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Abstract: Background: Machine learning can analyze vast amounts of data and make predictions
for events in the future. Our group created machine learning models for vital sign predictions. To
transport the information of these predictions without numbers and numerical values and make them
easily usable for human caregivers, we aimed to integrate them into the Philips Visual-Patient-avatar,
an avatar-based visualization of patient monitoring. Methods: We conducted a computer-based
simulation study with 70 participants in 3 European university hospitals. We validated the vital
sign prediction visualizations by testing their identification by anesthesiologists and intensivists.
Each prediction visualization consisted of a condition (e.g., low blood pressure) and an urgency (a
visual indication of the timespan in which the condition is expected to occur). To obtain qualitative
user feedback, we also conducted standardized interviews and derived statements that participants
later rated in an online survey. Results: The mixed logistic regression model showed 77.9% (95%
CI 73.2–82.0%) correct identification of prediction visualizations (i.e., condition and urgency both
correctly identified) and 93.8% (95% CI 93.7–93.8%) for conditions only (i.e., without considering
urgencies). A total of 49 out of 70 participants completed the online survey. The online survey
participants agreed that the prediction visualizations were fun to use (32/49, 65.3%), and that they
could imagine working with them in the future (30/49, 61.2%). They also agreed that identifying the
urgencies was difficult (32/49, 65.3%). Conclusions: This study found that care providers correctly
identified >90% of the conditions (i.e., without considering urgencies). The accuracy of identification
decreased when considering urgencies in addition to conditions. Therefore, in future development of
the technology, we will focus on either only displaying conditions (without urgencies) or improving
the visualizations of urgency to enhance usability for human users.

Keywords: avatar; machine learning; monitoring; predictive models; Visual Patient; vital sign predictions

1. Introduction

Vast amounts of data are being generated daily within healthcare, especially in elec-
tronic anesthesia records, where, among other data, continuous patient monitoring data
are stored. The ever-increasing use of this data will fundamentally change and improve the
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way medical care will be practiced in the future [1–4]. A pressing challenge is to adequately
process the data so that caregivers can make evidence-based decisions for the benefit of pa-
tients [1]. Machine learning (ML) can curate and analyze large amounts of data, identify the
underlying logic, and generate models that can accurately recognize a situation or predict a
future state [5,6]. Predictive ML models have already been developed for various fields
of medicine [7–9]. However, a significant gap exists between the number of developed
models, clinically tested applications, and commercially available products [8].

There are several reasons why ML models do not deliver the expected performance in
clinical trials [10,11]. One is a lack of trust of the users in the models [7,12,13]. To increase
trust, clinically meaningful models should be developed with good unbiased data and
should not patronize the users but rather support them in their clinical work [11,14–16].
An integral part of such a clinically meaningful model is the presentation of information
without imposing an additional cognitive load on the user [17]. A decision support tool
that uses a ML model should not lead to alarm fatigue or increased workloads but provide
actionable advice that fits into existing workflows [4,13].

To make the ML models that we developed for vital sign predictions in surgical
patients clinically meaningful and usable, we developed a user-centered, patient avatar-
based graphical representation to visualize vital sign predictions. These visualizations are
an extension to Visual Patient (VP), an avatar-based patient monitoring technology [18].
VP has been available in Europe since 2023 as the Philips Visual-Patient-avatar. Studies
reported that healthcare providers were able to retrieve more vital signs with higher
diagnostic confidence and lower perceived workload when using VP rather than wave-
and number-based monitoring, allowing them to obtain a comprehensive picture of the
patient’s condition more quickly [18,19]. Additionally, care providers positively reviewed
the technology and found it intuitive and easy to learn and use [20].

The project’s objective is to implement vital sign predictions into the VP (provisionally
named VP Predictive). To achieve this goal, the project aims to integrate the front-end—
i.e., the way predictions are presented to the users—with the back-end—i.e., the ML models
calculating the predictions.

In the present study, we report the validation process of the front-end. Specifically,
we aimed to determine how accurately users identify the different vital sign prediction
visualizations after a short educational video. The development and validation process of
the back-end ML models is the subject of a separate study.

2. Methods

A declaration of non-jurisdiction (BASEC Nr. Req-2022-00302) was issued by the
Cantonal Ethics Committee, Zurich, Switzerland. Due to the study’s exemption from the
Human Research Act, ethical approval was not required for the German study centers.
Participation was voluntary and without any financial compensation. All participants
signed a consent for the use of their data. In reporting the study, we followed the Guidelines
for Reporting Simulation Research in Health Care, an extension of the CONSORT and
STROBE statements [21].

2.1. Study Design and Population

We conducted an investigator-initiated, prospective, multi-center, computer-based
simulation study at the University Hospitals of Zurich, Frankfurt, and Wuerzburg. The
study consisted of three parts. First, we validated the prediction visualizations by testing
their identification by physicians. We included senior and resident physicians employed
in the study centers’ anesthesia or intensive care departments according to availability.
Following this part, we invited participants from Frankfurt and Wuerzburg to take part in
face-to-face, standardized interviews. From the interview transcripts, we identified key
topics and derived representative statements. In the third study part, the participants from
all three centers rated these statements on Likert scales.
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2.2. VP and VP Predictive

VP is a user-centered visualization technology specifically developed to improve
situation awareness (Supplementary Materials Video S1). It creates an animated avatar of
the patient to visually display various vital signs according to the real-time conventional
monitoring data.

VP Predictive was developed as an add-on to VP, with the goal of integrating vital sign
predictions into the standard VP. A prediction consists of a condition and an urgency. The
condition signals which vital sign is predicted to change and in which direction (low/high),
while the urgency gives the time horizon in which this change is expected to occur. The
VP Predictive educational video (Supplementary Materials Video S2) and Figure 1 explain
the technology.
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Figure 1. Visual Patient and Visual Patient Predictive. (a) Visual Patient displays vital signs in the
form of colored visualizations; (b) Visual Patient Predictive uses the same visualizations as blank
figures with dashed borders. Images (c–f) show examples where tidal volume (c), bispectral index
(d) and train-of-four ratio (e) are predicted to become high, and oxygen saturation (f) is predicted to
become low, respectively.

2.2.1. Condition

There are 22 condition visualizations, which are based on the original VP visualizations.
These conditions are displayed as blank visualizations with white dashed borders and
superimposed on the VP. The only exception to this display method is oxygen saturation,
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for which a “low” condition is shown by coloring the blood pressure shadow of the original
VP in blue.

2.2.2. Urgency

There are three different urgencies: urgent, intermediate, and non-urgent. For an
urgent prediction, the corresponding condition is shown for 3.5 s every 7 s and flashes
during the display. An intermediate urgency prediction is shown for 3.5 s every 14 s and
does not flash. Finally, a non-urgent prediction is shown for 3.5 s every 28 s and is partially
transparent. This way, a more urgent prediction is displayed more frequently than a less
urgent one. The additional flashing (urgent) and transparency (non-urgent) are designed
to allow users to distinguish the different urgencies upon first viewing.

2.3. Study Procedure

We conducted a computer-based simulation study followed by standardized inter-
views and an online survey.

2.3.1. Part I: Simulation Study

Participants were welcomed into a quiet room. After a short session briefing, and the
completion of a sociodemographic survey, we showed the participants a video explaining
VP (Video S1). Afterward, participants had the opportunity to practice on a Philips Visual-
Patient-avatar simulator for up to 5 min. Afterward, an educational video explaining VP
Predictive was shown (Video S2).

During the simulation, each participant was shown 33 videos. Each video displayed
a standard VP with all vital signs in the normal range, along with an overlaid prediction
visualization containing a single condition and urgency. To provide each participant with a
randomized set of 33 videos and to ensure that each video was equally represented, we
first created randomized sets of 66 videos (3 urgencies × 22 conditions). Then, each set
was split in two (videos 1 to 33 and 34 to 66) and watched in sequence by the participants.
During the videos, the participants were asked to select the condition shown (22 possible
answers) and urgency (3 possible answers). We stopped the video as soon as the participant
had answered, or after one minute at the latest. After the participant had completed all
questions, we played the next video in the set. All data were collected on an Apple iPad
(Apple Inc., Cupertino, CA, USA) using the app iSurvey (Harvestyourdata.org, Wellington,
New Zealand) [22].

2.3.2. Part II: Standardized Interviews

After a short break, we conducted a standardized interview with participants from
Frankfurt and Wuerzburg. The question was as follows: “What do you think about the
VP Predictive visualizations?”. The answers were recorded using an Apple iPhone and
later automatically transcribed using Trint (Trint Limited, London, UK). The transcripts
were then manually checked for accuracy and translated into English using DeepL (DeepL
SE, Cologne, Germany). After manually checking the translation, we divided the text into
individual statements for analysis. Using the template approach, we developed a coding
tree [23]. Two study authors independently coded each statement. Differences in coding
were discussed, and a joint coding per statement was agreed upon.

2.3.3. Part III: Online Survey

Based on the interview results, we created six statements on recurring topics to be
rated using Likert scales in an online survey. This survey was designed using Google Forms
(Google LLC, Mountain View, CA, USA) and sent by email to all participants of study part
I. The survey remained active for three weeks in July–August 2022. Halfway through this
period, a single reminder email was sent.
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2.4. Outcomes
2.4.1. Part I: Simulation Study

We defined correct prediction identification as the primary outcome. If participants
correctly identified both condition and urgency, we counted this as correctly identifying
the prediction. As secondary outcomes, we chose correct condition identification and correct
urgency identification, defined as the correctly identified condition and urgency, respectively.
In addition, we analyzed the 22 conditions and the 3 urgencies individually.

2.4.2. Part II and III: Standardized Interviews and Online Survey

For the standardized interviews, we analyzed the distribution of individual statements
within the topics of the coding tree. For the online survey, we analyzed the distribution
of the answers on the 5-point Likert scale for each statement (from “strongly disagree” to
“strongly agree”).

2.5. Statistical Analysis

For descriptive statistics, we show medians and interquartile ranges for continuous
data and numbers and percentages for categorical data.

2.5.1. Part I: Simulation Study

We used mixed logistic regression models with just an intercept to estimate the correct
prediction, condition, and urgency identification while considering that we had repeated,
non-independent measurements from each study participant. The estimates are given as
percentages with 95% confidence intervals (95% CI). For estimates by condition, we added
the condition information to the aforementioned model. We used a mixed logistic regression
model to see if there was a learning effect by including the number of the respective question
(between 1 and 33). Estimates of this model are given as odds ratios (OR).

2.5.2. Part II and III: Standardized Interviews and Online Survey

In part II of the study, we assessed the agreement of the two coders prior to consensus
by calculating the interrater reliability using Cohen’s Kappa. In part III, we used the
Wilcoxon matched-pairs signed-rank test to evaluate whether the answers significantly
deviated from neutral. We used Microsoft Word, Microsoft Excel version 16.77.1 (Microsoft
Corporation, Redmond, WA, USA), and R version 4.2.0 (R Foundation for Statistical Com-
puting, Vienna, Austria) to manage and analyze our data. We used GraphPad Prism version
9.4.1 (GraphPad Software Inc., San Diego, CA, USA) to generate the figures. We considered
a p-value < 0.05 to be statistically significant.

2.5.3. Sample Size Calculation

To assess the appropriate sample size for the simulation study, we conducted a pilot
study with six participants at the University Hospital Zurich. Correct prediction identifica-
tion was 94.4%. Considering that these participants were already familiar with VP (but did
not know VP Predictive), we calculated the sample size based on a true proportion of 90%.
In this case, 70 participants are needed to construct a 95% CI for an estimated proportion
that extends no more than 10% in either direction.

3. Results

We recruited 70 anesthesiologists and intensive care physicians in April–May 2022.
All participants completed the simulation study. A total of 21 out of the 70 participants
(30.0%) gave an interview, and 49 participants (70.0%) completed the online survey. Table 1
shows the study and participants’ characteristics.
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3.1. Part I: Simulation Study
3.1.1. Correct Prediction Identification

In total, 1716/2310 (74.3%) prediction visualizations (condition and urgency) were cor-
rectly identified. The mixed logistic regression model showed a slightly higher percentage
(77.9%, 95% CI 73.2–82.0%).

Figure 2 shows these results for each condition individually. It is apparent that not all
conditions were identified equally well. The best-identified conditions showed close to 90%
correct prediction identification, whereas a few showed less than 60% correct prediction
identification. The mixed logistic regression model-based estimations tended to be a few
percentage points higher.

Table 1. Participants’ and study characteristics. USZ, University Hospital Zurich; UKW, University
Hospital Wuerzburg; KGU, University Hospital Frankfurt; IQR, interquartile range.

Part I
(Simulation Study)

Part II
(Standardized Interviews)

Part III
(Online Survey)

Participants characteristics

Participants, n 70 21 49

Participants from USZ, n (%) 35 (50) 0 (0)

Participants from UKW, n (%) 18 (26) 15 (71)

Participants from KGU, n (%) 17 (24) 6 (29)

Gender female, n (%) 42 (60) 15 (71)

Resident physicians, n (%) 56 (80) 17 (81) 34 (69)

Staff physicians, n (%) 14 (20) 4 (19) 15 (31)

Age (years), median (IQR) 31 (28–35) 33 (27.5–35.5) 34 (28–37)

Work experience (years), median (IQR) 3.5 (1–6) 3 (1.5–8) 4 (2–7)

Previous experience with Visual Patient, n (%) 19 (27) 4 (19)

Study characteristics

Different conditions studied, n 22

Different urgencies studied, n 3

Different predictions studied, n 66

Randomly selected predictions per participant, n 33
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Figure 2. Correct prediction identification (correctly identified condition and urgency) for each
condition individually: (a) the percentages of correct prediction identification, (b) the estimates based
on the mixed logistic regression model. ST-deviation, ST-segment deviation; TOF, train-of-four ratio;
Temp, body temperature; etCO2, end-expiratory carbon dioxide concentration; BIS, bispectral index;
TV, tidal volume; BP, blood pressure; SpO2, oxygen saturation; RR, respiratory rate; HR, heart rate;
CVP, central venous pressure; PR, pulse rate (vital signs are color-coded for better readability).

3.1.2. Correct Condition Identification

Considering conditions alone (without urgencies), 2117/2310 (91.7%) were correctly
identified. The mixed logistic regression model showed an accuracy of 93.8% (95% CI 93.7–
93.8%). Figure 3 shows the correct condition identification for each condition individually.
Most conditions were very well identified, with two exceptions: low pulse rate (68.6%) and
low respiratory rate (58.1%).
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Figure 3. Correct condition identification for each condition individually. ST-deviation, ST-segment
deviation; CVP, central venous pressure; BP, blood pressure; Temp, body temperature; SpO2, oxygen
saturation; TV, tidal volume; TOF, train-of-four ratio; BIS, bispectral index; HR, heart rate; etCO2,
end-expiratory carbon dioxide concentration; RR, respiratory rate; PR, pulse rate (vital signs are
color-coded for better readability).

3.1.3. Correct Urgency Identification

Urgency (without condition) was correctly identified in 1855/2310 (80.3%) cases. The
mixed logistic regression model accuracy was 84.0% (95% CI 80.2–87.1%). Considering
each urgency individually, the urgent one was correctly identified 629/770 (81.7%) times,
the intermediate one 577/770 (74.9%) times, and the non-urgent one 649/770 (84.3%) times.

3.1.4. Learning Effect

The mixed logistic regression model showed a significant learning effect on correct
prediction identification, with the odds of correctly identifying the predictions increasing
by 3% for each additional prediction shown (OR 1.03, 95% CI 1.02–1.04, p < 0.001).

3.2. Part II: Standardized Interviews

From the transcripts of the interviews, we identified 126 different statements. At first
coding, the two independent raters agreed on the classification of 83.3% of the statements
(105/126), with a Cohen’s Kappa of 0.8. Most of the positive comments considered VP
Predictive to be intuitive. Negative comments mainly concerned identification difficulties,
especially with the different urgencies. Several participants noted a learning effect during the
session or believed an additional learning effect could be achieved by using VP Predictive
more frequently. Figure 4 shows the coding tree in detail. Note that 15.1% of the statements
were not codable; these primarily represented statements not relevant to the posed question.
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Figure 4. Distribution of the statements within the topics of the coding tree. We show percentages
and numbers.

3.3. Part III: Online Survey

The questionnaire was completed by 70.0% of the invited participants (49/70). Most
of the participants agreed or strongly agreed that VP Predictive was fun to use (32/49,
65.3%) and intuitive (25/49, 51.0%); many of them also agreed or strongly agreed that
it was eye-catching (23/49, 46.9%). Almost two-thirds (32/49, 65.3%) agreed or strongly
agreed that the urgency identification was difficult. Nevertheless, most participants (31/49,
63.3%) agreed or strongly agreed that they had a steep learning curve during the study
session, and only very few (5/49, 10.2%) disagreed or strongly disagreed that they could
imagine working with VP Predictive in the future. Figure 5 shows these results in detail.
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4. Discussion

We sought to investigate VP Predictive. This technology is an extension of the original
VP designed to easily represent vital sign predictions with little cognitive load. Participants
correctly identified both condition and urgency in the prediction visualizations in almost
three quarters of the cases (74.3%). The majority found VP Predictive to be enjoyable to use,
with 65.3% rating it as fun and only 16.3% considering it not intuitive.

In this study, correct condition identification was high (91.7%). Regarding the con-
ditions with the lowest percentages of correct identification, i.e., low pulse rate and low
respiratory rate, we believe the reason for this result lies in the short display time (3.5 s)
combined with the slow movement of the corresponding visualizations. In this short time
frame, the visualizations, which move very slowly, perform less than a complete cycle,
making users probably less confident about what they saw. We, therefore, believe that a
longer display time may solve this problem.

Compared to correct condition identification, correct prediction identification (i.e., cor-
rect identification of both condition and urgency) was not an equally high percentage
(74.3%). This finding is also in line with the participants’ subjectively perceived difficulty
in identifying the different urgencies, as expressed during the interviews and in the survey.
The different urgencies aimed to provide vital sign predictions with an expected occurrence
time. For example, the prediction for low blood pressure could be displayed with three
different urgencies (e.g., 1, 5, or 20 min). The differences in the percentages of correct iden-
tification become understandable when considering that the identification of conditions
alone involved the interpretation of less visual information than when additional urgencies
also needed to be identified.
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Interestingly, the primary outcome result in the pilot study differed significantly from
the one in the actual study (pilot 94.4% vs. study 74.3% correct prediction identification).
One possible explanation for this difference is that the pilot study cohort was already
familiar with the original VP visualizations (although not with the prediction visualizations)
and, thus, had fewer new things to learn before the study. In comparison, the majority
of the actual study participants were encountering VP for the first time. This raises the
question of whether a longer familiarization period could have improved the percentage of
correct urgency identification, and, thus, also that of correct prediction identification.

This hypothesis is supported by the learning effect that we confirmed quantitatively
and from the participants’ feedback. Intuitiveness and learning ease are essential for
accepting new technologies and are crucial for their successful clinical introduction [20].
In our case, these requirements seem to have been achieved, as the majority of the survey
participants could imagine working with VP Predictive in the future.

Considering our study results, we believe that—with some modifications—VP Predic-
tive may have the potential to display vital sign predictions generated by ML models in
a way that healthcare professionals can understand and translate into direct actions. VP
Predictive is intended to guide users’ attention. When alerted by a prediction, caregivers
should ultimately consider all available information and decide on an appropriate response
(e.g., fluids or vasopressors in case of a low blood pressure prediction). However, like any
new technology, it needs to be learned and trained before it can be integrated into practice.
VPP can probably simplify this process by intuitively displaying predictions in the form of
visual representations, compared to using numbers or curves. On the other hand, this can
also lead to the loss of potentially useful information.

Strengths and Limitations

First, the conditions under which the study took place differ from the clinical reality,
in which many more factors are present [24]. Second, participants evaluated only videos
in which the VP was shown in a physiological state and in which exactly one prediction
was shown at a time. Such scenarios differ from the more complex clinical reality, so
studies in more realistic settings will be needed to evaluate the true clinical value (e.g., a
high-fidelity simulation study) [25]. Third, the standardized interviews were conducted
only with willing participants from Frankfurt and Wuerburg, and the online survey was
not completed by all participants, thus, reducing the sample size of these two study parts
compared to that of the simulation study.

At the same time, a computer-based study also has advantages over a real-life study.
First, it allows completely new technologies to be tested without patient risks [26]. It also
standardizes the study conditions, an essential prerequisite for minimizing possible bias
due to external disturbances.

Another strength of our study is that it was multicenter and multinational, allowing
the results to be generalized to a certain extent. Based on the pilot study, the trial was
adequately powered; however, the participants’ selection was based on availability during
working hours and, therefore, was not random.

5. Conclusions

Despite promising results and feedback, the current Visual Patient Predictive visual-
izations need some modifications followed by further high-fidelity simulation studies to
test its suitability for the intended task of displaying vital sign predictions to healthcare
providers in an easily understandable way. In this study, care providers correctly identified
>90% of the conditions (i.e., without considering urgencies). The percentage of correct
identification decreased when considering urgencies in addition to conditions. Therefore,
in future development of the technology, we will focus on either only displaying conditions
(without urgencies) or on improving the visualizations of urgency to enhance usability for
human users.
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