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Abstract: Marfan syndrome (MFS) is an autosomal-dominant multisystem connective tissue disorder
that is based on mutations in the FBN1 gene and variably affects different organs, including the heart.
In this study, we investigated cardiac function with a focus on the left atrium (LA) in a relatively large
cohort of patients with MFS. After screening of 1165 patients that had been examined in our center
between 2016 and 2020, 231 adult MFS patients with and without aortic operation were included
in our study and compared to a healthy control group (n = 106). Cardiac function was assessed
by transthoracic echocardiography and NT-proBNP was used as a secretory marker. Most (94.8%)
of the patients received genetic testing. Left ventricular function was within normal ranges and
not impaired. Interestingly, we found that LA size and secretory activity were increased in MFS
patients, despite normal left ventricular filling pressures. This finding was even more pronounced in
MFS patients with prior aortic surgery. A correlation between LA size or NT-proBNP levels and the
type of pathogenic FBN1 variant could not be identified. Right ventricular function and right atrial
size were increased only in MFS patients that had undergone aortic surgery. In conclusion, these
findings suggest that MFS leads to structural changes in the LA that are not solely resulting from left
ventricular dysfunction, but probably can be considered a primary pathology of MFS.

Keywords: Marfan syndrome; cardiac function; echocardiography; aorta; cardiomyopathy; left
atrium; biomarkers; NT-proBNP; aorto-ventricular coupling

1. Introduction

Marfan syndrome (MFS) is an autosomal-dominant multisystem connective tissue
disorder with a prevalence of 1:5000 and a broad variability in phenotypic expression [1].
The cardiovascular, ocular and skeletal organ systems are frequently involved [2]. Other
manifestations include the central nervous, integumental, and pulmonary systems [3].
Diagnosis is based on the revised Ghent criteria, with aortic root dilatation and lens
luxation as the two cardinal manifestations of disease [4]. Life expectancy of MFS patients
is mainly limited by cardiovascular complications, in particular the progressive dilatation
of the proximal aorta with the risk of aortic dissection or fatal rupture [5].

A mutation in FBN1, encoding the extracellular matrix glycoprotein fibrillin 1, was
identified as the cause of disease in the majority of MFS patients [6,7]. Fibrillin 1 is a
main component of extracellular microfibrils and therefore plays a central role in the
structural integrity of connective tissues [8]. In more recent studies, fibrillin 1-associated
dysregulation of transforming growth factor (TGF)-β signaling has been described as an
additional pathomechanism [9,10].
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Apart from aortic root dilatation and its possible consequences, several studies in
recent years reported on primary cardiomyopathy in MFS [3,11–16]. Evidence also exists
for an involvement of the LA [13,17]. It has been shown in a mouse model that atria
contain significantly more fibrillin 1 than ventricles [18]. Moreover, dysregulation in TGF-
β signaling was associated with adverse remodeling of the atrial myocardium [19]. It
therefore seems possible that impairment in LA function does not solely occur secondary
to ventricular dysfunction, but could also be considered a primary pathology associated
with MFS.

The aim of this study was to investigate cardiac function with a focus on the LA in a
relatively large cohort of patients with MFS.

2. Materials and Methods
2.1. Study Design and Patient Selection

The local ethics committee approved this retrospective, single-center investigation
(application EA2/120/16) following the principles of the Declaration of Helsinki. All
1165 patients who presented in our center for Marfan disease between 2016 and 2020 were
retrospectively screened for eligibility. All patients were clinically assessed according to the
revised Ghent nosology, and genetic test results were present in 94.8% of MFS patients [4].
Patients diagnosed with genetic aortic diseases other than MFS, such as Ehlers–Danlos
syndrome or Loeys–Dietz syndrome, and patients with undefined diagnoses were ex-
cluded, as well as patients with known primary heart disease (ischemic cardiomyopathy
(CMP) or CMP of any other etiology) and patients with more than mild mitral or aortic
valve stenosis/regurgitation. A total of 231 adult patients with MFS and complete echocar-
diography and blood analysis were included for further analysis and divided into two
subgroups—with (n = 85) and without (n = 122) prior aortic root surgery. According to
that, patients who had had aortic surgery during the observation period (n = 24) were
excluded for analysis, except for genotype–phenotype correlation where no differentiation
between status of aortic surgery was made. In the same manner, by screening all cases
who attended our specialized center in the given period, a control group was recruited
from those who presented for suspected MFS or because of a close family member being
diagnosed with MFS. They were included in our study if after clinical and in most cases
genetic examination MFS or any other genetic aortic disease could be clearly ruled out.

2.2. Echocardiography—Technique and Measurements

Transthoracic echocardiography (TTE) was performed by one specialized physician
using a state-of-the-art system (EPIQ 7, Philips Medical Systems DMC, Hamburg, Ger-
many). Raw data was stored and analyzed using commercially available solutions (EchoPac,
GE-Healthcare, Chicago, IL, USA). Standard echocardiographic images were recorded in
parasternal short and long axes and apical two-, three-, and four-chamber views to evaluate
left/right ventricular (LV/RV) and left/right atrial (LA/RA) dimensions and function
utilizing established caliber and volumetric measurements. End diastolic and end systolic
volume (EDV, ESV), fractional shortening (FS) and ejection fraction (EF) were retrieved by
using the Teichholz formula. Valvular function was assessed using Doppler echocardiogra-
phy. For many echocardiographic parameters, indices in relation to body surface area (BSA)
were calculated. Aortic root measurements were taken from the parasternal long-axis view.
Pulse-waved (PW) Doppler was used to assess LV diastolic function through quantification
of transmitral inflow velocities during early (E) and late (A) diastole, deceleration time
(DT) and isovolumetric relaxation time (IVRT). Moreover, septal and lateral mitral annular
diastolic velocities (e’ septal/lateral) were measured by using tissue Doppler. E/e’ was
calculated with an average e’ derived from septal and lateral e´ values.

2.3. Blood Sampling and Analysis

Blood samples were collected before conducting echocardiography in all analyzed cases.
Serum concentrations of N-terminal pro-brain natriuretic peptide (NT-proBNP) were recorded.
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2.4. Genetic Examination

Genetic testing for FBN1 mutation was conducted after written informed consent
during clinical standard procedure had been obtained from the affected individuals. Genetic
analysis was performed using either FBN1 sequencing by Sanger or an NGS-based gene
panel as appropriate. Overall, 94.8% of MFS patients received a genetic test.

2.5. Statistical Analysis

Statistical analysis was performed with IBM SPSS Version 27 (SPSS Inc., Chicago, IL,
USA).

If one study participant had more than one measurement of the same variable during
the observation period, the mean was calculated and used for further analysis. All variables
were checked for normal distribution, which was assumed when skewness was below |1|.
One-way analysis of variance (ANOVA) was used for normally distributed parameters,
and post hoc analyses were conducted using the Tukey test. For nonparametric analyses,
the Kruskal–Wallis test and if needed Bonferroni post hoc tests were performed. Linear
regression analysis was conducted and the Pearson correlation was used to calculate the
strength of the association.

Results are shown as means ± standard deviation or medians ± interquartile range
and are accepted as statistically significant when p < 0.05.

3. Results
3.1. Study Cohort

The study cohort characteristics are shown in Table 1. Out of 231 patients with MFS,
85 had undergone aortic surgery before the observation period and 122 had not. A total of
24 patients with MFS had aortic surgery during the intervention period and were therefore
excluded for further analysis. Out of the 85 MFS patients who underwent surgery, 81 had
replacement or repair of the aortic root/ascending aorta, and in 40% a composite graft was
used. The group of MFS patients without aortic surgery consisted of more female patients
and were on average younger in age. Body mass index (BMI) and body surface area (BSA)
were similar between the groups (Table 1). As a control group, 106 healthy participants
were included.

Table 1. Baseline characteristics.

MFS without Aortic
Surgery

MFS with Prior Aortic
Surgery Control

n 122 85 106
Female 74 (60.7%) 37 (43.5%) 52 (49.1%)

Age (years) 37.5 ± 15.0 47.4 ± 12.9 38.5 ± 14.3
Height (cm) 185 ± 10 188 ± 11 181 ± 11
Weight (kg) 75.5 ± 25.0 85.0 ± 29.0 69.5 ± 21.5

BMI (kg/m2) 22.1 ± 5.4 25.4 ± 6.5 21.2 ± 5.8
BSA (m2) 2.0 ± 0.3 2.1 ± 0.3 1.9 ± 0.2

HR (1/min) 69 ± 10 70 ± 12 75 ± 14

Medication
ARB 82 (67.2%) 60 (70.6%) 21 (19.8%)

Losartan 73 41 16
Candesartan 7 7 4

Valsartan 2 12 1
Beta blocker 25 (20.7%) 60 (70.6%) 11 (10.4%)

ACE inhibitor 7 (5.7%) 14 (16.5%) 2 (1.9%)

Aortic diameter [mm]
Anulus 23.6 ± 3.7 23.6 ± 4.2 22.0 ± 3.5
Bulbus 39.1 ± 7.0 34.3 ± 9.8 34.0 ± 6.4

ST-junction 30.8 ± 5.3 28.6 ± 6.5 28.3 ± 6.4
Ascending aorta 31.0 ± 5.5 29.6 ± 7.6 30.6 ± 5.7

Results are presented as means ± SD, medians ± IQR, or n (%) as appropriate. MFS = Marfan syndrome,
BMI = body mass index, BSA = body surface area, HR = heart rate, ARB = angiotensin-receptor blocker,
ACE = angiotensin-converting enzyme, ST = sinotubular.
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3.2. Left and Right Ventricular Function

MFS patients with prior aortic surgery presented with increased end systolic volume
index (iESV) and lower LVEF compared to MFS patients without aortic surgery and control
patients. Likewise, LV mass was higher in MFS patients and especially in MFS patients
with aortic surgery in medical history. Analysis of diastolic function revealed a reduction in
e’ and an increase in E/e’ for MFS patients with aortic surgery (Table 2). Of note, albeit with
significant differences between the MFS and control group, absolute numbers of altered
parameters were still within normal range. MFS with prior aortic surgery had significantly
reduced TAPSE compared to the other two groups, as can be expected after cardiac surgery.
Right ventricular end diastolic diameter was not different between the groups (Table 2).

Table 2. Ventricular function in MFS compared to controls.

n
MFS without

Aortic
Surgery (1)

n
MFS with

Prior Aortic
Surgery (2)

n Control (3) p 1 vs. 2 p 1 vs. 3 p 2 vs. 3

Systolic function
iLVIDd (mm/m2) 122 26.4 ± 4.2 85 24.7 ± 5.6 106 26.2 ± 3.8 ns ns ns
iLVIDs (mm/m2) 122 16.0 ± 2.7 85 16.7 ± 4.1 106 15.7 ± 2.6 ns ns ns
iEDV (mL/m2) 122 66.1 ± 18.6 85 63.6 ± 33.8 106 61.3 ± 17.5 ns <0.05 ns
iESV (mL/m2) 122 19.9 ± 8.7 85 21.5 ± 14.7 106 17.8 ± 8.8 ns ns <0.001

FS (%) 122 39.8 ± 7.6 85 37.0 ± 10.2 106 40.1 ± 8.6 <0.01 ns <0.01
EF (%) 122 69.7 ± 9.6 85 66.0 ± 13.6 106 70.6 ± 11.0 <0.01 ns <0.001

Diastolic function
E (cm/s) 121 75.0 ± 17.9 82 74.9 ± 25.0 103 74.7 ± 17.6 ns ns ns
A (cm/s) 121 55.4 ± 20.3 81 57.4 ± 22.4 103 52.4 ± 22.6 ns ns ns

E/A 121 1.3 ± 0.7 81 1.3 ± 0.6 103 1.4 ± 0.7 ns ns ns
e′ (cm/s) 122 10.7 ± 2.3 84 8.9 ± 2.2 98 11.8 ± 3.3 <0.001 <0.01 <0.001
IVRT (ms) 104 87.5 ± 25.8 64 82.8 ± 29.9 72 77.3 ± 29.0 ns <0.001 <0.05
DT (ms) 121 176 ± 35 82 183 ± 53 102 170 ± 48 ns ns ns

E/e′ 121 7.0 ± 2.0 82 7.7 ± 4.0 95 6.3 ± 3.0 <0.05 ns <0.001
iIVSd (mm/m2) 121 5.2 ± 1.4 85 5.7 ± 1.5 106 4.8 ± 1.2 <0.05 ns <0.001
iIVSs (mm/m2) 122 7.2 ± 1.7 85 8.0 ± 1.9 106 7.2 ± 1.7 <0.01 ns <0.01
iPWd (mm/m2) 122 4.5 ± 0.7 85 4.7 ± 0.8 106 4.5 ± 0.8 ns ns ns

LV mass (g) 122 186.0 ± 87.1 85 234.0 ± 129.3 106 155.0 ± 69.3 <0.001 <0.001 <0.001
iRVIDd

(mm/m2) 119 13.2 ± 2.6 79 13.4 ± 2.6 103 13.1 ± 2.5 ns ns ns

TAPSE (mm) 99 23.8 ± 6.7 65 17.6 ± 5.0 64 24.2 ± 6.7 <0.001 ns <0.001

Data are presented as means ± SD or medians ± IQR as appropriate. For statistical testing, an ANOVA or
Kruskal–Wallis test was performed. If significant, post hoc tests were added according to Tukey or Bonferroni,
respectively. ns = non-significant. Parameters with ´i´ were indexed to body surface area. LVIDd = left ventricular
diameter end diastolic, LVIDs = left ventricular diameter end systolic, EDV = end diastolic volume, ESV = end
systolic volume, FS = fractional shortening, EF = ejection fraction, E = early diastolic mitral flow velocity, A = late
diastolic flow velocity, e′ = early diastolic annular velocity (mean of septal and lateral), IVRT = isovolumetric
relaxation time, DT = deceleration time of early diastolic flow velocity, IVSd = interventricular septum end
diastolic, IVSs = interventricular septum end systolic, PWd = posterior wall thickness end diastolic, LV = left
ventricle, RVIDd = right ventricular diameter end diastolic, TAPSE = tricuspid annular plane systolic excursion.
MFS = Marfan syndrome.

3.3. Left and Right Atrial Size

MFS patients had significantly increased LA size compared to controls, as shown in
Table 3. MFS patients with aortic surgery especially had an enlarged LA. Right atrial size
for MFS patients with aortic surgery was increased, but still within normal range.

3.4. Increase in LA Size at Normal Filling Pressures

To further elucidate the cause of LA enlargement in MFS patients, we examined the
role of left ventricular filling pressures by using E/e’ as a surrogate marker. When E/e’ < 8,
normal filling pressures can be assumed. Despite normal filling pressures, we could observe
an increase in LA size for MFS patients without aortic surgery and even more for MFS
patients with aortic surgery, indicating that LA enlargement is not solely due to increased
filling pressures (Figure 1). Linear regression showed no correlation between LA size and
E/e’. When observing LA size for E/e’ > 8, i.e., possible increase in filling pressures, we
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could also see an increase in LA size for MFS patients with aortic surgery (Figure 1). Here,
linear regression between LA size and E/e‘ showed a correlation for MFS patients with
aortic surgery (p = 0.018) and MFS patients without aortic surgery (p = 0.01), but not for
controls (p = 0.093) (Figure 2).

Table 3. Atrial function.

n

MFS
without
Aortic

Surgery (1)

n

MFS with
Prior

Aortic
Surgery (2)

n Control (3) p 1 vs. 2 p 1 vs. 3 p 2 vs. 3

LA area (cm2) + 111 17.1 ± 4.9 79 19.5 ± 8.2 93 14.4 ± 6.3 <0.001 0.003 <0.001
LA volume (mL) + 62 47.3 ± 28.4 47 57.4 ± 60.7 30 35.3 ± 21.1 0.12 0.05 <0.001
LAVi (mL/BSA) + 62 23.7 ± 16.9 47 27.0 ± 28.5 30 19.0 ± 10.3 0.42 0.07 0.002
RA area (cm2) + 76 13.8 ± 4.0 59 16.7 ± 7.6 47 13.8 ± 4.0 0.002 1 0.005

Data are presented as medians ± IQR. For statistical testing, a Kruskal–Wallis test and post hoc tests according to
Bonferroni were calculated. LA = left atrium, LAVi = left atrial volume indexed to BSA, BSA = body surface area,
RA = right atrium. MFS = Marfan syndrome.
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3.5. Increase in NT-proBNP with Normal Filling Pressures

To examine secretory activity of the LA, we measured serum NT-proBNP levels as a
functional marker. We observed a significant increase in NT-proBNP serum levels for MFS
patients with aortic surgery compared to the other two groups (Figure 3). Furthermore,
MFS patients without aortic surgery also had significantly increased NT-proBNP levels
compared to controls.
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3.6. Influence of MFS Mutation on LA Size and Function

In the next step, we examined the types of FBN1 mutation, as shown in Table 4.
Missense mutations were seen most frequently (46.3%). In search of genotype–phenotype
correlations, we tested among those with a confirmed pathogenic FBN1 variant (missense,
nonsense, splicing, frameshift and in-frame deletion/insertion) differences in LA size or
NT-proBNP levels (Figure 4). For both parameters, significant differences between type of
mutation could not be found (p = 0.12 and p = 0.13).
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Table 4. FBN1 mutations in MFS.

Types of Mutation Patients with MFS

n 231
Missense mutation 107 (46.3%)
Nonsense mutation 34 (14.7%)
Splicing mutation 19 (8.2%)

Frameshift mutation 31 (13.4%)
In-frame deletion/insertion 5 (2.2%)

Polymorphism 2 (0.9%)
Silent variants 8 (3.5%)

No mutation found 13 (5.6%)
Without genetic testing/missing data 12 (5.2%)

Results are presented as n (%). MFS = Marfan syndrome.
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4. Discussion

In this large cross-sectional study, we studied cardiac function with a specific emphasis
on the LA in MFS patients with and without prior aortic surgery in comparison to a control
group. We found that LA size and secretory activity is increased in MFS patients, especially
in those with aortic surgery, despite normal left ventricular filling pressures. A correlation
with the type of mutation could not be identified.

Systolic and diastolic ventricular function was within normal range for the majority of
MFS patients. However, several studies reported on reduced left ventricular function in
MFS patients in the absence of prior surgery, the so-called MFS cardiomyopathy [13,15]. It
seems that newer imaging techniques, i.e., MRI and speckle-tracking echocardiography,
are necessary to detect these subtle changes [20–23]. In this study using conventional
echocardiography, we could see a decrease in LVEF and FS and increase in ESV only in
MFS patients after aortic surgery. In MFS patients without prior surgical intervention, a
slight tendency may be perceived. Of note, the values were still within normal ranges for
all MFS patients. Probably, speckle-tracking technology would have helped to discriminate
subtle changes in myocardial function. As described in the literature, none of our MFS
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patients had signs of overt heart failure. Right ventricular and right atrial parameters were
impaired in operated MFS patients only, which can be expected after cardiac surgery [24].

Interestingly, even with conventional TTE techniques, we could detect a significant
increase in LA size for MFS patients, which was more pronounced for those after aortic
surgery. A strong association between LA enlargement and mortality has been demon-
strated in a meta-analysis [25]. We excluded patients with significant mitral valvular
disease, a factor that may influence atrial function, from our study. As LA function is
directly dependent on left ventricular function, increased left ventricular filling pressure
can lead to functional impairment and chronically to enlargement of the LA [26]. Few
studies exist that focus on LA function in MFS patients. Abd El Rahman et al. detected
reduced LA function in MFS patients by using speckle-tracking echocardiography and
assumed that this might be caused by ventricular dysfunction [27]. In this current study,
diastolic parameters were overall comparable between all three groups, with only E/e’
slightly elevated for MFS patients with prior aortic surgery. To further elucidate whether
LA enlargement was secondary to enhanced left ventricular filling pressures, we examined
LA size when normal filling pressures can be expected. E/e’ was used as a surrogate
marker and an E/e’ < 8 considered indicative for normal filling pressures [28]. Our results
show that LA size was significantly increased for MFS patients with and without surgery,
even in the absence of increased filling pressures. For patients with possibly increased
filling pressures, i.e., E/e’ > 8, we observed a further increase in LA size for MFS patients,
plus a significant correlation between LA size and E/e’ values. Secretory activity, which we
determined by measuring NT-proBNP levels, was significantly elevated in patients with
MFS, even without prior aortic surgery. In patients who had undergone aortic surgery, lev-
els of NT-proBNP were further increased. These findings implicate that MFS is associated
with a left atrial pathology that is not a result of ventricular dysfunction, but most likely
represents a primary structural disease. MFS patients with prior aortic surgery seem to be
more susceptible, as they show larger LA than patients without surgery and additional LA
enlargement at increased filling pressure. Explanations could be that (a) patients in need
of an aortic surgery suffer from more severe disease and thus from more LA structural
change, and/or (b) aortic surgery itself causes enough trauma that results in secondary
cardiac pathologies.

On the molecular level, classic MFS is caused by mutations in fibrillin 1. Apart
from being an important component of elastic microfibrils, fibrillin 1 stabilizes latent
transforming growth factor β-binding proteins (LTBPs) in the extracellular matrix, which
keeps transforming growth factor-β (TGF-β) in an inactive state. Therefore, malfunction
of fibrillin 1 can result in excess TGF-β signaling, which turned out to be even more
relevant for disease development than the disturbance in microfibril structure. Neptune
et al. performed studies in fibrillin 1-deficient mice, an accepted model for MFS [29].
They showed that dysregulation of transforming growth factor-β (TGF-β) activation and
signaling was causative for the development of disease-associated lung emphysema, which
could be prevented by perinatal antagonism of TGF-β. In transgenic mice overexpressing
myocardial TGF-β, overt levels of fibrosis were observed in the atria [19]. Since atria
contain more fibrillin 1 than ventricles [18], a loss-of-function situation can probably lead
to impaired atrial function when ventricular performance is still intact, as indicated by the
results of this study.

The FBN1 gene encoding fibrillin 1 is subject to a large number of mutations [30].
Moreover, the same mutation can lead to a variability of phenotypes. In this study, we could
not find a correlation between LA size or NT-proBNP levels and the type of pathogenic
variant, which confirms the current understanding that genotype–phenotype correlations
in MFS are rather difficult [31].

This study has strengths and limitations. Its strengths include a large sample who were
all clinically examined, assessed and diagnosed by the same experienced expert, which
allows good comparability of measurements. Moreover, all patients underwent extensive
diagnostics, including molecular genetic testing. The study is limited by its retrospective
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nature. Even though genetic aortic disease was ruled out for all subjects in the control
group, certain pathologies could still exist, since they were referred to our center for clinical
suspicion of connective tissue disease. However, it can be expected that using a completely
healthy control group would probably even emphasize our results. E/e’ as a surrogate
parameter can only be used for an estimation of filling pressures. The gold standard for
an exact measurement would be to perform invasive catheterization, which (a) is not
possible due to the type of study and (b) would have an unfavorable risk:benefit-ratio. NT-
proBNP was considered a marker of atrial secretory activity [32,33], given that all patients
were under stable disease and did not present symptoms of overt heart failure. However,
measurement of ANP, MR-proANP or TGF-β would have been valuable additions. The
potential impact of arterial hypertension on LA morphology could not be accounted for
in this retrospective analysis, as there were no available data on blood pressure. LA area
instead of volume was used for correlation analyses due to the higher number of available
data, which is based on the fact that the LA was not the focus of examination and therefore
volumes not measured in every patient. Taking the limitations into account, we consider
this study hypothesis-generating. Further in-depth studies should follow.

5. Conclusions

In conclusion, patients with Marfan syndrome, especially those after aortic surgery,
had significantly increased left atrial size in comparison to the control group. The results of
this study indicate that MFS can lead to structural changes in the left atrium independently
of filling pressures. A correlation between LA size and genotype could not be established.
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