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Abstract: Breast cancer is one of the leading causes of death among women worldwide. Histopatho-
logical images have proven to be a reliable way to find out if someone has breast cancer over time,
however, it could be time consuming and require much resources when observed physically. In
order to lessen the burden on the pathologists and save lives, there is need for an automated system
to effectively analysis and predict the disease diagnostic. In this paper, a lightweight separable
convolution network (LWSC) is proposed to automatically learn and classify breast cancer from
histopathological images. The proposed architecture aims to treat the problem of low quality by
extracting the visual trainable features of the histopathological image using a contrast enhancement
algorithm. LWSC model implements separable convolution layers stacked in parallel with multiple
filters of different sizes in order to obtain wider receptive fields. Additionally, the factorization and
the utilization of bottleneck convolution layers to reduce model dimension were introduced. These
methods reduce the number of trainable parameters as well as the computational cost sufficiently
with greater non-linear expressive capacity than plain convolutional networks. The evaluation results
depict that the proposed LWSC model performs optimally, obtaining 97.23% accuracy, 97.71% sensi-
tivity, and 97.93% specificity on multi-class categories. Compared with other models, the proposed
LWSC obtains comparable performance.

Keywords: CNN; breast cancer; deep learning; histopathological image; image identification;
lightweight network

1. Introduction

Majority of women are affected by breast cancer, which is one of the deadliest and
most common type of cancer. In the world of today, about 1 in 8 women maybe diagnosed
of breast cancer [1]. In order to fight the disease, it is essential to predict breast cancer risk,
and there exist two kinds of breast cancer risk [1]. According to the first category, a person
may develop breast cancer within a certain time frame [1]. The likelihood of a high-risk
gene mutation is implied by the second type [2]. Breast tumors are unnatural expansion of
breast tissue that might show themselves as discharge from a lump or nipple or as a change
in the skin’s texture near the nipple. Cancers are uncontrolled cell growth that can spread
to other parts of the body through the lymphatic and circulatory systems [3]. After lung
cancer, breast cancer is the second most common kind of cancer and the leading cause of
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cancer mortality in women [3]. The condition has gained in notoriety over the past 50 years,
and its prevalence has risen recently.

There are currently few standards for breast cancer screening. The Iranian preventive
services working group suggests screening for females between the ages of 45 and 70 but
makes no firm recommendations for females older than this. Breast cancer risk assessment
can be used to both motivate high-risk women who have not yet had screening and to
ensure that those who would not otherwise comply with screening requirements do so.
Building cancer prevention and risk reduction strategies can also make use of a statistical
model that predicts the risk of breast cancer [4]. The contribution of this study is in two-
folds. The first-fold handles the problem of low quality attribute of the image by extracting
the visual trainable features of the histopathological image using a contrast enhancement
and edge detector algorithms. The second-fold implements a deep learning model of
separable convolution layers stacked in parallel with multiple filters of different sizes in
order to obtain wider receptive fields. Additionally, the factorization and the utilization of
bottleneck convolution layers to reduce model dimension are introduced. This proposed
model aim to reduce the number of trainable parameters as well as the computational cost
sufficiently with greater non-linear expressive capacity than plain convolutional networks.

This paper will be fashioned with the following sections. Section 2 comprises the
literature review of the breast cancer diagnosis; Section 3 details the proposed method and
the dataset that will be used to validate the framework. Section 4 presents the experimental
findings and model evaluation, and the conclusion is written in Section 5.

2. Literature Review

In several earlier researches, the Gail model [5], which is a statistical model that
calculates the probability of developing breast cancer has been used. The model integrated
different breast cancer risk rates, and different inputs are used to forecast a woman’s risk
of acquiring breast cancer using logistics regression [5]. The researchers in [6] utilized
the Breast Cancer Risk Assessment Tool also known as BCRAT with the six traditional
Gail model inputs plus a typical hyperplasia personal data history for predicting the
risk of breast cancer, however this approach has been shown to be ineffective in several
populations. Another demonstration by Hart et al. [7] was examined using machine
learning algorithm which is capable of predicting the risk of breast cancer and achieved
increased prediction accuracy.

Belsare et al. [8] describes a computer-aided concept system that uses a space-color
partition of graphical illustrations, tissue property extraction using tools like the gray-level
co-occurrence matrix (GLCM), grassland-based ruminant livestock models (GRLM), and Eu-
ler methods, and classification using linear discriminative analysis. With 100% accuracy, the
algorithm classified 70 histopathology and mammography pictures. Vu et al. [9] employed
a feature-oriented vocabulary learning system used on a data set of human intraocular
lesions and animal diagnostic laboratories to reach an accuracy of 97.75%. It has been
demonstrated that identifying histopathological and mammographic data sets from 70 pho-
tos using a computer-aided design technique based on the extraction of morphological
characteristics is 85.7% accurate [10]. Mouelhi et al. [11] employed enhanced morphology
and adaptive local thresholding algorithms to extract and segment mammography and
histochemistry pictures and achieved 98% accuracy.

Khalilabad et al. [12] developed an automated system to analyze how to identify breast
cancer masses using micro array pictures into three-fold of preprocessing of images, data
mining and detection of the disease and achieved accuracy of 95.45%. Kaymak et al. [13]
proposed back propagation neural network as a tool for analyzing and diagnosing breast
cancer masses and further improved the technique with radial basis neural network and
achieved 59% for the former and 70.4% for the latter. An evolutionary state of the art
decision-making approach based on regression and evolutionary approaches has been uti-
lized by Wang et al. [14] to identify breast cancer from mammograms. Mohebian et al. [15]
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presents a computer-aided diagnostic method for the prediction of breast cancer recurrence
that uses optimal ensemble learning or a hybrid approach.

However, researchers highly respect deep learning-based feature extraction tech-
niques for categorizing mammography and histopathology pictures. Also, it is said to
outperformed older feature-engineered histopathology analysis techniques in spotting
breast cancer metastases in lymph nodes, displaying extremely skilled performance [16].
Wang et al. [17] looked at the usage of an extreme learning machine using deep convolution
features for breast cancer diagnosis and classification and achieved remarkable perfor-
mance of 98.18% classification accuracy. Kumar et al. [18] introduced canine mammary
tumors dataset and employed a framework based on VGGNet with different classifiers
and achieved mean accuracy of 93%. A support vector machine approach and a deep
neural network were combined by Kaur et al. [19] with the goal of categorizing mammo-
graphic pictures to find cancerous tumors. This method’s accuracy ranged from 94% to
98%, depending on the different data sets.

Ting et al. [20] proposed a convolutional neural network, CNN-based algorithm for
the improvement of breast cancer classification and achieved sensitivity, accuracy and speci-
ficity of 89.47%, 90.50% and 90.71% respectively. Li et al. [21] employed an effective and
accurate classification of benign and malignant mammography images using an improved
DenseNet II model achieving average accuracy of 94.55%. Shen et al. [22] developed a deep
neural network algorithm to accurately detect breast cancer on screening mammograms
achieving sensitivity and specificity of 86.7% and 96.1% respectively. Saha et al. [23] em-
ployed semantic segmentation and classification of breast cancer masses. In this technique,
cell membranes and nuclei in the breast region are segmented and categorized using deep
learning algorithms such as the human epidermal growth factor receptor-2 deep neural net-
work (Her2Net) and trapezoidal long short-term memory (TLSTM) and achieved accuracy
rate of 98.3%.

Rustam et al. [24] used different evaluation metrics like accuracy, sensitivity, specificity,
and F1-score to compare linear discriminant analysis with support vector machine (SVM).
The outcome demonstrates that the DVM outperforms the linear discriminant analysis
in terms of overall performance with 98.8% accuracy. Khan et al. [25] utilized different
pre-trained CNNs for the low level features which are fed into a fully connected layer
using average pooling for the recognition of malignant and benign cells. Although several
deep learning models have been proposed for breast cancer classification and identifica-
tion, the computational cost and model complexity that may affect the efficacy of breast
cancer classification have not been explored thoroughly. Spanhol et al. [26] analyzed six
different feature descriptors with several classifiers and achieved 80% to 85% within the
magnification factors. In similarity to Spanhol et al. [26], Bayramoglu et al. [27] used an
independent magnification factors for the classification of breast cancer and achieved good
result. Spanhol et al. [28] presented random-patches of the images for training and testing
and achieved an increment of 84% to 91%. Han et al. [29] explored different deep learn-
ing models and achieved an average accuracy of 93.2% for patient-level BC classification.
Alom et al. [30] proposed an adaptive sparse support vector machine with L1 weighted
norm achieving accuracy of 94.97% for 40x magnification factor. A lightweight convolution
network is suggested for the identification of breast cancer in line with this perspective.

This paper focuses on the downside of model complexity and computational cost. The
novelty of the proposed model is the parallel stacking of separable convolution layers with
multiple filters of different sizes with bottleneck convolution layers to shrink feature maps
as a technique to reduce dimensionality. The public dataset belonging to Kaggle is used to
evaluate the performance of this research.

3. Materials and Methods

Data acquisition, data pre-processing, and network training and testing are the phases
of the proposed technique. Each step of the proposed approach is detailed in the subse-
quent headings.
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3.1. Datasets

BreaKHis dataset is an open-source dataset obtained from Kaggle repository to trained
the proposed lightweight convolution network. Figure 1 shows both the benign and ma-
lignant BreakHis images with different magnifying factors. The BreakHis dataset consists
of microscopic histopathological images of breast cancer composed of over 2400 benign
and 5400 malignant samples obtained from over 80 patients utilizing different magnifying
factors (40×, 100×, 200×, and 400×). The image is 3-channel RGB of 8-bit depth with the
resolution of 700 × 460 pixels in PNG format [26]. Table 1 shows the dataset distribution
based on the binary class and magnifying factors while Table 2 shows the multi-class
description of the BreakHis dataset.

Figure 1. Illustration of the histopathological images of breast cancer from the BreaKHis database.

Table 1. Description of the BreakHis dataset for Binary class.

Magnifying Factor Benign Malignant Total

40× 625 1370 1995
100× 644 1437 2081
200× 623 1390 2013
400× 588 1232 1820

Sum Total 2480 5429 7909
Number of Patients 24 58 82

Table 2. Description of the BreakHis dataset for Multi-class.

Classes Sub-Classes Patients
Count 40× 100× 200× 400× Total

Adenosis (A) 4 114 113 111 106 444
Fibroadenoma (F) 10 253 260 264 237 1014

Benign Tubular Adenoma (TA) 3 109 121 108 115 453
Phyllodes Tumor (PT) 7 149 150 140 130 569

Ductal Carcinoma (DC) 38 864 903 896 788 3451
Malignant Lobular Carcinoma (LC) 5 156 170 163 137 626

Mucinous Carcinoma (MC) 9 205 222 196 169 792
Papillary Carcinoma (PC) 6 145 142 135 138 560

Total 82 1995 2081 2013 1820 7909

3.2. Data Pre-Processing

Data pre-processing is a technique often used by deep learning practitioners to enhance
the visual characteristics of images. This article adopts contrast enhancement and edge de-
tection techniques in order to enhance the visual trainable features of the histopathological
breast cancer images as presented in Figure 2.
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Figure 2. Histopathological breast cancer images. The first row represents the original images. The
second row depicts the edge detected images. The third row presents the contrast-enhanced images.

Contrast Enhancement (CE) and Edge Detection (ED) Images

This paper employed both contrast enhancement [31] and edge detection [32] pre-
processing techniques for a better enhancement of the images. First, the application
of contrast enhancement makes it more realistic in appearance amongst its histogram
equalisation-based member as displayed in Figure 2. In contrast limited histogram equal-
ization, the histogram is cut at some threshold and then equalization is applied. The
contrast of an image is enhanced by applying contrast algorithm on small regions called
tiles rather than the entire image. The resulting neighboring tiles are then stitched back
seamlessly using bilateral interpolation. The contrast in the homogeneous region can be
limited so that noise amplification can be avoided. Uniform distribution is used as the basis
for creating the contrast transform function. the expression of the modified chrominance
channel tile with uniform distribution is given in Equation (1)

Ic_out = [Ic_max − Ic_min] ∗ Kj(Ic_in) + Ic_min (1)

where Ic_min and Ic_max are the minimum and maximum permissible intensity levels respec-
tively. Kj(Ic_in) is the cumulative distribution function for input contextual tile Ic_in.

The edge detection technique applies Gaussian smoothing for noise reduction while
enhancing the morphological image contrast and from the determination of the intensity of
the image, hysteresis thresholding is apply for the detection of the edges from the image
as depicted in Figure 2. Additionally, less important regions are discarded so the visual
characteristics can be detected. The image f is first smoothed with a Gaussian filter to
reduce noise. This is done by using a convolution with a Gaussian kernel g to obtain an
image z = f × g. The gradient of the image is calculated in terms of amplitude and angle as
seen in Equations (2) and (3). Non-maxima are removed from the amplitude. This means
that excessively large outlines are replaced by thinner outlines.

M =
√
(hx ∗ z)2 + (hy ∗ z)2 (2)

A = (
hy ∗ z
hx ∗ z

) (3)

where hx and hy represents the pixels in M which is the gradient of the image.
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3.3. Lightweight Separable Convolution

The novelty behind the proposed method in this paper is in two phases. The first
phase involves the implementation of separable convolution layers stacked in parallel
with multiple filters of different sizes in order to obtain wider receptive fields as well as
achieving wider rather than deeper network. The second phase involves the factorization
of convolution layers and the utilization of bottleneck convolution layers to reduce model
dimensionality. These methods sufficiently decrease the amount of trainable parameters
as well as the computational cost, allowing the network to be developed much deeper
and with greater non-linear expressive capacity than plain convolution networks. The
proposed architecture consists of three parts, the ‘input head’, ‘separable block layer’, and
‘classification head’. The input head consists of two separable convolution layers followed
by a max pool layer before a bottleneck convolution layer and then a separable convolution
layer followed by a max pool layer. The separable block layer is divided into ‘Block A’ and
‘Block B’ stacked on top of one another. On the one hand, ‘Block A’ consists of separable
convolution layers of 3 × 3 with bottleneck layers and factorization layers of 1 × 3 and
3 × 1 kernel sizes. On the other hand, ‘Block B’ consists of separable convolution layers
of 5 × 5 with bottleneck layers and factorization layers of 1 × 5 and 5 × 1 kernel sizes as
presented in Figure 3. Each separable block has 10 convolution layers and 1 max pooling
layer. The proposed method reduced computational cost and achieved reduction in feature
dimensionality during the low-level feature extraction and overall network depth. In the
classification head, the regular fully connected layer is replaced with average pooling of
8 × 8 to flatten the feature vector and finally, one dense layer having its dimension set as
1× 512 is adopted as seen in Figure 3. To overcome over-fitting, dropout layers were added.

Figure 3. Structure of the lightweight separable convolution.
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4. Experimental Results

This section presents the evaluation results of the proposed architecture both on
binary and multi-class categories. The effect of data pre-processing on the performance
of the proposed model is also detailed in this section. The standard metrics utilized to
examine the diagnostic performance of the proposed LWSC are specificity (SPE), accuracy
(ACC), precision (PRE), and sensitivity (SEN). The numerical expression for each metric is
presented in Equations (4)–(8) [13,14].

Accuracy =
TP + TN

TP + TN + FP + FN
(4)

Sensitivity =
TP

TP + FN
(5)

Speci f icity =
TN

TN + FP
(6)

Precision =
TP

TP + FP
(7)

F1-score = 2 ∗ Precision ∗ Recall
Precision + Recall

(8)

TN denotes true negative, TP stands for true positive, FP depicts false positive and FN
denotes false negative.

Evaluation of the Lightweight Separable Convolution

Extensive study was conducted to evaluate the influence of the proposed lightweight
separable convolution network to the identification performance in terms of accuracy on
histopathological breast cancer benchmark dataset known as BreakHis. The first study con-
sidered the original BreakHis images for the identification of histopathological breast cancer.
The second study considered the edge enhanced BreakHis images for the identification of
histopathological breast cancerand finally, the third study considered the contrast enhanced
BreakHis images for the identification of histopathological breast cancer. The proposed
LWSC model presented in Figure 3 clearly revealed that the multiple receptive fields is
capable of handling low quality images in histopathological breast cancer identification ob-
taining better recognition performance on both binary and multi-class categories. Figure 4a
shows the test accuracy curves for the different magnifying factors on the binary category
indicating that the model obtains high accuracy of 93.12% on the 40× magnifying factor of
the contrast enhanced image while Figure 4b represents the test accuracy curves for the
different magnifying factors on the multi-class category indicating that the model obtains
high accuracy of 97.23% on the 40× magnifying factor of the contrast enhanced image.

Table 3 illustrates the recognition accuracy for the original raw image and the pre-
processed images for both contrast and edge enhancements. The LWSC + CE-based images
denotes the contrast enhanced image with LWSC, the LWSC + ED-based images denotes
the edge enhanced image with LWSC, and the LWSC + Original images denotes the raw
original image with LWSC for the identification of histopathological breast cancer. From all
indications, the proposed lightweight separable convolution model with contrast enhanced
image outweighs both the original raw and the edge enhanced images achieving 93.12%
accuracy on the binary class category of magnifying factor of 40× and 97.23% accuracy
on the eight class category of magnifying factor of 40×. The proposed LWSC with CE
outperforms the other combinations on all evaluation metrics.
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(a) (b)
Figure 4. Accuracy performance report of the BC classification for both two classes and eight classes.
(a) Test accuracy curve for different magnification factors for two classes of BC classification using the
proposed model with contrast-enhanced images, (b) Test accuracy curve for different magnification
factors for eight classes of BC classification using the proposed model with contrast-enhanced images.

Table 3. Comparison of the proposed model with different pre-processing images.

Model

Binary Class Multi-Class

ACC
(%)

SEN
(%)

SPE
(%)

PRE
(%)

AUC
(%)

Time
(min)

ACC
(%)

SEN
(%)

SPE
(%)

PRE
(%)

AUC
(%)

Time
(min)

LWSC + Original images 90.11 90.07 91.76 91.78 92.45 7.3 92.13 91.78 90.66 91.92 92.41 7.5
LWSC + ED-based images 91.76 92.18 90.82 91.65 92.55 5.8 93.71 92.62 91.09 92.85 93.16 5.9
LWSC + CE-based images 93.12 93.61 94.07 93.34 94.21 5.8 97.23 97.71 97.93 98.11 98.02 5.9

The classification performance of LWSC with contrast enhanced image is higher than
that of edge enhanced image which suggest that the contribution of contrast enhanced
histopathological images in breast cancer identification is greater than that of edge enhanced
histopathological images. The proposed LWSC is further evaluated in terms of SPE, SEN,
PRE, and AUC on both categories of class labels with the magnifying factor of 40× as
depicted in Table 3. It is observed that the proposed LWSC performs better on multi-class
category with the magnifying factor of 40× achieving 97.23% accuracy, 97.71% sensitivity,
97.93% specificity, and 98.11% precision.

5. Discussion

The efficacy of the proposed method in identifying breast cancer DR in histopathologi-
cal images with different magnifying factors on both binary and multi-class categories has
been presented and the classification result is presented in Table 3. As denoted by the above
mentioned results, the proposed LWSC can efficiently classify the different breast cancer
types for the multi-class category. It is important to note that the proposed LWSC indicates
better generalization ability with the contrast enhanced histopathological images with a
commendable computational efficiency of 5.9 min training time. The proposed method is
further compared with some up-to-date methods using BreakHis dataset and other bench-
mark dataset. Table 4 indicates that the proposed LWSC obtains satisfactory performance
in sensitivity, specificity, and F1 score of 97.71%, 97.93%, and 97.98% respectively. Rustam
et al. [24] achieved the highest accuracy value of 98.77%. Kaur et al. [19] obtained the
highest AUC value of 99.0%.
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Table 4. A comparison analysis of the proposed model with state-of-the-art models on BreakHis
dataset.

State-of-the-Art Model ACC (%) AUC (%) SPE (%) SEN (%) F1-Score (%)

Kumar et al. [18] 93.0 95.0 NR NR 94
Kaur et al. [19] 92.0 99.0 90.0 93.0 96.0
Ting et al. [20] 90.50 90.10 90.71 89.4 NR

Rustam et al. [24] 98.77 NR 97.64 96.44 99.0
Spanhol et al. [26] 85.0 86.1 NR NR NR

Bayramoglu et al. [27] 83.25 NR NR NR NR
Alom et al. [30] 97.65 98.91 97.52 92.9 NR
Hao et al. [33] 96.75 NR 96.9 97.18 NR

LWSC + CE-based
images 97.23 96.53 97.93 97.71 97.98

The proposed LWSC obtains the highest accuracy score of 97.23% indicating the
superiority of the proposed method for histopathological breast cancer identification. The
competitive merit of the proposed model is attributed to the wider receptive fields from
the different filter sizes. It is well known that different deep learning architecture will show
different behaviours for different conditions. In order to select what number of separable
blocks and its combination will produce the best result for the proposed lightweight
separable convolution, ablation study is conducted.

Table 5 shows the experimental results obtained by the proposed architecture in
comparison with various pre-trained networks on the BreakHis dataset using the same
computing device. From the result, VGG-19 model shows better performance, achieving
96.4% accuracy, 97.1% sensitivity, and 96.0% specificity. Inception V3 model indicates
significant improvement in performance, achieving 95.8% accuracy, 96.0% sensitivity, and
95.3% specificity.

Table 5. Fair comparison of the proposed model on BreakHis dataset using different pre-trained
models on the same computing device.

Model
Binary Category Multi-Class Category

ACC SEN SPE ACC SEN SPE

AlexNet 89.5 91.6 88.0 88.9 88.0 87.2
VGG-16 95.2 96.3 94.9 96.4 97.1 96.0

ResNet-101 93.9 94.5 94.1 94.5 95.0 93.2
DenseNet-121 94.5 93.7 92.2 94.2 94.6 94.9
Inception V3 97.3 97.8 97.0 95.8 96.0 95.3

Xception 91.9 92.6 89.6 91.3 92.8 90.7
LWSC + CE-based images 93.12 93.61 94.07 97.23 97.71 97.93

In general, AlexNet gave the least performance across all evaluation metrics followed
by Xception model. Considering a sensitive condition like histopathological breast cancer,
it is imperative to adopt the ROC curve as a method to examine the total accuracy and
the precision-recall curve to examine the average precision of the proposed lightweight
separable convolution. The precision-recall curve is presented in Figure 5a while the ROC
curve for the proposed LWSC model on binary category is presented in Figure 5b. Similarly,
Figure 6a,b present the precision-recall curve and the ROC curve for the proposed LWSC
model on multi-class category respectively.It is worthy to mention that the pre-trained
models and the proposed LWSC model are trained using the same computing resource and
dataset for fair comparison.
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(a) (b)
Figure 5. Comparison report of the BC classification for two classes. (a) Precision–recall curve
for different magnification factors for two classes of BC classification; (b) ROC curve for different
magnification factors for two classes BC classification.

(a) (b)
Figure 6. Comparison report of the BC classification for eight classes. (a) Precision–recall curve
for different magnification factors for eight classes BC classification; (b) ROC curve for different
magnification factors for eight classes BC classification.

Additionally, some of the histopathological images were blurred which could have
prevented the proposed LWSC model from training useful features. The advantage of
improving the visual trainable features of the histopathological images using contrast
enhancement and edge detection pre-processing techniques is to characterize distinc-
tive representation features of the histopathological images with viable trainable details.
The proposed LWSC obtained a significant performance in classifying histopathological
breast cancer.

From all indications, the proposed LWSC outperforms the other networks in the
perspective of precision-recall and ROC especially in handling low quality histopathological
images. The precision-recall graphs shows that the curve of the proposed LWSC model is
nearest to the upper right corner of the graph which implies that the proposed LWSC model
has high precision associated with high sensitivity. Similarly, the ROC graphs depicts that
the curve of the proposed model is nearest to the upper left corner of the graph which
implies that it has high sensitivity associated with high specificity. Importantly, the obtained
result presented by ROC and precision-recall curves can help expert histopathologist in
maintaining a balance between accuracy and precision.

This study has achieved a significant degree of accuracy in classifying histopatho-
logical breast cancer however, there are certain setbacks. The level of accuracy obtained
on histopathological breast cancer dataset might not be the same for another medical
dataset. The singular reason is due to the fact that images of different dataset differ owing
to different factors such as labeling, noise, image collection method, and location. Aside
the non-uniformity of data, the partitioning of the data category is also paramount. The
differences in class weight has a negative effect on training. The classification accuracy
is also affected by the various data augmentation techniques adopted to correct class
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weight imbalance. In light of these constraints, studies will be carried out in the future
to accommodate a wider range of dataset and possibly utilize different hyper-parameter
tuning techniques.

6. Conclusions

This manuscript proposed a technique of identifying histopathological breast cancer
using lightweight separable convolution neural network trained on BreakHis dataset.
Image contrast enhancement and edge detection were implemented as pre-processing steps
to extract visual trainable characteristics in order to achieve high classification accuracy. The
proposed LWSC model implements a separable convolution layers stacked in parallel with
multiple filters of different sizes in order to obtain wider receptive fields as well as achieving
wider rather than deeper network. Factorization of convolution layers and the utilization
of bottleneck convolution layers to reduce model dimensionality were introduced in the
proposed LWSC model. The proposed work sufficiently decrease the amount of trainable
parameters as well as the computational cost, allowing the network to be developed
much deeper and with greater non-linear expressive capacity than plain convolution
networks. The proposed LWSC model outperforms several state-of-the-art models. The
evaluation results depict that the proposed LWSC model performs optimally obtaining
93.12% accuracy, 93.61% sensitivity and 94.07% specificity on binary category while on
multi-class category, the proposed LWSC obtained 97.23% accuracy, 97.71% sensitivity, and
97.93% specificity. From the comparative results of the other established techniques, it is
confirmed that the proposed LWSC model obtained state-of-the-art classification accuracy
which makes it an efficient solution for breast cancer diagnosis. These findings could
efficiently help expert histopathologist in maintaining a balance between accuracy and
precision while saving time.
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