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Abstract: Background: Carpal tunnel syndrome (CTS) is the most common entrapment neuropathy
for which ultrasound imaging has recently emerged as a valuable diagnostic tool. This meta-analysis
aims to investigate the role of ultrasound radiomics in the diagnosis of CTS and compare it with other
diagnostic approaches. Methods: We conducted a comprehensive search of electronic databases
from inception to September 2023. The included studies were assessed for quality using the Quality
Assessment Tool for Diagnostic Accuracy Studies. The primary outcome was the diagnostic per-
formance of ultrasound radiomics compared to radiologist evaluation for diagnosing CTS. Results:
Our meta-analysis included five observational studies comprising 840 participants. In the context
of radiologist evaluation, the combined statistics for sensitivity, specificity, and diagnostic odds
ratio were 0.78 (95% confidence interval (CI), 0.71 to 0.83), 0.72 (95% CI, 0.59 to 0.81), and 9 (95%
CI, 5 to 15), respectively. In contrast, the ultrasound radiomics training mode yielded a combined
sensitivity of 0.88 (95% CI, 0.85 to 0.91), a specificity of 0.88 (95% CI, 0.84 to 0.92), and a diagnostic
odds ratio of 58 (95% CI, 38 to 87). Similarly, the ultrasound radiomics testing mode demonstrated an
aggregated sensitivity of 0.85 (95% CI, 0.78 to 0.89), a specificity of 0.80 (95% CI, 0.73 to 0.85), and a
diagnostic odds ratio of 22 (95% CI, 12 to 41). Conclusions: In contrast to assessments by radiologists,
ultrasound radiomics exhibited superior diagnostic performance in detecting CTS. Furthermore,
there was minimal variability in the diagnostic accuracy between the training and testing sets of
ultrasound radiomics, highlighting its potential as a robust diagnostic tool in CTS.

Keywords: median nerve; wrist; ultrasonography; artificial intelligence; machine learning

1. Introduction

Ultrasound radiomics stands as a cutting-edge medical imaging methodology, focus-
ing on the meticulous extraction and analyses of an extensive array of quantitative features
sourced from ultrasound images [1]. These features are systematically acquired from the
images, aiming to encapsulate intricate nuances, patterns, and textures that may elude the
capabilities of human visual perception. For instance, its efficacy for predicting microvas-
cular invasion in hepatocellular carcinoma [2], forecasting the lymphovascular invasion in
patients with invasive breast cancer [3], and envisaging the likelihood of extensive cervical
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lymph node metastasis in papillary thyroid carcinoma have been demonstrated [4]. Here-
with, ultrasound radiomics presents some challenges as well. These include the imperative
need for standardized image acquisition protocols, the discerning selection of pertinent
features, and the establishment of robust analytical pipelines. The domain of radiomics
holds the potential to confer a multitude of advantages upon image processing in the
realm of medical imaging [5]. These advantages encompass the mitigation of subjectivity
inherent in manual image interpretation and the embrace of a data-driven approach. Such
an approach possesses the capability to unveil latent patterns, correlations, and associations
concealed within imaging data.

Carpal tunnel syndrome (CTS) stands as the most prevalent entrapment neuropathy,
with reported prevalence rate of 14.4% in the general population [6]. It is paramount not
to underestimate the disease burden in CTS, particularly among individuals of working
age. Previous surveys have illuminated the adverse outcomes experienced by claimants,
including job changes and work cessation coupled with time loss due to CTS [7]. While
non-surgical and surgical approaches alike have evolved in the treatment of CTS, the
crux of the matter lies in the diagnostic accuracy. Electrophysiological investigations
conventionally serve as the gold standard for diagnosing CTS. Patient discomfort during
these examinations should not be disregarded though.

In recent years, the utility of ultrasound in assessing entrapment neuropathies has
garnered recognition [8], and its diagnostic accuracy in comparison to electrophysiological
studies has been extensively explored. A spectrum of ultrasound modalities has been
employed in diagnosing CTS, ranging from traditional grayscale imaging [9] to cutting-
edge sonoelastography [10]. Notably, there is a growing body of research pertaining to
ultrasound radiomics for CTS diagnosis. The potential benefit of ultrasound radiomics in
diagnosing CTS lies in its capacity to extract and analyze intricate image features, thereby
providing a more detailed and objective assessment of the condition when compared
to the sole estimation of the nerve’s cross-section or shape. Due to the lack of previous
meta-analyses on this subject, our objective was to investigate the diagnostic accuracy of
ultrasound radiomics in detecting CTS and to compare it with other ultrasound diagnostic
approaches. The meta-analysis would aid in validating whether radiomics could improve
the diagnostic efficacy of standard ultrasound imaging for assessing CTS, thereby making
a significant contribution to the field of neuromuscular pain medicine.

2. Methods
2.1. Protocol Registration

This meta-analysis adhered to the PRISMA 2020 guidelines (Table S1) and was preceded
by the registration of the study protocol on inplasy.com accessed on 20 September 2023 under
registration number (INPLASY202390069).

2.2. Search Strategy

To locate potentially eligible research articles, we conducted a systematic search
across three electronic databases, namely PubMed, Embase, and Web of Science (from
their inception to September 2023). The search criteria included the following keywords:
(“radiomics” OR “radiomic” OR “ultrasound radiomics”) AND (“carpal tunnel syndrome”
OR “median nerve” OR “neuropathy” OR “nerve”). We also reviewed the reference lists
of the located articles by hand to discover any additional relevant studies. Importantly,
this search was carried out without any language restriction. Furthermore, we explored
ClinicalTrials.gov to retrieve unpublished data from ongoing trials. For a comprehensive
description of the search strategy (Table S2).

2.3. Inclusion and Exclusion Criteria

The PICO (population, intervention, comparison, and outcome) question was struc-
tured in the following manner: (1) Population: Individuals diagnosed with CTS; (2) Inter-
vention: Application of ultrasound radiomics; (3) Comparison: Evaluation of ultrasound
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imaging for the diagnosis of CTS by radiologists; and (4) Outcome: Assessment of diagnos-
tic performance indicators, such as sensitivity and specificity. In the context, ultrasound
radiomics is a quantitative and data-driven approach that involves extracting and analyzing
a wide range of features from ultrasound images to provide valuable insights into tissue
characteristics and potential disease markers. Furthermore, in our mete-analysis, we did
not specify any specific types of ultrasound radiomics or radiologist’s evaluation.

Our selection criteria encompassed clinical studies centered on the utilization of ultra-
sound radiomics for the diagnosis of CTS. We excluded articles that employed ultrasound
radiomics not for diagnostic purposes or those that exclusively delved into deep learning
techniques without referencing radiomics. Additionally, our exclusion criteria comprised
case reports, letters, editorials, commentaries, posters, and unpublished articles.

To ensure the rigor of our review process, two independent authors, W.-T.W. and
T.-Y.L., initially conducted an evaluation of the titles and abstracts of the papers. Eligible
articles underwent a comprehensive examination in their entirety to confirm their alignment
with all the stipulated inclusion and exclusion criteria. The data extraction was performed
independently by two authors. In the initial stage of data extraction, strict consistency
was not mandated. However, in cases where inconsistencies arose regarding specific
items, these were resolved through discussion between the two authors. Additionally, any
unresolved discrepancies were reported to the corresponding author for a final decision. In
the event of missing or incomplete data, our approach would involve reaching out to the
corresponding author of the referenced paper. Should we not receive a response from the
corresponding authors, we would document this situation in Supplementary tables.

2.4. Quality Assessment

Two independent authors assessed the study quality using the Quality Assessment of
Diagnostic Accuracy Studies (QUADAS)-2 tool [11], which contains four critical domains:
(1) patient selection, (2) index test, (3) reference standard, and (4) flow and timing of the
primary studies integrated into the meta-analysis. In each of these domains, the potential
for bias was classified as high, low, or unclear. Discrepancies in the quality assessment
were resolved through a consensus-based approach, mirroring the procedure followed for
data extraction. It is noteworthy that the outcome of quality assessment did not influence
the decision to include or exclude a particular study in this meta-analysis. Instead, the
determination regarding the inclusion of an article was made based on the pre-established
inclusion and exclusion criteria.

2.5. Statistical Analysis

In conducting our statistical analyses, Stata software (StataCorp 2015, Stata Statistical
Software: Release 14, StataCorp LP, College Station, TX, USA) was employed. Statistical
significance was assumed when the p-value fell below the threshold of 0.05. As the primary
objective of this study was to evaluate the efficacy of ultrasound radiomics or radiologist’s
evaluation in diagnosing CTS, sensitivity, specificity, and diagnostic odds ratio were an-
alyzed using a random-effects model. Sensitivity assesses the diagnostic test’s capacity
to accurately detect individuals, such as those assessed using ultrasound radiomics or
radiologist’s evaluation, who have a specific condition or disease, like the presence of CTS.
It quantifies the proportion of true positive results among all individuals who genuinely
have the condition. In contrast, specificity gauges the test’s ability to correctly identify
individuals without the condition, indicating the proportion of true negative results among
all individuals who are indeed free of the condition.

The data chosen for consolidation in each study comprised results demonstrating
the highest diagnostic performance within their particular category. For instance, when
assessing diagnostic performance (evaluated via the area under the Receiver Operating
Characteristic curve analysis) in the context of radiologist evaluations, if Radiologist A
outperformed Radiologist B, the dataset from Radiologist A was selected for further anal-
ysis. To gauge the diagnostic performance, summary receiver operating characteristics
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(sROC) analysis was employed to determine the area under the curve (AUC). Additionally,
heterogeneity was assessed using I2 statistics, considering significant heterogeneity when
I2 exceeded 50% [12]. To address the potential for publication bias, the Deeks’ funnel plot
asymmetry test was conducted [13].

3. Results
3.1. Literature Search

The search identified 109 publications. After reading their title/abstract, 62 articles
including the duplicates were discarded. Full texts of the remaining 10 studies were then
assessed carefully. An additional five articles were excluded for the following reasons:
one focused on using magnetic resonance imaging for characterizing CTS [14], another
analyzed the optic nerve [15], one targeted nerve block [16], one emphasized differentiating
demyelinating peripheral nerve neuropathy [17], and one aimed to predict facial nerve
function in acoustic neuroma patients [18] (Table S3). A total of 5 studies were included in
the final quantitative analysis. The diagram of the literature search is presented in Figure 1,
whereas the details of data extraction from the included trials are listed in Table 1.
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Table 1. Characteristics of the included studies.

Author, Year Country Study Type
Mean Age of
Participants

(CTS/non-CTS)

% of Female
Participants

(CTS/non-CTS)

Ultrasound
Machine/Transducer Software Hyperparameter

Model for
Hyperparameter

Selections

Faeghi et al.,
2021 [19] Iran Prospective 51.93/50.28 85/84

AixPlorer
Ultimate/5–18 MHz

linear-array probe

MATLAB (version
R2019a,

MathWorks Inc.)

Histogram, AR model gradient, HOG, Gabor,
wavelet, GLRLM, GLCM, LBP SVM model

Lyu et al.,
2023 a [20] China Retrospective 55.08/54.13 80/80 NA/7–15 MHz

linear probe ITK-SNAP 3.8

Maximum diameter, sphericity, entropy,
median, joint entropy, contrast, correlation,

short run low gray level emphasis, gray level
non-uniformity, run entropy

Regression model

Lyu et al.,
2023 b [21] China Retrospective 53.41/54.23 84/86 GE Vivid E9/15 MHz

linear probe
Novo Ultrasound Kit

(NUK)

Elongation, major axis length, maximum
diameter, mesh surface, minor axis length,

perimeter, perimeter surface ratio, pixel
surface, sphericity, energy, total energy,

entropy, 10 percentile, 90 percentile, maximum,
minimum, mean, median, robust mean
absolute deviation, root mean squared,

skewness, kurtosis, uniformity, variance

Forest model

Lyu et al.,
2023 c [22] China Retrospective 58.70/55.78 77/73 NA/15 MHz

linear probe ITK-SNAP 3.8

Sphericity, cluster prominence, short run low
gray level emphasis, run entropy, long run

high gray level emphasis, large area high gray
level emphasis, gray level non uniformity,

median, small area low gray level emphasis,
size zone non uniformity, low gray level zone

emphasis, size zone non uniformity
normalized, kurtosis, major axis length

Regression model

Mohammadi et al.,
2023 [23]

Iran and
Colombia Prospective 56.35/53.62 84/84

First center: AixPlorer
Ultimate/12–18 MHz

linear probe
Second center: Min-
dray MX7/15 MHz

linear probe

Not mentioned 1000 deep radiomic features extracted by deep
learning (SqueezeNet)

SVM model; SGD model;
KNN model; GradBoost
model; RForest model

NBayes model; LogReg
model; AdaBoost model

DTree model

AR: autoregressive, HOG: histogram of oriented gradients, GLRLM: gray-level run-length matrix, GLCM: gray-level co-occurrence matrix, LBP: local binary patterns. SVM: support
vector machine, NA: not available, SGD: stochastic gradient descent, KNN: k-nearest neighbors, GradBoost: gradient boosting, RForest: random forest, NBayes: naive Bayes, LogReg:
logistic regression, AdaBoost: adaptive boosting, DTree: decision tree. Lyu et al., 2023, a: Application of ultrasound images-based radiomics in carpal tunnel syndrome: without
measuring the median nerve cross-sectional area Lyu et al., 2023, b: ultrasound-based radiomics in the diagnosis of carpal tunnel syndrome: The influence of regions of interest
delineation method on mode Lyu et al., 2023, c: The application of ultrasound image-based radiomics in the diagnosis of mild carpal tunnel syndrome.
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3.2. Study Characteristics

The included studies involved a collective of approximately 840 participants. Of these
participants, 1398 wrists underwent related analyses, and 718 writs were diagnosed with
CTS. Diagnostic confirmation relied on electrophysiological assessments conducted in
accordance with the guidelines set forth by the American Association of Neuromuscular
and Electrodiagnostic Medicine [24]. The research flow of ultrasound radiomics in most
included studies is presented in Figure 2.
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Furthermore, three [19,20,23] of these studies provided specific protocols for radiol-
ogists to evaluate the quality of median nerves, e.g., assessing nerve honeycomb pattern
and echogenicity. In the context of these studies, radiomics features were extracted using
MATLAB software (version R2019a, MathWorks Inc., Natick, MA, USA), Python, and
Novo Ultrasound Kit (GE Institute of Precision Medicine, IPM) software, v. 3.12.0. The
number of radiomic features analyzed in the included studies spanned from 10 to 369.
When it comes to predictive models for CTS, all five studies employed machine learning
techniques, with one study incorporating an additional deep learning approach. The ma-
chine learning for selection of hyperparameters encompassed various algorithms, such as
support vector machines, regression models, random forests, K-nearest neighbors (KNN),
and Bayesian methods. One of the included studies [23] utilized a deep learning model
consisting of SqueezeNet.

It is worth noting that three of the included studies were conducted by the same
research group. Their initial study [21] aimed to compare the impact of changes as regards
the setting of region of interest setting (i.e., inclusion vs. exclusion of the epineurium)
on the diagnostic performance of ultrasound radiomics. In their subsequent study [22],
they explored the potential application of ultrasound radiomics in diagnosing mild CTS.
Finally, their third study [20] focused on emphasizing the importance of utilizing specific
characteristics of ultrasonic images for diagnosing CTS, without the need to measure their
cross-sectional area.

3.3. Quality Assessment

Table 2 shows the evaluation of methodological quality. Concerning the seven criteria
in the QUADAS-2 tool, two studies [21,24] did not meet the criteria for assessing the risk of
bias related to flow and timing. Only three studies [20,22,23] clearly defined a specific time
interval between the electrodiagnostic test and the ultrasound examination. In three studies
conducted by Lyu et al. [21,23,24], there was a lack of specification regarding exclusion
criteria, which raised concerns about the applicability of their patient selection process.
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Table 2. Methodological quality of the included studies assessed by QUADAS-2.

Risk of Bias Applicability Concerns
Author, Year Patient

Selection Index Text Reference
Standard

Flow and
Timing

Patient
Selection Index Text Reference

Standard

Faeghi et al., 2021 [19] Low Low Low Low Low Low Low

Lyu et al., 2023 a [20] Low Low Low High High Low Low

Lyu et al., 2023 b [21] Low Low Low Low High Low Low

Lyu et al., 2023 c [22] Low Low Low High High Low Low

Mohammadi et al., 2023 [23] Low Low Low Low Low Low Low

QUADAS, Quality Assessment of Diagnostic Accuracy Studies. Lyu et al., 2023, a: application of ultrasound
images-based radiomics in carpal tunnel syndrome: without measuring the median nerve cross-sectional area.
Lyu et al., 2023, b: ultrasound-based radiomics in the diagnosis of carpal tunnel syndrome: The influence of
regions of interest delineation method on mode. Lyu et al., 2023 c: The application of ultrasound image-based
radiomics in the diagnosis of mild carpal tunnel syndrome.

3.4. Diagnostic Performance

In the context of the radiologist evaluation, the collective statistics for sensitivity,
specificity, and diagnostic odds ratio were as follows: 0.78 (95% CI, 0.71 to 0.83), 0.72 (95%
CI, 0.59 to 0.81), and 9 (95% CI, 5 to 15), respectively (Figure 3A). The AUC obtained from
the sROC curve analysis was 0.82 (95% CI, 0.78–0.85) (Figure 4A). Additionally, the Deeks’
funnel plot asymmetry test produced non-significant results, indicating the absence of
substantial evidence for publication bias (p = 0.48) (Figure 5A).

Regarding the ultrasound radiomics training mode, the combined sensitivity, speci-
ficity, and diagnostic odds ratio were as follows: 0.88 (95% CI, 0.85 to 0.91), 0.88 (95% CI,
0.84 to 0.92), and 58 (95% CI, 38 to 87), respectively (Figure 3B). The AUC from the summary
receiver sROC curve analysis was calculated to be 0.94 (95% CI, 0.91–0.96) (Figure 4B).
Furthermore, the Deeks’ funnel plot asymmetry test generated non-significant results,
suggesting the absence of substantial evidence of publication bias (p = 0.90) (Figure 5C).

Concerning the ultrasound radiomics testing mode, the aggregated sensitivity, speci-
ficity, and diagnostic odds ratio were as follows: 0.85 (95% CI, 0.78 to 0.89), 0.80 (95% CI,
0.73 to 0.85), and 22 (95% CI, 12 to 41), respectively (Figure 3C). The AUC derived from
the summary receiver sROC curve analysis was determined to be 0.89 (95% CI, 0.85–0.91)
(Figure 4C). Additionally, the Deeks’ funnel plot asymmetry test yielded non-significant
results, indicating no substantial evidence of publication bias (p = 0.79) (Figure 5C).
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4. Discussion

Our research stood as a pioneering effort in the field of neuromuscular ultrasound,
as it represented one of the initial meta-analyses aimed at evaluating the effectiveness of
ultrasound radiomics in diagnosing CTS. This work not only added an original dimen-
sion to the field but also addressed a critical gap in the utilization of ultrasound for CTS
diagnosis. Significantly, our findings indicated that ultrasound radiomics outperformed
assessments conducted by radiologists, underscoring its potential as a valuable diagnostic
tool. Moreover, our research highlighted the remarkable consistency in diagnostic per-
formance between the training and testing sets of ultrasound radiomics, reinforcing the
method’s robustness and suitability for clinical applications in the realm of CTS diagnosis.

As addressed by a previous umbrella review [25], ultrasound has found place in the
diagnosis of CTS. The pertinent ultrasonographic characteristics embrace nerve enlarge-
ment proximal to the compression site, flattening of the median nerve at the compression
site, an increased hypoechoic portion due to elevated fluid content within the nerve, loss
of fascicular pattern due to disruption of the internal nerve architecture, and increased
vascularity as a sign of inflammation [26,27]. Among all these signs, the best and clinically
useful indicator is the nerve cross-sectional area (CSA) measurement, using a cut-off value
of 9–10.5 mm2 [25]. However, in patients with mild or chronic CTS, enlargement of the
nerve cross-section may be less significant. In those cases, physicians heavily rely on the
nerve’s shape or echotexture for the diagnosis. However, echotexture is subjective and
difficult to standardize. Therefore, radiomics [1], which allows the extraction of various
optic features from a given image, has been developed for the evaluation of nerve quality
as well as the determination of entrapment neuropathy.

A plethora of multidimensional radiometric features can be extracted from the pre-
sented images, far surpassing the capabilities of human visual perception. For instance,
utilizing a common MATLAB module [28], we can harness the histogram to glean insights
into the distribution of gray-level intensities. Additionally, the autoregressive model de-
ciphers image texture by analyzing relationships between neighboring pixels, while the
gradient feature captures variations in pixel intensities. The histogram of oriented gradients
provides data about gradient occurrences in specific orientations, and the Gabor feature
extracts frequency details from designated image directions. Wavelet analysis measures
energy across sub-band images within specific high- and low-frequency channels, while the
gray-level run-length matrix (GRLM) sheds light on pixel courses with identical intensity
in specific directions. The gray-level co-occurrence matrix (GLCM) visually stands for
pixel pair occurrences with specific intensities and directions. Lastly, local binary patterns
(LBP) assess pixel intensity inequalities within two distinct neighborhood sizes. These
quantitative features not only uncover intricate details beyond human perception but also
facilitate standardization and comparison. This quantitative advantage likely underpins
why ultrasound radiomics outperformed radiologist evaluation, which rely solely on visual
assessment, in our meta-analysis.

During our review, we observed that the choice of the region of interest significantly
impacts diagnostic performance. Lyu et al. [21] conducted a comparative analysis be-
tween the two methods, i.e., including and excluding the epineurium, where the latter
demonstrated superior diagnostic accuracy. There are several factors that can explain these
findings. First, the boundary between the epineurium and the interior nerve bundles was
found to be clearer than the demarcation between the epineurium and exterior connective
tissues. This clarity facilitates the standardization of nerve border delineation, leading
to improved reliability across different investigators. Second, the primary sonographic
pathologies of median nerves in CTS typically involve changes in the nerve fascicles [29].
Thickened epineurium is predominantly observed in cases of chronic CTS [8]. Conse-
quently, including the epineurium in radiomic analysis provides unnecessary information
during comparisons, which, in turn, adversely affects the diagnostic accuracy.

In the context of hyperparameter selection, our meta-analysis has identified various
models, but the Support Vector Machine (SVM) emerged as the model demonstrating the
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most favorable diagnostic performance [30]. An SVM is a supervised machine learning
model employed for both classification and regression tasks. It has a well-deserved reputa-
tion for its versatility and robustness across diverse applications, encompassing tasks such
as image and text classification. The primary objective of an SVM is to discern an optimal
hyperplane capable of effectively separating data points belonging to distinct classes while
maximizing the margin between them. However, it is important to acknowledge that
SVM often requires meticulous parameter tuning and can pose computational challenges,
particularly when dealing with extensive datasets.

Another concern lies in the selection of multiple image features in radiomics, which
can potentially contribute to model overfitting. Model overfitting is a common challenge in
machine learning and statistical modeling, characterized by the model learning the training
data too intricately. This leads to the model capturing not only underlying patterns and
relationships but also noise and random fluctuations present in the data. Notably, the
included studies in our analysis have implemented crucial strategies to mitigate overfitting.
In this context, it is important to reiterate that the training mode is primarily focused on
model development using a specific dataset, while the testing mode is geared towards
assessing the model’s performance on new, unseen data, thereby evaluating its reliability
and generalizability in clinical practice. For instance, they have employed techniques like
the Minimum Redundancy Maximum Relevance method [31], which aims to maximize
the correlation between features and CTS while minimizing the correlation between fea-
tures and asymptomatic participants. These measures contribute to a more robust model.
Furthermore, our meta-analysis has demonstrated that the diagnostic performance on the
testing data is comparable to that on the training data, affirming the effectiveness of these
efforts in preventing overfitting.

We need to acknowledge several limitations of our study. First, our inclusion criteria
led to the incorporation of only five studies, with three of them being conducted by the
same research group. Given the possibility of overlapping patient populations within these
studies, the limited diversity in our dataset may have implications for the generalizability
of our results. Second, manual selection of the region of interest was required in most of
the included studies. This manual selection process raises concerns about standardization
across different investigators. In the future, these limitations could potentially be addressed
by implementing automatic segmentation methods using artificial intelligence [32]. Third,
none of the included studies compared the diagnostic performance of ultrasound radiomics
with the simpler measurement of nerve CSA. Indeed, CSA measurement has been estab-
lished as a valuable ultrasound indicator for CTS. Therefore, future research should focus
on conducting comparative studies between ultrasound radiomics and CSA measurements
to better understand their relative effectiveness. Fourth, the participants’ age, sex, body
mass index, and CTS severity could potentially influence the presentation of ultrasound
images of the median nerve and impact diagnostic accuracy. However, it is essential to note
that these details could not be sourced from the reviewed articles, and we acknowledge this
as a limitation of our meta-analysis. Fifth, the available statistical test to detect publication
bias in diagnostic meta-analysis, conducted through the ‘midas’ command using STATA,
is the Deeks’ funnel plot asymmetry test. This test may have limitations due to its low
power and susceptibility to false positives. It is essential to note that we did not utilize
trim-and-fill analysis or Egger’s test, as these statistical methods were not compatible with
the statistical approach employed in our study. Sixth, our evaluation of study quality
unveiled a notable concern. Specifically, the examination of three studies conducted by
Lyu et al. [21,23,24], indicated a lack of specification regarding their exclusion criteria. This
omission raised significant questions about the transparency and applicability of their
patient selection process. Moreover, there is a possibility that these three studies relied on
the same dataset for their analyses. In light of these factors, it is prudent to exercise caution
when interpreting the results obtained from our meta-analysis.



Diagnostics 2023, 13, 3280 13 of 14

5. Conclusions

In contrast to assessments by radiologists, ultrasound radiomics displayed superior
diagnostic performance in detecting CTS. Further, there seems to be little fluctuation in the
diagnostic accuracy between the training and testing sets of ultrasound radiomics. Looking
forward, there is exciting potential for improving the workflow of radiomics by incorporat-
ing automated segmentation techniques driven by artificial intelligence. In the future, it is
essential to prioritize conducting comparative studies between ultrasound radiomics and
CSA measurements to gain more profound understanding of their respective performance.
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