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Abstract: In radiomics, utilizing features extracted from pretrained deep networks could result in
models with a higher predictive performance than those relying on hand-crafted features. This
study compared the predictive performance of models trained with either deep features, hand-
crafted features, or a combination of these features in terms of the area under the receiver-operating
characteristic curve (AUC) and other metrics. We trained models on ten radiological datasets us-
ing five feature selection methods and three classifiers. Our results indicate that models based on
deep features did not show an improved AUC compared to those utilizing hand-crafted features
(deep: AUC 0.775, hand-crafted: AUC 0.789; p = 0.28). Including morphological features alongside
deep features led to overall improvements in prediction performance for all models (+0.02 gain in
AUC; p < 0.001); however, the best model did not benefit from this (+0.003 gain in AUC; p = 0.57). Us-
ing all hand-crafted features in addition to the deep features resulted in a further overall improvement
(+0.034 in AUC; p < 0.001), but only a minor improvement could be observed for the best model (deep:
AUC 0.798, hand-crafted: AUC 0.789; p = 0.92). Furthermore, our results show that models based on
deep features extracted from networks pretrained on medical data have no advantage in predictive
performance over models relying on features extracted from networks pretrained on ImageNet data.
Our study contributes a benchmarking analysis of models trained on hand-crafted and deep features
from pretrained networks across multiple datasets. It also provides a comprehensive understanding
of their applicability and limitations in radiomics. Our study shows, in conclusion, that models
based on features extracted from pretrained deep networks do not outperform models trained on
hand-crafted ones.

Keywords: radiomics; benchmarking; pretraining; features; stability; reproducibility; deep learning;
machine learning

1. Introduction

Radiomics has emerged as a promising image analysis technique, providing insights
into the characterization and quantification of radiological imaging, especially supporting
diagnostic and prognostic tasks [1–3]. Essentially, radiomics involves the application of
a classical machine learning pipeline to process radiological data [4,5]. A central step
is generating features from radiological imaging, since these are designed to capture
the content in a comprehensive fashion. For this task, hand-crafted features based on
morphology, intensity, and texture have been developed, stemming back from ideas in the
field of image analysis in the 1970s and 80s [6,7]. Even though these features have proven
successful, they might be suboptimal, since they were designed mainly for other domains.
Thus, they might not fully capture information in radiological imaging.

Recently, deep learning models have been applied successfully in many areas [8–10].
A key advantage is that they can automatically learn relevant features from imaging
data, which may be especially beneficial compared to hand-crafted features, leading to
models with improved prediction and increased utility. Yet, a fundamental problem in
applying these methods lies in the small sample sizes typically involved in radiomic
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datasets. Deep learning methods usually possess a large number of trainable parameters
that are indispensable in learning features independently; however, at the same time, a
large number of data are needed to train these parameters effectively. If the sample sizes
are small, as in radiomics, they might not perform well.

A simple alternative is to use pretrained deep networks as feature extractors. In this
approach, networks are first trained on other large datasets, such as everyday images
or medical images that are not directly related to the existing data. Ideally, because of
the larger amount of data, the network will learn features that represent the data more
abstractly at a higher level. The hope is that these features are more general in nature and
will work well on other datasets, too. In radiomics, these features could thus form a viable
alternative to manually generated features and, in the best case, lead to better models.

However, a large number of pretrained models exist. These differ mainly in the
dataset and the methods used during training. For example, many models are trained on
the ImageNet dataset containing around 14 million images [11], but recently, networks
pretrained on medical data were also introduced. In addition, training can be conducted in a
supervised fashion and via self-supervision, which has the benefit of being an unsupervised
method, e.g., no labels are needed. It is unclear which pretrained models should be used
as feature extractors in radiomics, and whether they can provide an advantage over hand-
crafted features. Similarly, the question is whether the two feature classes could complement
each other, leading to even higher predictive models.

This study, therefore, utilized multiple pretrained deep neural networks and tested
their predictive performance across multiple radiomic datasets. Our study aimed to answer
which pretrained networks work better, and whether models fused using deep and hand-
crafted features together can further improve performance. The major contribution of this
research is conducting a comparative analysis of models trained on hand-crafted, deep
features extracted from pretrained deep networks or a combination of these. A novelty is
the utilization of a broad set of deep models comprising models trained on ImageNet (like
DeiT III and Convnext-v2) and medical data (like MedicalNet). While the main metric is
the area under the receiver-operating characteristic curve (AUC), we also employed other
metrics for this comparison (like the Matthew correlation coefficient and F-score). This
study is one of the first to compare these models over several datasets, allowing for a more
robust assessment of their performance compared to studies using only a single dataset. It
contributes to a more comprehensive understanding of the applicability and limitations of
these approaches, and can guide future research and applications.

The remaining paper is organized as follows: Section 2 provides an overview of related
works, while Section 3 describes the materials and methods used in this study. Section 4
presents the analysis results, and Section 5 discusses the results, providing concluding
remarks and directions for possible future work.

2. Related Works

Studies comparing models using hand-crafted features and deep features have been
conducted previously (Table 1), but nearly all these studies only compared them on single
datasets. Since such comparisons cannot be readily generalized to other datasets, the results
in the literature are accordingly mixed. While some studies have reported a decreased or
no improvement at all (e.g., [12–15]), others reported improved performance when using
deep features (e.g., [16–20]). The reasons for these differences are manifold and hard to
identify. One reason could be the different validation schemes utilized. For example, Fu
et al. employed an (uncommon) 4-fold CV [21], while Yan et al. used an internal cohort
that was acquired at the same site [12]. In contrast, Feng et al. used an external cohort for
their validation [19]. Yet, no clear pattern can be seen; for example, Feng et al. observed a
gain of +0.10 in AUC, while Hou et al. also used an external cohort, but did not see any
gain in using deep features [15]. Furthermore, even though many hand-crafted features
were defined by the image biomarker standardization initiative [22] and thus should be
comparable across different studies, some libraries for extracting hand-crafted features do
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not adhere to this standard, and can lead to differences in predictive performance between
the studies. The same is true for the preprocessing steps; these can have a large impact on
the performance, but there is no standardization. For example, normalization of the features
using different methods like z-Score or min–max can influence the resulting model [23],
but they differ between the studies.

Table 1. A list of studies between 2019 and 2022 that compare models based on hand-crafted features
and deep features from pretrained networks.

Study Year Pathology Modality AUC (Hand-Crafted) AUC (Deep) ∆AUC

Zhu et al. [18] 2019 Brain cancer MR 0.68 0.81 0.13

Feng et al. [19] 2020 Lung cancer CT 0.7 0.8 0.1

Fu et al. [21] 2020 Rectal cancer MR 0.64 0.73 0.09

Yan et al. [12] 2020 Cervical cancer MR 0.72 0.72 0.0

Ziegelmayer et al. [20] 2020 Pancreatic cancer CT 0.8 0.9 0.1

Aonpong et al. [13] 2021 Lung cancer CT 0.68 0.69 0.01

Bo et al. [14] 2021 Brain cancer MR 0.75 0.71 −0.04

Hou et al. [15] 2021 Prostate cancer MR 0.83 0.84 0.01

Hu et al. [24] 2021 Lung cancer CT 0.82 0.9 0.08

Xuan et al. [25] 2021 Placenta invasion MR 0.8 0.88 0.08

Bertelli et al. [26] 2022 Prostate cancer MR 0.8 0.85 0.05

Yang et al. [16] 2022 Head and neck
cancer CT 0.66 0.81 0.15

Yang et al. [17] 2022 Liver cancer CT 0.74 0.88 0.14

∆AUC denotes the difference in AUC between the model using hand-crafted and deep features.

A study comparing the predictive performance of multiple pretrained deep networks
across multiple radiomics datasets still needs to be conducted.

3. Materials and Methods

For this retrospective study, several publicly available datasets were used; correspond-
ing approvals from the ethical review boards have been granted. Ethical approval for this
study was waived by the local ethics committee (Ethik-Kommission, Medizinische Fakultät
der Universität Duisburg-Essen, Essen, Germany). All methods and procedures were
performed following the relevant guidelines and regulations, the CheckList for EvaluAtion
of Radiomics research (CLEAR) [27], and in accordance with the Declaration of Helsinki.

3.1. Study Design

The study follows the standard radiomics pipeline very closely [3,28] and consists
of preprocessing, feature extraction, selection, and classification (Figure 1). Briefly, the
datasets were first preprocessed via resampling to a homogenous spacing. The volumes
were then used to extract hand-crafted and deep features. The hand-crafted features were
extracted directly from the volumes. For the deep features, first, slices were extracted. The
slices were then processed using pretrained deep models, and the features were extracted
from a layer of the networks. These steps resulted in multiple feature sets, which were then
used for model building, consisting mainly of a feature selection and classification step.
A 10-fold stratified cross-validation was utilized to determine which methods performed
best. During cross-validation, the training data were normalized, and a feature selection
algorithm was applied. On the resulting features, a classifier was trained. This classifier
was then used to obtain predictions on the validation folds. These predictions were then
pooled across the folds, and several metrics were computed.
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Figure 1. Overall flowchart of the study. For each dataset and pretrained neural network, a 10-fold
stratified cross-validation is employed.

3.2. Datasets

Ten radiomic datasets were collected from the Workflow for Optimal Radiomics Clas-
sification (WORC) [29] and the cancer imaging archive (TCIA) [30] (Table 2). All datasets
were binary, i.e., the outcome is either 0 or 1. Each dataset consisted of a scan (e.g., a CT or
an MR sequence) and a segmentation of the volume of interest (VOI) (Figure 2). All samples
were included, except for a few wherein either the slice thickness was comparatively too
large (i.e., larger than twice the median slice thickness) or a technical error occurred while
computing the hand-crafted feature vectors. All scans were resampled using bicubic inter-
polation to a homogenous spacing of 1 × 1 × 1 mm3. The segmentations were resampled to
the same spacing, but using the nearest neighbor method to avoid partial volume effects.

Table 2. Datasets used for benchmarking.

Dataset Modality
(Weighting) Sample Size (n) Size of

Minor Class
Size of Major

Class
Class

Balance
In-Plane

Resolution [mm]
Slice Thickness

[mm] Source

C4KC-KiTS CT 203 67 142 2.12 0.8 (0.4–1.0) 3.0 (1.0–5.0) TCIA [31]

CRLM CT 76 36 40 1.11 0.7 (0.6–0.9) 5.0 (1.0–8.0) WORC [29]

Desmoid MR (T1) 195 71 125 1.76 0.7 (0.2–1.8) 5.0 (1.0–10.0) WORC [29]

GBM MR (T1) 53 26 27 1.04 0.7 (0.6–0.9) 5.0 (1.0–8.0) TCIA [32]

GIST CT 244 120 125 1.04 0.8 (0.6–1.0) 3.0 (0.6–6.0) WORC [29]

HN CT 134 65 69 1.06 1.0 (1.0–1.1) 3.0 (1.5–3.0) TCIA [33]

ISPY-1 MR (DCE) 157 69 92 1.33 0.8 (0.4–1.2) 2.1 (1.5–3.4) TCIA [34]

Lipo MR (T1) 113 57 57 1 0.7 (0.2–1.4) 5.5 (1.0–9.1) WORC [29]

Liver MR (T2) 186 92 94 1.02 0.8 (0.6–1.6) 7.7 (1.0–11.0) WORC [29]

Melanoma CT 97 48 49 1.02 0.8 (0.4–1.0) 3.0 (1.0–5.0) WORC [29]

Class balance denotes the ratio of the major class to the minor class. DCE: Dynamic contrast enhanced; TCIA: The
cancer imaging archive; WORC: Workflow for optimal radiomics classification.
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Figure 2. Example slices for each dataset. Images were normalized to the range between 0 and 255,
regardless of whether they were CT or MR sequences. The segmentation is depicted in red. The HN
image was cropped for visualization purposes.

3.3. Preprocessing

For each dataset, slices were extracted from the bounding box around the segmen-
tation. Slices in which the segmentation occupied less than 50 pixels (around 7 mm2)
were excluded, since the region-of-interest (ROI) would be too small to extract meaningful
features. The same intensity normalization was applied per slice, regardless of whether
a CT or MR dataset was processed. For the networks trained on ImageNet data, slices
were normalized with respect to the mean and standard deviation of the ImageNet dataset.
Slices for the RadImageNet were normalized by linearly scaling the intensities into the
range [−1, 1]. For MedicalNet, the intensities of the volumes were z-Score normalized. In
addition, the volume of interest was resized to 112 × 112 × 56. Slices were not further
rescaled during preprocessing.

For the hand-crafted features and 3-D networks, the scan was cropped using a bound-
ing box around the segmentation.

3.4. Feature Extraction

After preprocessing, hand-crafted and deep features were extracted from either the
slices or the scans.

For the hand-crafted features, 2-D and 3-D features were extracted from the scans using
PyRadiomics v3.1 [35]. For this, each scan was first processed via multiple preprocessing
filters in addition to the unprocessed scans: Laplacian-of-Gaussian (with sigma 1.0. 2.0. 3.0.
4.0. 5.0), wavelet, square root, logarithm, square, exponential and gradient filter. Three
types of features were extracted: morphological, intensity, and texture features. All feature
classes were extracted that were available in PyRadiomics, namely, shape, firstorder, glcm
(with the exception of SumAverage), glrlm, glszm, gldm and ngtdm. The computation of
the features differed for CT and MRI. For MRI data, the intensities were normalized and
scaled by 100. For CT data, no normalization was applied. For extraction, in both cases,
the image values were quantized using a bin width of 25. Altogether, 1470 hand-crafted
features were computed for each scan.

In addition to 3-D features, 2-D hand-crafted features were computed using the force2D
option in PyRadiomics. This option ensured that all texture and intensity features were
computed slice by slice. Altogether, five feature sets comprising hand-crafted features were
computed. First, all features were extracted from the 3-D data (called “Hand-crafted, 3-D,
All”). Therefore, these features can be regarded as the standard, and are used as the baseline
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for all comparisons. In addition, since morphological features are known to be important,
a feature set comprising only morphological features was also generated (“Hand-crafted,
3-D, Morph”). Finally, a third feature set was created with all features except morphological
ones (“Hand-crafted, 3-D, No morph”). In addition, two 2-D feature sets were generated:
One comprising all 2-D features with the 3-D morphological features (“Hand-crafted, 2-D,
Morph”), and one without (“Hand-crafted, 2-D, No morph”).

Extraction of the deep features from the pretrained neural networks was performed as
follows [36]: Slices were first resized to 224 × 224 pixels and converted to 3-channel RGB
images by adding the segmentation and a linear combination of the scan and segmentation
as extra channels. Features were then extracted from the last convolutional layer using
a global average pooling if necessary. In order to obtain a single feature vector for each
patient, the features from all slices of a patient were merged using max pooling.

Several differently pretrained networks, mainly from the mmPretrain repository (https:
//github.com/open-mmlab/mmpretrain accessed on 26 August 2023), were used for the
generation of deep features. First, four commonly used networks, trained on ImageNet-1K
in a supervised manner, were employed: ResNet-34 [37], DenseNet-161 [38], VGG-16 [39]
and Inception-V3 [40]. Second, networks pretrained on medical data were employed:
The RadImageNet [41], which is a 2-D network pretrained on around 1.35 million CT,
MRI, and ultrasound slices, and the MedicalNet [42], which is a 3-D network trained
on 23 CT and MRI datasets. Both networks were trained with four different backbones
(e.g., ResNet-10, Inception-V3). Third, the four best-performing network architectures
from mmPretrained model zoo (https://mmpretrain.readthedocs.io/en/latest/modelzoo_
statistics.html accessed on 26 August 2023) in terms of their top-5 accuracy were identified:
Convnext-v2 [43], DeiT III [44], EfficientNet-b7 [45], and EfficientNetV2 [46]. All these
involved pretraining in some form, e.g., in a non-standard or self-supervised fashion.
Finally, four networks pretrained in a purely self-supervised way, i.e., without an additional
finetuning step, were included: SimCLR [47], SimSiam [48], MoCoV3 [49], and Barlow
twins [50]. These networks used the ResNet-50 as the backbone. A full list can be found in
the Supplementary material, and more information about the networks can be found in the
mmPretrain repository.

For each network, the corresponding features were extracted by max-pooling all
slices. Additional feature sets were generated by combining the features with either
morphological features only (“+Morph”) or with all hand-crafted features (“+All”). Since
20 pretrained networks were selected, this resulted in 60 feature sets involving deep and
combined features.

3.5. Training

Each feature set was processed by a standard radiomics pipeline based on machine
learning. First, the data were split into ten folds, ensuring the splits were the same across
all feature sets to avoid any kind of bias from different subsamples. Then, for the training
folds, the data was normalized using z-Scores. A feature selection was applied to remove
redundant and irrelevant features. Five different methods were employed for this task [51]:
ANOVA, Bhattacharyya, LASSO (with regularization parameter C = 1), random forest (with
100 trees), and t-Score. Because these methods do not select but only score the relevance of
each feature, varying numbers of highest-scoring features were selected, ranging from 1,
2, 4, . . ., 64, 128. On the resulting feature set, one of three different classifiers was applied:
logistic regression (with C chosen among 2−8, 2−7, . . ., 27, 28), neural networks (with three
layers of size chosen among 16, 64, and 256), and random forests (with either 125, 250, or
500 trees).

3.6. Performance Metrics

Multiple metrics were used for comparison of the models. The primary metric used
was the area under the receiver-operating characteristic curve (AUC), since this metric
is rather insensitive to class imbalances in the data, and can be regarded as the de facto

https://github.com/open-mmlab/mmpretrain
https://github.com/open-mmlab/mmpretrain
https://mmpretrain.readthedocs.io/en/latest/modelzoo_statistics.html
https://mmpretrain.readthedocs.io/en/latest/modelzoo_statistics.html
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standard metric and is used in many radiomic studies. In addition, other metrics that are
of interest to judge the quality of the model were employed: Accuracy, which measures
the proportion of correctly predicted instances; recall, which quantifies a model’s ability
to correctly identify positive instances; and precision, which calculates the proportion of
true positive predictions among all positive predictions. In addition, the F-score, which
is a harmonic mean of recall and precision, was measured [52]. Finally, we computed the
Matthew correlation coefficient (MCC), which can be understood as a measurement that
produces high values only if the model predicts both classes well [53].

3.7. Evaluation

For each model, its predictions on the left-out validation fold were computed. The
model’s performance was then evaluated by pooling all predictions and computing the area
under the curve of the receiving operator characteristic (AUC). The best-performing model
for each feature set was then selected as the final model. These models were then studied
with regard to the following two aspects: first, the performance gain of models using
deep features compared to those using hand-crafted features; second, the improvement
in performance resulting from adding morphological or all hand-crafted features to deep
features. The hand-crafted model, which uses all features extracted from the 3D volume,
was taken as a reference.

Statistical significance between the results was computed using a Wilcoxon signed-
rank test. A p-value below 0.05 was considered to be statistically significant.

3.8. Experimental Settings

For all experiments and statistics, Python 3.8.10 was used. For statistical analysis,
numpy (v1.24.4), scipy (v1.9.1), scikit-learn (v1.1.2), and scikit-posthocs (v0.7.0) were
employed. For hand-crafted features, the Pyradiomics package (v3.10) was employed [35].
Deep models pretrained on ImageNet data were used from the mmPretrain v1.0.1 package;
the RadImageNet and MedicalNet models, which are pretrained on medical data, were
downloaded from their GitHub repository. PyTorch v2.0.1 and tensorflow v2.8.0 were used
for the extraction of deep features. The code and data for all experiments can be found
at https://github.com/aydindemircioglu/radSSL accessed on 13 September 2023. All
experiments were performed on a workstation running Ubuntu 22.04.2 LTS and equipped
with an AMD Threadripper 2950X with 128 GB of RAM and a Nvidia TITAN RTX graphics
card with 24 GB of VRAM.

4. Results

Overall, 65 feature sets were computed and analyzed. A graphical display of the AUC
curves of the best models can be seen in Figure 3.

4.1. Hand-Crafted Features

Models that used all hand-crafted features with or without morphological ones per-
formed very similarly overall, with the exception of the model based on morphological
features alone (Table 3). The two models with 2-D features performed slightly better
than those with 3-D features. The model that only employed morphological features per-
formed worse, especially on the C4KC-KiTS dataset. However, it performed well on I-SPY1
and Lipo.

https://github.com/aydindemircioglu/radSSL
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features (ConvNeXt V2, large, in red), and deep and hand-crafted features (SimSiam, ResNet-50,
in magenta).
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Table 3. Performance metrics of the models based on hand-crafted and deep features, sorted by
mean AUC.

Model AUC ∆AUC Accuracy ∆Accuracy ∆Recall Recall Precision ∆Precision MCC ∆MCC F1 ∆F1

Hand-Crafted Features

Hand-crafted,
2-D, All 0.794 0.005 0.727 0.001 0.766 0.033 0.716 −0.013 0.441 0.002 0.74 0.01

Hand-crafted,
2-D, No
morph

0.793 0.004 0.735 0.009 0.741 0.008 0.738 0.009 0.456 0.017 0.737 0.007

Hand-crafted,
3-D, No
morph

0.791 0.002 0.733 0.007 0.732 −0.001 0.738 0.009 0.454 0.015 0.734 0.004

Hand-crafted,
3-D, All 0.789 - 0.726 - 0.733 - 0.729 - 0.439 - 0.73 -

Hand-crafted,
3-D, Morph 0.723 −0.066 0.663 −0.063 0.618 −0.115 0.698 −0.031 0.303 −0.136 0.627 −0.103

Deep Features

ConvNeXt
V2, large 0.775 −0.014 0.708 −0.018 0.718 −0.015 0.709 −0.02 0.402 −0.037 0.712 −0.018

SimSiam,
ResNet-50 0.766 −0.023 0.704 −0.022 0.711 −0.022 0.704 −0.025 0.385 −0.054 0.699 −0.031

SimCLR,
ResNet-50 0.761 −0.028 0.709 −0.017 0.745 0.012 0.701 −0.028 0.391 −0.048 0.72 −0.01

Deep and Morphological Features

ConvNeXt
V2, large 0.778 −0.011 0.714 −0.012 0.724 −0.009 0.717 −0.012 0.412 −0.027 0.72 −0.01

SimSiam,
ResNet-50 0.777 −0.012 0.714 −0.012 0.745 0.012 0.707 −0.022 0.4 −0.039 0.723 −0.007

EfficientNet-
B2 0.773 −0.016 0.716 −0.01 0.708 −0.025 0.73 0.001 0.416 −0.023 0.715 −0.015

Deep and All Hand-Crafted Features

SimSiam,
ResNet-50 0.798 0.009 0.734 0.008 0.727 −0.006 0.737 0.008 0.45 0.011 0.731 0.001

EfficientNet
V2, large 0.795 0.006 0.719 −0.007 0.683 −0.05 0.669 −0.06 0.414 −0.025 0.674 −0.056

EfficientNet-
B2 0.795 0.006 0.739 0.013 0.758 0.025 0.738 0.009 0.464 0.025 0.747 0.017

Models with “All” used all available hand-crafted features, while those with “No morph” used all but morpholog-
ical features. The models with “Morph” used only morphological features. The “Hand-crafted, 3-D, All” model
was considered to be the standard. All differences were computed relative to this model. Columns starting with ∆
denote differences to the corresponding metric of the standard model, i.e., a value of 0.017 for ∆Accuracy means
that the model performed 0.017 more accurately than the “Hand-crafted, 3-D, All” in mean over all datasets.

4.2. Deep Features

Models using deep features performed slightly worse than those using standard
hand-crafted features regarding AUC. Only the ConvNeXt V2 model achieved essentially
the same performance as the hand-crafted radiomic model (Table 3, and Table S3 in the
Supplementary Materials). Other models performed worse, and the loss in AUC was larger
than 0.022. However, a larger difference could be seen in MCC for all models (Figure 4).
These observations were also true for the networks pretrained on medical data (MedicalNet,
RadImageNet), which performed inferior to the standard hand-crafted model (loss in AUC
greater than 0.05).

4.3. Deep Features Fused with Morphological Features

Models using morphological features in addition to the deep features performed
slightly better; the difference in AUC was statistically significant (+0.02 in AUC; p < 0.001)
(Table 3 and Table S4 in the Supplementary Materials). Other metrics were also slightly
better, although again, a performance drop in MCC could still be clearly seen (Figure 5). The
best-performing model was still ConvNeXt V2, which virtually showed no improvement
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due to the morphological features, closely followed by SimSiam with ResNet-50 backbone,
which gained 0.011 in AUC.
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4.4. Deep Models Fused with All Hand-Crafted Features

Adding all hand-crafted features to the deep features improved the predictive per-
formance further (Table 3 and Table S5 in the Supplementary Materials), and an overall
difference of 0.034 in AUC over the models using only morphological features could be seen
(p < 0.001). Compared to using only deep features, adding the hand-crafted features led to a
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higher improvement of 0.054 in AUC (p < 0.001). Yet, the previously best-performing model,
ConvNeXt V2, showed only small improvements (+0.009 in AUC). In contrast, SimSiam
showed a gain of +0.021 and performed slightly better than the standard, hand-crafted
3-D model (with a gain of +0.009). Regarding the other performance metrics, there was
virtually no difference; this was also true for the MCC (Figure 6). While for several models,
the gains in AUC compared to the standard hand-crafted model were minor but positive,
the majority of the models still did not reach its level of performance.
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5. Discussion

In this study, we investigated whether models using features extracted from pretrained
deep neural networks can outperform models based on hand-crafted features. We utilized
a large set of pretrained deep networks and compared them to ten radiomic datasets.

Our results indicate that, on average, the models using deep features do not improve
over those using standard hand-crafted features. The overall best deep feature set, Con-
vNeXt V2, performed on average virtually the same; however, many other feature sets
performed worse. It was also true for the features extracted from networks pretrained
on radiological data and networks trained with better techniques (like self-supervised
training), which can produce state-of-the-art results on ImageNet.

Adding morphological features did lead to a slight increase in overall performance,
yet the best-performing model, the ConvNeXt V2, did not benefit. This observation starkly
contrasts the intuition that morphological features, such as volume or sphericity, can
improve the performance of 2-D networks, since these do not directly see the global
shape. There could be two reasons why no such increase was observed: The networks can
extract some morphological information about the lesions, even though only slices were
processed. This might happen if the network extracts the segmentation size on each slice
as a feature. On the other hand, it is also possible that for the datasets used in this study,
the morphological information is not critical for the prediction, even though a recent study
showed that volume is important in head and neck tumors [54].

Fusing all hand-crafted features with the deep features did lead to a slight perfor-
mance boost. Even though this is reasonable, there are two reasons why this is somewhat
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surprising. First, adding all hand-crafted features will have doubled the number of features
in many cases. Given the small sample size and the curse of dimensionality [55], more
features could easily have led to diminished performance. Second, one could have expected
that deep and hand-crafted features are complementary in nature. Thus, fusing both should
have led to much higher-performing models. However, this was not observed. A reason for
this could be that even though hand-crafted features could be sub-optimal, they have been
shown in many cases to be highly discriminative. Deep features from pretrained networks
might not be able to improve much over that. In addition, many outcomes might depend
on information simply unavailable in the radiological data. Thus, regardless of whether
hand-crafted or deep features are used, it cannot be expected that higher performance can
be obtained.

Our results may also be interpreted in light of the ‘no free lunch’-theorem [56], which
mainly states that no single classifier consistently outperforms other classifiers. Indeed,
our results indicate that deep features can yield a higher gain over hand-crafted features
for specific datasets. In other words, to obtain the highest predictive performance, the
features must be further tuned to the dataset by some kind of training. Yet, there are two
problems to consider: First, training involves many hyperparameters (e.g., the learning
rate and schedule, the head architecture, augmentations, and regularization). Tuning them
for a small dataset is a problem of its own, and can easily lead to overfitting when not
handled properly. Second, a key advantage of using pretrained networks only as feature
extractors is that the extracted features will be more reproducible [57]. In contrast, any
training of a deep network, including finetuning, will inevitably destroy this property since
the features will depend strongly on the dataset. In other words, training will decrease
reproducibility substantially. Nonetheless, if predictive performance is the goal, it seems
that using features extracted from pretrained deep networks is not very helpful, and some
training should be conducted.

Although some studies exist that compare hand-crafted and deep features, these
studies cannot be readily compared; therefore, we conducted a comparison analysis, where
we can ensure comparability, e.g., that the preprocessing steps and cross-validation are
the same for all feature sets. Our results also reflect the differences seen in the literature:
If we consider a specific dataset and model (as is the case in nearly all of the above-cited
studies), we can see either a large or nearly no difference between the models using hand-
crafted and deep features. For example, on I-SPY1, the model using hand-crafted features
obtained an AUC of 0.671, while the DeiT III model using all features obtained one of 0.788,
indicating that the deep model is clearly better. Yet, had we used the ConvNeXt V2 model,
we would have seen no difference in AUC (0.661 vs. 0.671). Therefore, we believe that a
comparison across many datasets is key to understanding the performance of the models
using pretrained deep features. However, as shown, we believe that for specific datasets
and with further optimizations, the AUC of the deep models could be improved more [36].
Therefore, our observation underlines that deep features are not the panacea, but may be
helpful for certain datasets [58].

Our study has certain limitations. First, we only used the pretrained deep networks
as feature extractors. As discussed, finetuning them could lead to higher performance,
albeit for a price. Second, nearly all networks we considered were two-dimensional. Such
networks cannot directly utilize the spatial coherence present in the data. Simply adding
morphological features did not help in this regard. Third, we only considered a single
deep-learning pipeline. Tuning the extraction parameters for each dataset could increase
the overall performance [36]. Furthermore, we used a simple cross-validation scheme,
which might be prone to overfitting. However, all feature sets would be affected similarly,
and it is reasonable to expect that the relative performances would more or less stay the
same. In addition, it was shown that the amount of overfit for the classifiers we employed
can be expected to be rather low [29]. Finally, we considered only binary problems, since
these are the most common in the clinical context. Results might largely be different if
multi-class problems are considered [59].
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6. Future Work and Conclusions

Our study showed that the hope that deep features from pretrained networks are
more predictive than hand-crafted features is unfounded. However, since we did not train
and fine-tune the networks, their features were not specific to the dataset at hand; this
could be a reason for the low predictive performance we observed. Therefore, training
them could lead to models with higher predictive performance. This should be tested in
a future study. Furthermore, we could not observe that networks pretrained on medical
data outperformed those pretrained on ImageNet data in our study, which is unintuitive.
The reasons for this are unclear, and a more thorough study on this should be performed,
since a deeper understanding of this could be used to obtain more robust and predictive
models. Our study did not analyze how far the features from different networks agree in
terms of correlation. However, such an analysis could provide insights into why the fusion
of hand-crafted and deep features did not yield a significant improvement. Finally, we
did not test whether fusing features from different networks could be more helpful. This
should also be tested in a future study.

In conclusion, our study showed that models based on features extracted from pre-
trained deep networks did not perform better on average. Fusing hand-crafted and deep
features can yield some minor improvements, but will be specific to the dataset.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/diagnostics13203266/s1, Table S1: List of pretrained deep networks
used; Table S2: AUC of the models using hand-crafted features. Table S3. AUC of the models using
deep features. Table S4. AUC of the models using deep features fused with morphological features.
Table S5. AUC of the models using deep features fused with hand-crafted features were added.
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