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Abstract: Background: Chronic obstructive pulmonary disease (COPD) typically causes airflow
blockage and breathing difficulties, which may result in the abnormal morphology and motion
of the lungs or diaphragm. Purpose: This study aims to quantitatively evaluate respiratory di-
aphragm motion using a thoracic sagittal magnetic resonance imaging (MRI) series, including motion
asynchronization and limitations. Method: First, the diaphragm profile is extracted using a deep-
learning-based field segmentation approach. Next, by measuring the motion waveforms of each
position in the extracted diaphragm profile, obvious differences in the independent respiration cycles,
such as the period and peak amplitude, are verified. Finally, focusing on multiple breathing cycles,
the similarity and amplitude of the motion waveforms are evaluated using the normalized correlation
coefficient (NCC) and absolute amplitude. Results and Contributions: Compared with normal sub-
jects, patients with severe COPD tend to have lower NCC and absolute amplitude values, suggesting
motion asynchronization and limitation of their diaphragms. Our proposed diaphragmatic motion
evaluation method may assist in the diagnosis and therapeutic planning of COPD.

Keywords: chronic obstructive pulmonary disease (COPD); respiratory diaphragm motion; magnetic
resonance imaging (MRI); field segmentation; respiration cycle

1. Introduction

Chronic obstructive pulmonary disease (COPD) is an obstructive lung disease that
usually occurs in smokers or people who are often exposed to toxic substances [1–3]. In
particular, COPD-related lung function disorders may result in difficulties in the patient’s
daily activities, such as walking and climbing stairs [4–6]. In normal subjects, respiratory
activity usually brings about a synchronized up-down movement for each. In contrast,
owing to airflow limitations and diaphragmatic elasticity damage, the diaphragmatic
motion of patients with COPD may be asynchronized and limited, which are respectively
represented by the different, even opposite motion directions at different positions of the
diaphragm, e.g., at anterior and posterior positions, and small motion amplitude.

Pulmonary function tests (PFTs) are common lung diagnostic methods used in clinical
practice [7–9]. PFTs diagnose lung status by measuring air-volume-based indices, such as
forced vital capacity (FVC) and forced expiratory volume in 1 s (FEV1) [10,11]. However,
PFTs cannot evaluate the morphology or motion of the lungs or diaphragm. Numerous
tomography imaging techniques that can provide structural lung information have been
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developed and applied in medicine and healthcare, including computed tomography (CT)
and magnetic resonance imaging (MRI) [12,13]. Compared to CT with radiation, MRI
can continuously acquire high-speed image data [14]. Using sequential MRI, the motion
characteristics of the lungs and diaphragm can be observed and analyzed.

In the past decades, numerous studies on tomography-imaging-based motion assess-
ments of the respiratory lung or diaphragm motion have been performed [15–19]. Chun
et al. [15] used a chest X-ray to evaluate diaphragm motion before and after pulmonary
rehabilitation for patients with COPD by measuring the area of motion of the diaphragm
between maximum inspiration and expiration, which can help verify the effects of rehabil-
itation. Hida et al. [16] quantitatively tracked the displacement and speed of a specified
position at the diaphragm to analyze diaphragm motion in COPD patients using dynamic
chest radiography. Yamashiro et al. [17] used four-dimensional dynamic-ventilation CT to
calculate the mean lung densities (MLDs), based on the X-ray attenuation of pulmonary
tissue [20], around several specified positions of the pulmonary lobes, whose variation
corresponded to the respiration phase. The asynchronized motion of the pulmonary lobes
of COPD patients was evaluated by observing the MLD. Suga et al. [18] used dynamic
breathing MRI (BMRI) data to measure the height of the lung and the thickness of the
chest wall during approximately two respiration cycles to quantitatively evaluate the
impaired respiratory mechanics of patients. Sato et al. [19] first extracted the lung area
using the clustering approach, termed K-means [21], and the asynchronized motion of the
diaphragm was assessed by comparing the displacement of three equispaced positions on
the diaphragm. In addition, the relationships between the extracted lung area and other
clinical indices, such as FVC and FEV1, were investigated.

Conventional evaluation methods for lung and diaphragm motion are limited in
two ways. First, most conventional methods focus only on motion during very few respi-
ration cycles, namely, one or two cycles [15–18]. However, obvious waveform differences
exist among the respiration cycles for each subject, including the period and the peak am-
plitude. Second, some conventional methods only investigate the motions of relatively few
positions in the lung or on the diaphragm, which may ignore some motion characteristics
for some positions [16,18,19]. These two limitations with conventional methods motivated
us to propose a novel diaphragm motion evaluation method that considers continuous
respiration activity with multiple cycles and all positions in the diaphragm profile.

This study aims to investigate the differences in respiratory diaphragm motion be-
tween normal subjects and COPD patients, especially for the motion asynchronization and
limitation of the diaphragm, assisting in the diagnosis and therapy of COPD and even
the corresponding rehabilitation of patients. Considering the limitations of conventional
methods, in this study, we develop a diaphragm motion evaluation method based on
multiple respiration cycles, consisting of three main approaches. First, we extract the
diaphragm profiles from the thoracic sagittal MRI series using a deep-learning-based field
segmentation technique [22,23] named U-net [24–26]. The temporal motion waveforms
generated from the vertical changes of each position in the extracted diaphragm profile
can be naturally obtained. Second, the period and peak amplitude differences among
multiple respiration cycles are quantitatively verified for all subjects. Finally, two metrics,
the normalized correlation coefficient (NCC) [27,28] and the absolute amplitude, are used
to evaluate the similarity and magnitude of the obtained motion waveforms, reflecting the
asynchronization and limitation of the diaphragm motion.

The two main contributions of this study are summarized as follows.

1. Using a thoracic MRI series for a relatively long time, a novel multiple-respiration-
cycle-based method is developed to reliably evaluate diaphragm motion.

2. To investigate motion asynchronization and the limitation of diaphragmatic mo-
tion of patients with COPD, two new evaluation metrics are utilized: NCC and
absolute amplitude.

The remainder of this paper is organized as follows. Section 2 describes the materials
and proposed diaphragm motion evaluation method; Section 3 presents the experiments
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and results; Section 4 presents a discussion; and finally, Section 5 concludes the study with
future possible research directions.

2. Materials and Methods
2.1. Materials
2.1.1. Participants

This retrospective study enrolled 20 patients who were diagnosed with COPD and
underwent chest dynamic MRI at Chiba University Hospital, Japan, from April 2011 to
September 2018. Most of the participants in the present study had been investigated in
the previous study with a different research objective [29]. The subjects were required
to meet all of the following inclusion criteria: (a) ≥40 years old; (b) smoking history
≥10 pack-years; (c) COPD diagnosed or suspected to have COPD based on subjective
symptoms/other findings/pulmonary function tests/imaging findings. The exclusion
subjects are subject to the following criteria: (a) Obvious respiratory diseases other than
COPD; (b) severe heart failure; and (c) deemed unsuitable for inclusion by investigators for
any other reason. All patients had a history of smoking. COPD was diagnosed according
to the criteria of the Global Initiative for Chronic Obstructive Lung Disease (GOLD) [30,31].
The patients underwent a PFT and MDCT imaging within 4 months of undergoing MRI.
Two subjects were excluded, one with a sagittal plane image deficiency and one with an
imaging issue resulting in shadows around the sagittal diaphragm images. The normal
control participants consisted of 10 healthy subjects who underwent PFT and MRI. Finally,
ten normal subjects and eighteen patients diagnosed with COPD were enrolled in the study.

2.1.2. MRI

A 1.5-T Ingenia CX/Achieva dStream Release 5MR system (Phillips Medical Systems,
Amsterdam, The Netherlands) was used to capture dynamic thoracic MR images from the
sagittal plane. The parameters of the MRI system are summarized in Table 1. A balanced
fast-field echo sequence was set (repetition time, 1.84 ms; echo time, 0.71 ms; flip angle,
45◦). The size of the captured MR image was 256× 256 pixels, corresponding to a field of
view of 384× 384 mm, with a slice thickness of 13.5 mm. At a frame rate of 8.33 f/s, at least
Mori = 1200 MR images were acquired for over 2 min for each subject.

Table 1. Parameter settings for MRI system.

Parameter Specification

Repetition time 1.84 mms
Echo time 0.71 MS
Flip angle 45◦

Image size 256 × 256 pixel
Field of view 384 × 384 mm
Resolution 1.5 mm/pixel
Slice thickness 13.5 mm
Frame rate 8.33 f/s
Measurement time for each subject More than 2 min
No. of frames for each subject 1200

2.2. Method

The coordinate system of the MR image is shown in Figure 1. The X-, Y-, and Z-
coordinates represent the right-left (RL), anterior-posterior (AP), and superior-inferior (SI)
directions, respectively. A flowchart of the proposed diaphragm motion evaluation method
is depicted in Figure 2. The method consisted of four main steps:

1. As a pre-processing step, the trained field segmentation model of U-net [24] is used to
extract the diaphragm profile series from the captured thoracic sagittal MRI series,
and the time-varying vertical motion waveforms of the height for each position on
the diaphragm profile were naturally generated.
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2. The differences in the period and peak amplitude of the respiration cycles are veri-
fied for each subject by the motion waveforms, which motivates us to measure and
evaluate diaphragm motion with multiple cycles.

3. Considering multiple respiration cycles, the asynchronization of diaphragm motion is
evaluated by calculating the mean NCC value among all motion waveforms.

4. In addition, considering multiple respiration cycles, the limitation of diaphragm mo-
tion is evaluated by calculating the mean absolute amplitude of the partial
motion waveforms.
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Figure 1. Magnetic resonance imaging (MRI) series captured from a sagittal plane of the right lung.
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Figure 2. Flowchart of the proposed diaphragm motion evaluation method.

2.2.1. Diaphragm Profile Extraction

Because the lung or diaphragm on the right side typically has a larger volume or
area than the lung or diaphragm on the left side, we chose the right diaphragm for profile
extraction to better analyze diaphragm motion. Specifically, we employed 8400 thoracic
sagittal MR images and their corresponding ground truths for diaphragm profiles from
two normal subjects and five COPD patients to train the U-net segmentation model, as
illustrated in Figure 2. The trained U-net model was used to extract diaphragm profiles
from the prediction dataset, and a dice accuracy value of over 97% was confirmed. The
accurate motion waveforms generated were helpful for the following diaphragm mo-
tion analyses: i.e., respiration cycle difference verification, motion asynchronization, and
limitation evaluations.

We define the binary flag of the extracted diaphragm profile, f (y, t), as follows:



Diagnostics 2023, 13, 3261 5 of 16

f (y, t) =
{

1, if within the diaphragm field
0, otherwise

, (1)

Correspondingly, the position of the Z-axis of the extracted diaphragm profile corre-
sponding to an arbitrary position (y, t), consisting of the position of the Y-axis and moment,
is defined as:

zdia(y, t)=
{

z(y, t), if f (y, t) = 1
none, otherwise

, (2)

The number of pixels corresponding to the extracted diaphragm profile, that is, the
diaphragm profile length, at the m-th moment, is given by:

Nori(tm) = ∑i f (yi, tm), (3)

2.2.2. Respiration Cycle Difference Verification

The differences in the respiration cycle are represented by the motion waveforms of a
position in the diaphragm profile, but these have been neglected in previous studies [15–18].
In a respiratory cycle, the period and the peak amplitude are generally deemed to be
two key indices, and neglecting the difference in the period or peak amplitude may result
in an inaccurate motion assessment of the lung or diaphragm. Therefore, we focus on
the 2 min motion waveforms with multiple respiration cycles in the following diaphragm
motion evaluation. To further explore the motion waveform differences quantitatively,
statistics are employed to evaluate the differences in the motion period and motion peak
amplitude, as presented in Section 3. Note that the mentioned peak amplitude is different
from the absolute amplitude for evaluating motion limitation in Section 2.2.4.

2.2.3. Motion Asynchronization Evaluation

For each position within the common range of all diaphragm profiles, the motion
waveforms can be generated along the time (frame) axis. The length of the waveform
equals the number of frames, for example, Mori = 1200, and the number of waveforms
equals the length of the common range of the diaphragm profile in the view of the Y-axis,
e.g., Nori. However, in some cases, though the length of waveforms is close to Mori, the
common range of each diaphragm profile is overly short with a small common length
Nori, which may affect a comprehensive evaluation of diaphragm motion. Given that, we
moderately extend the short common range by discarding some frames with relatively
short diaphragm profiles.

The selection mechanism for the diaphragm profiles for the generated motion wave-
forms is illustrated in Figure 3. Based on empirical observations, a common length of more
than 80 pixels is considered sufficient for generating enough motion waveforms. When
Nori is greater than 80 pixels, the Nori motion waveforms corresponding to Nori positions
on the common diaphragm profile can be generated naturally with Mori = 1200 frames.
In contrast, when Nori is not more than 80 pixels, the common range of the diaphragm
profile will be extended by discarding some frames. For all the diaphragm profiles, the
end of the common range ymin

end calculated by the minimum of all the end coordinates
(i.e., ym

end) is unchanged, and the median of all the start coordinates (i.e., ym
start) ymed

start is a
new start of the common range by replacing ymax

start, with the length of the extended common
range N = ymin

end − ymed
start and M ≥ Mori/2 diaphragm profiles. Subsequently, M remained

diaphragm profiles with N-length are used for the following motion waveform generation.
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Based on Equation (2), the temporal average of the Z-axis positions corresponding to
the i-th position on the Y-axis can be calculated as follows:

z(yi) =
1
M ∑m zdia(yi, tm), (4)

where M denotes the number of diaphragm profile frames after removing frames with
a short diaphragm profile length, which is equal to the number of frames selected. In
addition, we defined the centralized positions of the Z-axis between the time-varying
positions of z(yi, tm) and z(yi) as

ẑ(yi, tm)
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z(yi, tm)− z(yi), m = 1, 2, · · · , M, (5)

To investigate the asynchronization of the diaphragm motion of patients with COPD,
the common metric, NCC [27], is adopted to calculate the similarity between each of the
two motion waveforms of a position in the diaphragm profile. The NCC value is defined as:

Rij =
∑M

m=1 ẑ(yi, tm)ẑ
(
yj, tm

)√
∑M

m=1 ẑ(yi, tm)
2
√

∑M
m=1 ẑ

(
yj, tm

)2
, (6)

where i and j denote two independent indices for the positions in the diaphragm profile.
To visualize the waveform similarity between two different positions, an NCC map

is constructed, as shown in Figure 4. Corresponding to each position indexed by the pair
of [i, j], the NCCs calculated between each of the two motion waveforms are filled into
each grid of the NCC map. It is easy to understand that the NCCs are equal to 1 along the
diagonal, where indices i and j represent the same position, and those at the bottom left
occupying half of the map are omitted owing to symmetry. In the NCC map, grids with
large NCC values, such as 0.8 and 0.9, usually correspond to the positions of the diaphragm
profile with high similarities. In contrast, grids with small NCC values, such as 0.5 and 0.6,
usually correspond to the positions of the diaphragm profile with motion asynchronization.
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Figure 4. Construction of a normalized correlation coefficient (NCC) map for a subject and examples
of NCC map.

Finally, all NCCs at the top right, except those along the diagonal, are used to calculate
the mean NCC value, which will be used in the following multivariate analysis. The mean
NCC value was calculated using R as follows:

R =
2

(N − 1)N ∑N−1
i=1 ∑N

j=i+1 Rij, (7)

where N denotes the number of motion waveforms selected to calculate the NCC value.
Compared to the NCC value defined in Equation (6), the mean NCC value can comprehen-
sively reflect the waveform similarity by considering all positions of the diaphragm profile.

2.2.4. Motion Limitation Evaluation

In addition to the evaluation approach for motion asynchronization of the diaphragm
profile for patients with COPD, an evaluation approach for motion limitation is described
in this subsection. Unlike the motion asynchronization evaluation, which requires selecting
the waveforms at as many positions of the diaphragm profile on the Y-axis as possible,
the limitation evaluation selects the waveforms of partial positions, considering that the
waveforms of adjacent positions usually have quite similar amplitude changes. Figure 5a
shows the equispaced selection of the motion waveform. More specifically, in the proposed
motion limitation evaluation approach, the middle position, ymid, for all diaphragm profile
series is first determined by:

ymid =

⌊
1

Mori
∑Mori

m=1

(
1

Nori(tm)
∑i f (yi, tm)yi

)
+ 0.5

⌋
, (8)

where 1/Nori(tm)∑i f (yi, tm)yi denotes the mean Y-axis position of the extracted diaphragm
at the time tm, and b·c denotes rounding down to an integer. Note that the original
diaphragm length, Nori, at the m-th moment, and the number of original frames are directly
used because pixels of the diaphragm profile always exist at or close to ymid based on
our dataset.
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Figure 5. The motion limitation evaluation. (a) The equispaced selection of motion waveforms.
(b) The absolute amplitude calculation by accumulating all the amplitudes in observation time.
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For the motion waveform corresponding to ymid, we defined the temporal and spatial
mean absolute amplitude, which is the observation time, as

zabs,mean =
1

2K + 1∑K
k=−K

(
1

Mori
∑Mori

m=1|ẑ(ymid + kyint, tm)|
)

. (9)

Here, K equispaced motion waveforms on both sides of the middle position, ymid, are
introduced, and K = 5 is set in our approach. Based on the position interval of the Y-axis,
yint = 5 pixels, the final mean absolute amplitude is calculated covering the 11 = 2K + 1
waveforms positioning at [ymid − 5yint, ymid − 4yint, · · · , ymid + 5yint].

Based on Equation (9), the sampled areas shown in Figure 5b were temporarily meant
for each waveform. The accumulated means of all 11 equispaced waveforms were then
averaged as the final mean absolute amplitude.

3. Experimental Results
3.1. Characteristics of Enrolled Participants

The characteristics of 10 normal subjects and 18 COPD patients are shown in Table 2.
The COPD patients consisted of 5 GOLD-III and 13 GOLD-IV grades, and the patients were
significantly older than the normal subjects. All patients had a smoking history and were
significantly different from the non-smoking normal subjects. In PFT, all the test results
of COPD patients were significantly lower than those of normal subjects, except for the
FRC% predicted.

Table 2. Characteristics of all the enrolled participants.

Parameter Normal (n = 10) COPD (n = 18) p-Value

Age (year) 31.8± 1.5 67.4± 9.3 < 0.0001 *
Male sex (%) 10 (100) 16 (89)
BMI (kg/m2) 21.5± 1.2 19.4± 3.1 0.06
Pack-years 0 61± 32 < 0.0001 *

GOLD grade (I/II/III/IV) N. A 0 (0%)/0 (0%)/5
(27.8%)/13 (72.2%)

Pulmonary Function Tests (PFTs)
FVC% predicted (%) 102.2± 14.5 73.5± 18.8 0.0006 *
FEV1 (L) 4.23± 0.4 0.83± 0.28 < 0.0001 *
FEV1% predicted (%) 99.9± 11.5 30.8± 9.3 < 0.0001 *
FEV1/FVC (%) 87.0± 6.3 34.0± 5.9 < 0.0001 *
FRC% predicted (%) 120.9± 15.2 131.0± 18.8 0.2
RV% predicted (%) 123.9± 38.0 159.0± 29.4 0.02 *
RV/TLC (%) 27.9± 7.8 53.5± 8.4 < 0.0001 *

YHXSYXDLco/VA% predicted (%) 114.9± 11.4 52.1± 22.4 < 0.0001 *
* p < 0.05. Data are expressed as means ± standard deviation. The smoking status is shown in pack-years
calculated by multiplying the number of packs of cigarettes the person smoked per day by the number of years the
one has smoked. Abbreviations—COPD: chronic obstructive pulmonary disease; BMI: body mass index; GOLD:
global initiative for chronic obstructive lung disease; FVC: forced vital capacity; FEV1: forced expiratory volume
in 1 s; FRC: functional residual capacity; RV: residual volume; TLC: total lung capacity; DLco/VA: diffusing
capacity for carbon monoxide per liter.

3.2. Verification of Respiration Cycle Differences

As examples, the two motion waveforms at the midpoint of the diaphragm profile
and the difference in the respiration cycle are shown in Figure 6. The two cases of a normal
subject and a patient with COPD are represented by H3 in Figure 6a and Pt6 in Figure 6b,
respectively. For the period of the respiration cycle, obvious differences are highlighted at
approximately 35–50 s and 70–85 s in Figure 6a and approximately 90–100 s in Figure 6b, as
indicated by the green arrows. For the peak amplitude, obvious differences are highlighted
at approximately 10–20 s and 95–105 s in Figure 6a, and at approximately 5–15 and 65–75 s
in Figure 6b, by the pink arrows. Based on our findings, differences in the period and peak
amplitude may appear in both normal subjects and patients with COPD.
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Peak amplitude differences
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Time (s)
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(a) Subject H3

(b) Subject Pt6

Figure 6. Two examples of motion waveforms at the midpoint of the diaphragm profile. (a) A normal
subject named H3. (b) A chronic obstructive pulmonary disease (COPD) patient named Pt6. Note
that the baseline is set as an amplitude of 0.

Figure 7 shows the averages and standard deviations of the period and peak ampli-
tudes of the respiration cycles, as described in Figure 6, for all subjects. Focusing on the
standard deviation of each subject, some subjects presented a large value, illuminating
the difference between the two parameters of each independent respiration cycle. The
averages and standard deviations of the periods of independent respiration cycles are
shown in Figure 7a. Large standard deviations were observed for some subjects. Markedly
large standard deviations were observed for Pt3, Pt7, and Pt16, suggesting differences in a
period in independent respiration cycles. Similarly, the averages and standard deviations
of the peak amplitudes of the independent respiration cycles are shown in Figure 7b. Many
subjects exhibited large standard deviations. In particular, among all 18 subjects, H1, H4,
and Pt2 had the largest standard deviations, which suggested that there were differences in
peak amplitude among independent respiration cycles. However, the significance levels
of the standard deviation of the period and peak amplitude between normal subjects and
COPD patients were 0.52 and 0.99, respectively, which implied that there were no signifi-
cant differences between the two groups of subjects. A further discussion will be presented
in Section 4.1.
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deviations of the periods of respiration cycles for all subjects. (b) The averages and standard
deviations of the peak amplitudes of respiration cycles for all subjects.
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3.3. Evaluations of Respiratory Diaphragm Motion

The asynchronization and limitation of diaphragmatic motion were evaluated using
the mean normalized correlation coefficient and the mean absolute amplitude, respectively.

3.3.1. Motion Asynchronization Evaluation

Figure 8 shows the NCC maps of all subjects, including normal subjects and patients
with COPD. For the ten normal subjects shown in Figure 8a, all of the NCC maps had large
NCC values at the half-map at the top right, suggesting motion similarity between the
two arbitrary positions of the diaphragm profile. In other words, a synchronized motion
was observed for any position of the diaphragm profile in normal subjects. Most of the
NCC maps for the five COPD patients with a GOLD-III classification shown in Figure 8b,
except for the NCC map of Pt4, had large NCC values at the half-map at the top right,
with motion similarity. In contrast, the NCC map of Pt4 had many small NCC values
with yellow or red near the top-right corner, suggesting obvious motion asynchronization
between the two positions of the diaphragm profile at a certain distance. For the thirteen
COPD patients classified as GOLD-IV shown in Figure 8c, we found some relatively small
NCC values near the top-right corner of the NCC maps of Pt7 and Pt10, indicated in
yellow, suggesting motion asynchronization. Furthermore, small NCC values were found
in the NCC maps of Pt6 and Pt14–16, indicated with yellow or red, suggesting obvious
motion asynchronization.
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Figure 8. Normalized correlation coefficient (NCC) maps for all subjects. (a) Normal subjects.
(b) COPD Chronic Obstructive Lung Disease (GOLD-III) patients. (c) COPD GOLD-IV patients.

The mean NCC values of the diaphragmatic motion waveforms for all subjects and
their averages and standard deviations are shown in Figure 9. As shown in Figure 9a, all
mean NCC values for normal subjects were quite large, being greater than 0.90. Although
most mean NCC values were high for COPD patients with a GOLD-III classification, a
small mean NCC of 0.37 was observed for Subject Pt4. Specifically, some small and quite
small NCCs existed for the COPD patients with a GOLD-IV classification, especially for
Pt6 and Pt15, who had the smallest mean NCC values of 0.38 and 0.28, respectively.

The average and standard deviation of the mean NCC for the three groups of normal
subjects, GOLD-III patients, and GOLD-IV patients are shown in Figure 9b. Compared with
the mean NCC values of normal subjects, namely 0.96, those of GOLD-III and GOLD-IV
patients were smaller at 0.85 and 0.76, respectively. In addition, the standard deviations of
the mean NCC values of patients in the GOLD-III and GOLD-IV groups were much larger
than those of normal subjects. The averages and standard deviations of mean NCCs also
indicated that many small mean NCCs were obtained for GOLD-III and GOLD-IV patients,
suggesting asynchronization motions of the diaphragm. Specifically, we conducted a
significance test of the mean NCC values between normal subjects and GOLD-III or GOLD-
IV patients and obtained p-values of 0.195 and 0.014, respectively. A p-value less than 0.05
implied that there was a difference in the mean NCC values between normal subjects and
GOLD-IV patients.
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Figure 9. The mean NCC values of diaphragm motion waveforms, and their further averages and
standard deviations. (a) Mean NCC values for each subject. (b) Average and standard deviation of
mean NCCs for each group.

3.3.2. Motion Limitation Evaluation

Similar to Figure 9, the mean absolute amplitudes and their averages and standard
deviations of the diaphragm motion waveforms are shown in Figure 10. As shown in
Figure 10a, the mean absolute amplitudes of all ten normal subjects were distributed within
a concentrated range of 4.63–5.56. In contrast, there were obvious differences in the mean
absolute amplitudes among COPD patients with a GOLD-III classification. Specifically, Pt2
had a relatively small mean absolute amplitude of only 3.73. Furthermore, among COPD
patients with a GOLD-IV classification, smaller mean absolute amplitudes were observed.
Specifically, the smallest amplitudes, observed for patients Pt6 and Pt15, were smaller than
2.00, i.e., 1.86 and 1.82, respectively.

The averages and standard deviations of the mean absolute amplitudes for the three
groups of normal subjects, GOLD-III patients, and GOLD-IV patients are depicted in
Figure 10b. GOLD-IV patients showed a mean absolute amplitude of only 3.65, which
was much smaller than the mean absolute amplitudes for normal subjects and GOLD-
III patients, which were 5.26 and 6.06, respectively. Moreover, GOLD-III and GOLD-IV
patients had larger standard deviations than normal subjects. Based on the averages and
standard deviations of the mean absolute amplitude, it was clear that there were many
small amplitudes for GOLD-III and GOLD-IV patients, suggesting limited motion of the
diaphragm. Specifically, a significant difference test was conducted on the mean absolute
amplitudes between normal subjects and GOLD-III or GOLD-IV patients, and the p-values
were calculated as 0.169 and 0.0017, respectively. A significant difference in the mean
absolute amplitude between normal subjects and GOLD-IV patients was demonstrated by
a p-value of 0. 0017, which is less than 0.01. Our findings regarding low-motion amplitudes
of the diaphragm are consistent with those of previous studies [32,33].
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Figure 10. The mean absolute amplitudes of diaphragm motion waveforms, and their further
averages and standard deviations. (a) Mean absolute amplitudes for each subject. (b) Average and
standard deviation of mean absolute amplitudes for each group.

3.3.3. Multivariate Analysis

The results of a multivariate analysis combining the mean NCC values and mean
absolute amplitudes are shown in Figure 11, referring to some related multivariate analyses,
such as those in [29,34]. This analysis provided a more comprehensive comparison of the
diaphragm motions of normal subjects and patients with COPD. The mean NCC values
and the mean absolute amplitudes for normal subjects were within the ranges of 0.9–1.0
and 4.5–6.0, respectively. In contrast, samples for the COPD patients with a GOLD-III
classification were dispersed, with a mean NCC value of less than 0.4 and a mean absolute
amplitude of less than 4.5. Specifically, the samples of COPD patients with a GOLD-IV
classification were more dispersed, with mean NCC values and mean absolute amplitudes
of most samples less than 0.9 and 4.5, respectively.
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4. Discussion
4.1. Verification of Respiration Cycle Differences

After reviewing the standard deviations of the periods and peak amplitudes of all
independent respiration cycles in each subject, with p-values of 0.52 and 0.99, respectively,
between normal subjects and COPD patients, as shown in Figure 7, two findings are ob-
tained. The first is that there are obviously high standard deviations among all subjects; that
is, the periods and peak amplitudes of their independent respiration cycles have essential
differences, which implies the necessity of motion analysis on multiple cycles. Second,
the p-values for comparisons between normal subjects and patients with COPD indicated
no significant difference, which implies that the variation between each respiration cycle
within an individual subject is not unique to COPD. Note that, unlike the peak amplitude,
COPD may bring about differences in the absolute amplitudes between the normal subjects
and the COPD patients, for the motion limitation evaluation of the diaphragm.

4.2. Regional Diaphragm Asynchronization Motion Corresponding to the NCC Map

Figure 12 illustrates the motion directions of each position in the extracted diaphragm
profiles of Pt10, who belongs to the COPD GOLD-IV group. In the inspiration phase shown
in Figure 12a, unlike the downward motion directions of most other positions, the upward
motion near the anterior position is in the opposite direction, as highlighted by the yellow
arrow. Similarly, in the expiration phase shown in Figure 12b, the downward motion
near the anterior position exhibited a direction opposite to the upward motion directions
of most other positions. The corresponding diaphragmatic asynchronization motion of
two respiratory phases between the anterior and other positions is shown in Figure 12. The
asynchronized motion is also verified by the NCC map of Pt10 in Figure 8c, in which low
NCC values were observed at the positions of the small range of index i, and the large
range of index j.
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Figure 12. The motion directions of the extracted diaphragm profiles of Subject Pt10 belonging to
the COPD GOLD-IV patient group. Yellow arrows present the opposite motion directions with red
arrows. (a) Inspiration phase. (b) Expiration phase.

4.3. Limitation

This study has several limitations. First, during the pre-processing of the diaphragm
profile extraction, the image texture information of the lung and liver around the diaphragm
is neglected, which may assist in the motion evaluation of the diaphragm. In this study,
although we evaluated the vertical motions of each position of the diaphragm, which are
typically the most dominant, motion estimations in other directions were not obtained
because they were limited by the extracted diaphragm profiles. The importance and
estimation method of the multiple-direction-based diaphragm evaluation should be further
explored in future studies. Second, our data do not come from a huge number of subjects,
and almost all the patients had severe to very severe COPD. The result should be confirmed
in a large sample size that targets all stages of COPD.
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5. Conclusions and Future Work

In this study, a novel method for evaluating respiratory diaphragm motion is proposed
to assess the asynchronization and limitation motions of patients with COPD. Compared
to most conventional lung or diaphragm motion evaluation methods, which usually deal
with very few respiration cycles, our proposed method assesses multiple respiration cycles,
resulting in a more robust evaluation through a comprehensive assessment. Using the
motion waveforms generated from the extracted diaphragm profile series, the differences
in the respiration cycle were verified, and the motion asynchronization and limitations of
patients were evaluated using the NCC value and absolute amplitude, respectively. The
experimental results demonstrated the abnormal diaphragm motions of COPD patients
compared with normal subjects, which would assist in COPD diagnosis and feedback
regarding COPD therapy and patient rehabilitation.

Compared with the COPD patients in GOLD-III, the more severe patients in GOLD-IV
were verified to have more obvious motion limitations. In the future, we will explore the
mechanism and relationship between the limitation of diaphragm motion and the extent of
airway obstruction [35].

Author Contributions: Methodology, X.Z., C.Y., Y.I. and H.H.; Data curation, N.K. and A.S.;
Writing—original draft, X.Z.; Writing—review & editing, C.Y., T.O., N.K. and H.H.; Supervision, H.H.
All authors have read and agreed to the published version of the manuscript.
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