging opacity at the treated site, suspicious for local tumor recurrence.
Biopsy showed adenocarcinoma. Note that the loss of visualization of air bronchograms, enlarging
opacity at the treated site, and enlargement after 12 months are high-risk features on CT, predictive
of local recurrence.

7. Complications of Lung Radiotherapy

In addition to tumor recurrence, two other complications of radiation therapy for lung
cancer include in situ pulmonary artery thrombosis and radiation recall pneumonitis.

7.1. In Situ Pulmonary Artery Thrombosis

Pulmonary emboli, commonly dislodged from the peripheral venous system, are the
predominant cause of pulmonary artery obstruction. It has been noted, however, that a
variety of alternative processes can promote de novo thrombosis in the pulmonary arteries,
i.e., in situ pulmonary artery thrombosis [51,52]. Some of these entities include abnormal
pulmonary structures (such as a stump thrombus after pneumonectomy or lobectomy),
sickle-cell disease, infection, or trauma [53].

Ahuja et al. reported that in situ pulmonary artery thrombosis can also be seen as a
complication of radiation therapy utilized for the treatment of lung cancer and malignant
pleural mesothelioma. In a cohort of 27 patients, radiation-induced in situ pulmonary
artery thrombosis was commonly solitary (93%), formed an obtuse angle with the vessel
wall (89%), and was non-occlusive (96%). Additionally, all examples were eccentric and
involved pulmonary arteries included in the area of radiation treatment and supplying
the lung with visualized radiation changes [54] (Figure 13). It should be noted that there
was no evidence of pulmonary embolus in any of the patients during follow-up, even in
patients who were not treated with anticoagulation therapy. The time to the diagnosis of in
situ pulmonary thrombosis from the completion of radiation therapy ranged between 53
and 2522 days, with a mean of 675 days [54].
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Figure 14. Radiation recall pneumonitis (RRP): Four years earlier, the patient presented with left 
upper lobe squamous-cell cancer with nodal metastases to the contralateral mediastinum and was 
treated with intensity-modulated radiation therapy (IMRT) (66 Gy, 30 fractions) to the left upper 
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Figure 13. In situ thrombus of the pulmonary artery in a patient treated with IMRT (66 Gy,
30 fractions): (A) PET/CT showing the FDG-avid primary tumor in the central aspect of the right
middle lobe (arrow). (B) Computed dosimetric axial reconstruction obtained for the SBRT plan,
showing the right middle lobe central tumor receiving the maximal isodose (69 Gy). (C) CT with
intravenous contrast 5 years after RT completion, showing an eccentric, non-occlusive thrombus in
the right pulmonary artery (arrow). (D) CT showing radiation fibrosis in the right perihilar region
(arrow). Typical of in situ thrombosis, the pulmonary artery was within the radiation treatment plan
and the supplied lung showed radiation fibrosis.

7.2. Radiation Recall Pneumonitis

Radiation recall refers to an inflammatory reaction that occurs in a previously irra-
diated field after exposure to a systemic agent that can occur weeks, months, or even
years after the completion of radiation therapy [55]. While most cases in the literature are
cutaneous, radiation recall pneumonitis has also been reported [56]. Specifically, radiation
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recall pneumonitis is an acute inflammatory process in the lungs (confined to the previ-
ous radiation treatment field) that occurs after the exposure to a systemic agent, such as
chemotherapy, immunotherapy, targeted therapy, or even vaccinations [55–57] (Figure 14).
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7.2. Radiation Recall Pneumonitis  
Radiation recall refers to an inflammatory reaction that occurs in a previously irra-

diated field after exposure to a systemic agent that can occur weeks, months, or even 
years after the completion of radiation therapy [55]. While most cases in the literature are 
cutaneous, radiation recall pneumonitis has also been reported [56]. Specifically, radia-
tion recall pneumonitis is an acute inflammatory process in the lungs (confined to the 
previous radiation treatment field) that occurs after the exposure to a systemic agent, 
such as chemotherapy, immunotherapy, targeted therapy, or even vaccinations [55–57] 
(Figure 14). 

    
(A) (B) (C) (D) 

Figure 14. Radiation recall pneumonitis (RRP): Four years earlier, the patient presented with left 
upper lobe squamous-cell cancer with nodal metastases to the contralateral mediastinum and was 
treated with intensity-modulated radiation therapy (IMRT) (66 Gy, 30 fractions) to the left upper 
lobe and mediastinum. Two years earlier, the patient presented with a right lower lobe squa-

Figure 14. Radiation recall pneumonitis (RRP): Four years earlier, the patient presented with left
upper lobe squamous-cell cancer with nodal metastases to the contralateral mediastinum and was
treated with intensity-modulated radiation therapy (IMRT) (66 Gy, 30 fractions) to the left upper lobe
and mediastinum. Two years earlier, the patient presented with a right lower lobe squamous-cell
cancer and was treated with IMRT (70 Gy, 10 fractions). (A) Composite computed dosimetric axial
reconstruction showing both IMRT plans. (B) CT image 1 year after completion of the second round
of radiation therapy and before the start of immunotherapy with pembrolizumab, showing bilateral
lower lobe radiation fibrosis posteriorly. (C) CT image when the patient presented with shortness
of breath and cough 5 months after the start of immunotherapy, showing new bilateral airspace
opacities that conform to the radiation treatment plan, consistent with radiation recall pneumonitis;
symptoms improved after steroid therapy and temporarily withholding immunotherapy. (D) CT 2
weeks following steroid tapering, showing pulmonary findings of radiation fibrosis similar to that
from before the start of immunotherapy. RRP refers to inflammation in previously irradiated lung
tissue after exposure to an inciting pharmacological agent (e.g., immunotherapy).

8. Follow-Up Recommendations

For radiologists tasked with accurately interpreting post-radiation therapy imaging,
thorough knowledge of the patient’s radiation therapy type, treatment dates, and adminis-
tered dosages—particularly doses exceeding 20 Gy—is paramount [9]. Radiologists should
also be cognizant of the rising prevalence of high-precision radiation techniques to treat
patients with lung cancer and the spectrum of findings of radiation-induced lung injury
from the acute phase of pneumonitis to the chronic phase of fibrosis [58].

In alignment with the current recommendations, post-radiotherapy follow-up imaging
should include CT scans every 3–6 months following the completion of therapy for the
first year, every 6–12 months for years 1–3, and annually thereafter [10,15]. Suspicious CT
findings can be evaluated with PET/CT imaging, with tissue biopsy of suspicious or per-
sistent abnormalities [7,23,29,59]. These recommendations underscore the importance of a
multidisciplinary approach to post-radiotherapy imaging, ensuring the timely and accurate
identification of potential complications and facilitating patient-centric decision-making.

9. Conclusions

Radiation therapy is important in the treatment of patients with lung cancer. High-
precision dose techniques such as three-dimensional conformal radiotherapy, intensity-
modulated radiation therapy, stereotactic body radiation therapy, four-dimensional con-
formational radiotherapy, and proton therapy allow for the optimal radiation dose to be
delivered to the tumor, improve local disease control, and reduce toxicity to adjacent tissues.
Knowledge of the radiation technique used, radiation treatment plan, and expected tempo-
ral evolution of radiation-induced lung injury, along with patient-specific parameters such
as previous radiation therapy, concurrent chemoradiotherapy, or immunotherapy, is im-
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portant to correctly identify the expected radiological manifestations of radiation-induced
lung injury and differentiate them from tumor recurrence or infection.
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