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Abstract: Objectives: To establish and verify radiomics models based on multiparametric MRI for
preoperatively identifying the microsatellite instability (MSI) status of rectal cancer (RC) by comparing
different machine learning algorithms. Methods: This retrospective study enrolled 383 (training set,
268; test set, 115) RC patients between January 2017 and June 2022. A total of 4148 radiomics features
were extracted from multiparametric MRI, including T2-weighted imaging, T1-weighted imaging,
apparent diffusion coefficient, and contrast-enhanced T1-weighted imaging. The analysis of variance,
correlation test, univariate logistic analysis, and a gradient-boosting decision tree were used for the
dimension reduction. Logistic regression, Bayes, support vector machine (SVM), K-nearest neighbor
(KNN), and tree machine learning algorithms were used to build different radiomics models. The
relative standard deviation (RSD) and bootstrap method were used to quantify the stability of these
five algorithms. Then, predictive performances of different models were assessed using area under
curves (AUCs). The performance of the best radiomics model was evaluated using calibration and
discrimination. Results: Among these 383 patients, the prevalence of MSI was 14.62% (56/383). The
RSD value of logistic regression algorithm was the lowest (4.64%), followed by Bayes (5.44%) and
KNN (5.45%), which was significantly better than that of SVM (19.11%) and tree (11.94%) algorithms.
The radiomics model based on logistic regression algorithm performed best, with AUCs of 0.827 and
0.739 in the training and test sets, respectively. Conclusions: We developed a radiomics model based
on the logistic regression algorithm, which could potentially be used to facilitate the individualized
prediction of MSI status in RC patients.

Keywords: rectal cancer; microsatellite instability; algorithm; radiomics

1. Introduction

Rectal cancer (RC) is one of the leading causes of cancer-related death worldwide, and
it occurs with a series of genetic and protein abnormalities [1]. Of these, approximately
10% to 20% of RCs are caused by microsatellite instability (MSI), which manifests as
the loss of one or more mismatch repair (MMR) proteins. In contrast, RC patients with
microsatellite stability (MSS) have intact MMR proteins [2]. Research has shown that RC
patients with MSI have unique biological behaviors and distinct responses to treatment,
which may be resistant to 5-FU-based chemotherapy and more likely to benefit from
immunotherapy [3–5]. Therefore, the MSI status of RC patients is a key predictor of
treatment strategy and prognosis [6–8].

National Comprehensive Cancer Network (NCCN) and European Society for Medical
Oncology (ESMO) guidelines both recommend detecting MSI status in RC patients [9,10].
It is worth noting that preoperative MSI assessment can only be performed by endoscopic
biopsy [11,12]. However, the results of MSI detection may vary depending on insufficient

Diagnostics 2023, 13, 269. https://doi.org/10.3390/diagnostics13020269 https://www.mdpi.com/journal/diagnostics

https://doi.org/10.3390/diagnostics13020269
https://doi.org/10.3390/diagnostics13020269
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com
https://doi.org/10.3390/diagnostics13020269
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com/article/10.3390/diagnostics13020269?type=check_update&version=1


Diagnostics 2023, 13, 269 2 of 12

samples or sampling techniques due to tumor heterogeneity [13,14]. The DNA extracted
from the sample may not meet the minimum quality/quantity criteria for the genetic assay,
thus resulting in unknown MSI status. In addition, the risks and complications of invasive
biopsy limit its application in the real-time monitoring of disease progression and biological
behaviors [15]. Therefore, it is valuable to develop a non-invasive, repeatable, and cost-
effective MSI prediction method to guide clinicians to choose the next treatment strategy.

Radiomics can transform microscopic heterogeneity into quantitative features to cap-
ture the deep information of tumors [16–18]. A few scholars reported that radiomics based
on enhanced CT have certain value in predicting MSI of colorectal cancer [19–21]. However,
these studies were all based on CT and the subjects were colorectal cancer patients, while
the incidence of MSI varies with the location of colorectal cancer [22–24]. In addition,
two studies have found that CT-based tumor and peritumoral radiomic features can be
used as important biomarkers for the preoperative prediction of MSI status [25,26]. With
the development of imaging technology, MRI has gradually become the mainstream of
preoperative tumor evaluation [27]. A recent study enrolled 199 RC patients found that
the radiomics model based on multiparametric MRI have better predictive performance
than those based on single unenhanced sequence images, with AUCs of 0.78 and 0.78 in
the training and validation sets, respectively [28]. In addition, highly accurate and stable
prediction model can be constructed by comparing different machine learning algorithms
in order to improve the decision-making process in clinical practice [29]. Accordingly, the
predictive value of MRI-based radiomics in evaluating the MSI of RC patients still deserves
further attention.

Therefore, the purpose of this study was to extract radiomic features based on multi-
parametric MRI and construct a best noninvasive radiomic model by comparing different
machine learning algorithms in order to better preoperatively predict the MSI status of RC
patients. We believed that this predictive information will help stratify patients based on
MSI status and help optimize decisions for personalized cancer treatment.

2. Materials and Methods
2.1. Patients

This retrospective study was approved by our institute review board, and written
informed consent was waived. A total of 1274 patients with suspected RCs were included
between January 2017 and June 2022. Inclusion criteria included: (1) pathologically proven
RC; (2) received rectal MRI examinations one month before surgery; (3) no history of other
malignant tumors. Exclusion criteria included: (1) preoperative anti-tumor treatments;
(2) lack of complete clinicopathological data; (3) poor image quality caused by metal or
motion artifact. Finally, 383 patients were enrolled and divided into training (n = 268) and
test (n = 115) sets at a ratio of 7:3. The patient recruitment process is shown in Figure 1.

2.2. MRI Examinations

All MRI examinations were performed using a 3.0 T MRI scanner (Skyra; Siemens
Healthineers, Erlangen, Germany) equipped with an 8-channel phased-array coil in supine
position. The MRI protocol included the following sequences: (1) sagittal T2-weighted
imaging (T2WI): repetition time (TR)/echo time (TE), 6060/90 msec; field of view (FOV),
180 × 180 mm2; matrix, 320 × 224; (2) axial T2_blade_TSE: TR/TE, 4790/134 msec;
FOV, 200 × 200 mm2; matrix, 384 × 451; (3) axial T1-weighted imaging (T1WI): TR/TE,
662/9.6 msec; FOV, 180 × 180 mm2; matrix, 320 × 224; (4) axial diffusion-weighted
imaging (DWI) and apparent diffusion coefficient (ADC): TR/TE, 7330/56 msec; FOV,
200 × 200 mm2; matrix, 112 × 100; (5) contrast-enhanced T1WI (+C) was obtained by the
intravenous injection of a gadolinium contrast agent (Magnevist, Bayer, Germany): TR/TE,
616/9.6 msec; FOV, 180 × 180 mm2; matrix, 320 × 224.
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Figure 1. The patient recruitment process. (Note. MSS, microsatellite stability; MSI, microsatellite
instability).

2.3. Clinical and Radiological Data

Clinical data from our picture archiving and communication system, including age,
gender, carcinoembryonic antigen (CEA; levels greater than 5 ng/mL as abnormal), and
carbohydrate antigens 19-9 (CA19-9; levels greater than 37 U/mL as abnormal), were
retrospectively analyzed.

Radiological data were obtained from the structured report of rectum MRI, which
included tumor size (maximum diameter of the tumor on the sagittal section), distance
(DIS; distance from the end of the convex edge of the tumor to the edge of the anus),
radiological tumor (T) stage, lymph node (N) stage, MRI-based extramural venous invasion
(mrEMVI) status, circumferential resection margin (CRM), and anal canal invasion (ACI).
These features were independently assessed by two experienced radiologists. For qualita-
tive data, agreement was reached by negotiation when there was disagreement between
the two radiologists. For quantitative data, measurements from these two radiologists
were averaged.

2.4. Pathological Data

The MSI status of MMR proteins (MLH1, MSH2, PMS2, and MSH6) was evaluated
by immunohistochemistry staining. RC patients were divided into MSI group and MSS
group based on whether they were deficient in one or more MMR proteins [2]. Other
pathological data included differentiation, pathological tumor (pT) stage, lymph node (pN)
stage, and EMVI.

2.5. Tumor Segmentation

Before tumor segmentation, A.K. software (Analysis Kit, GE Healthcare, Hangzhou,
China) was used to adopt T2WI as the template for the rigid registration of T1WI, ADC,
and +C sequences to ensure that the four sequences contained the same resolution, spacing,
and origin. The standardized T2WI images were imported into open-source ITK-SNAP
software, and the whole rectal tumor was segmented slice-by-slice to determine the volume
of interest (VOI) for each patient by a radiologist with 5 years of experience in rectum MRI.
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According to the registration of different sequences, T1WI, ADC, and +C can share the
same VOI obtained from T2WI. Then, the segmentation results were validated by another
radiologist with more than 10 years of experience using intraclass correlation coefficient
(ICC) on a cohort of 30 randomly selected patients. The tumor segmentation procedure is
shown in Figure 2.
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Figure 2. Tumor segmentation procedure.

Figure 2 shows the representative results of the whole tumor on T2WI, T1WI, ADC,
and +C sequences using ITK software. Three-dimensional volumetric reconstruction of
segmented lesion is shown at the bottom right.

2.6. Radiomics Features Extraction and Selection

All segmented VOIs were imported into the Pyradiomics-based PHIgo software (GE
Healthcare, V1.2.0, Hangzhou, China) for feature extraction. A total of 1037 radiomics
features were extracted from each sequence, including four groups: (1) 18 first-order
features; (2) 14 shape-based features; (3) 75 texture features: 16 gray level run length
matrix features (GLRLM), 16 gray level size zone matrix (GLSZM), 5 neighboring gray
tone difference matrix (NGTDM), 24 gray level co-occurence matrix features (GLCM), and
14 gray level dependence matrices (GLDMs); (4) 930 transform features: 186 Laplacian of
Gaussian (LoG), and 744 wavelet transform features. T2WI, T1WI, ADC, and +C sequences
were used, affording 4148 radiomics features per patient.

The ICCs of the measurements from the two radiologists were applied to evaluate
inter-observer reliability and reproducibility. Features with ICCs > 0.80 were considered
robust features. Then, dimension reduction was performed using analysis of variance,
correlation test, univariate logistic analysis, and a gradient-boosting decision tree (GBDT)
to reduce data redundancy and to further select the best significant radiomics features.
Among them, gradient boosting sequentially combines weak learners in such a way that
each new learner fits to the residuals from the previous step. The final features aggregate
the results from each step and achieve powerful radiomics feature selection.

2.7. Model Construction and Evaluation

Five machine learning algorithms, including logistic regression, Bayes, support vector
machine (SVM), K-nearest neighbor (KNN), and tree algorithms were used to construct
radiomics models. The area under the receiver operating characteristic (ROC) curve



Diagnostics 2023, 13, 269 5 of 12

(AUC) and DeLong test were used to evaluate the performance of different models. The
500 bootstrap method and its relative standard deviation (RSD) were taken to quantify
the stability of these five algorithms. RSD = (the standard deviation of the 500 AUCs
of each algorithm)/(the corresponding mean value of the 500 AUCs) × 100% [30]. The
lowest RSD represented the best stability of the algorithm. Radiomics score (rad-score)
was calculated via a linear combination of remaining features that were weighted by their
respective coefficients to quantify the discriminability of the best radiomics model. The
Hosmer–Lemeshow test were used to assess the goodness-of-fit of the best model. Then,
patients were classified into high-risk and low-risk groups according to the best model to
evaluate the predictive performance.

2.8. Statistical Analysis

Statistical analyses were performed with SPSS software (version 24.0, Chicago, IL,
USA) and R software (version 3.4.1, Vienna, Austria). The two-sample t test or Mann–
Whitney U test if not normally distributed was used for continuous variables, and results
were expressed as mean ± standard deviation or median (interquartile range). Chi-squared
test or Fisher’s exact test was used for categorical variables, and the results were expressed
as numbers (percentages). Statistical significance was set at two-sided p < 0.05.

3. Results
3.1. Patients’ Characteristics

Among the 383 patients, the prevalence of MSI was 14.62% (56/383). In terms of MSS
and MSI groups, there were no significant differences in any of the clinical, radiological,
and pathological variables between the two groups in the whole, the training, and the test
sets (p > 0.05, Tables 1 and 2).

Table 1. Variables between MSS and MSI in the whole patients.

Variables MSS (n = 327) MSI (n = 56) p

Clinical features
Age, mean ± SD 64.5 ± 10.6 64.1 ± 10.1 0.784
Gender (men, %) 228 (69.7) 36 (64.3) 0.416

CEA (abnormal, %) 127 (38.8) 21 (37.5) 0.849
CA19-9 (abnormal, %) 31 (9.5) 6 (10.7) 0.773

Radiological features
Size (IQR) 3.9 (1.8) 3.5 (2.0) 0.683
DIS (IQR) 7.7 (4.7) 7.9 (5.9) 0.850

T stage (T3–4, %) 235 (71.9) 44 (78.6) 0.297
N stage (positive, %) 200 (61.2) 39 (69.6) 0.226
mrEMVI (positive, %) 74 (22.6) 18 (32.1) 0.124

CRM (positive, %) 74 (22.6) 15 (26.8) 0.496
ACI (positive, %) 15 (4.6) 3 (5.4) 0.801

Pathological features
Differentiation (n, %) 0.935

Poorly 56 (17.1) 10 (17.9)
Moderately 249 (76.1) 43 (76.8)

Well 22 (6.7) 3 (5.4)
pT stage (T3–4, %) 218 (66.7) 38 (67.9) 0.880

pN stage (positive, %) 131 (40.1) 25 (44.6) 0.557
EMVI (positive, %) 112 (34.3) 20 (35.7) 0.879
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Table 2. Variables of patients between MSS and MSI in the training and test sets.

Variables
Training Set (n = 268) Test Set (n = 115)

MSS (n = 229) MSI (n = 39) p MSS (n = 98) MSI (n = 17) p

Clinical features
Age, mean ± SD 64.2 ± 10.4 64.3 ± 9.7 0.971 65.3 ± 11.0 63.8 ± 11.3 0.599
Gender (men, %) 158 (69.0) 27 (69.2) 0.977 70 (71.4) 9 (52.9) 0.129

CEA (abnormal, %) 93 (40.6) 14 (35.9) 0.578 34 (34.7) 7 (41.2) 0.606
CA19-9 (abnormal, %) 26 (11.4) 3 (7.7) 0.688 5 (5.1) 3 (17.6) 0.174

Radiological features
Size (IQR) 3.8 (1.6) 3.5 (2.5) 0.632 4.0 (2.4) 3.8 (1.8) 0.956
DIS (IQR) 7.5 (5.0) 7.4 (5.1) 0.573 8.0 (4.1) 10.6 (6.8) 0.181

T stage (T3–4, %) 161 (70.3) 31 (79.5) 0.240 74 (75.5) 13 (76.5) 0.932
N stage (positive, %) 140 (61.1) 28 (71.8) 0.203 60 (61.2) 11 (64.7) 0.785

mrEMVI (positive, %) 48 (21.0) 12 (30.8) 0.174 26 (26.5) 6 (35.3) 0.652
CRM (positive, %) 55 (24.0) 11 (28.2) 0.575 19 (19.4) 4 (23.5) 0.948
ACI (positive, %) 10 (4.4) 3 (7.7) 0.624 5 (5.1) 0 (0.0) 0.758

Pathological features
Differentiation (n, %) 0.954 0.528

Poorly 40 (17.5) 6 (15.4) 16 (16.3) 4 (23.5)
Moderately 173 (75.5) 30 (76.9) 76 (77.6) 13 (76.5)

Well 16 (7.0) 3 (7.7) 6 (6.1) 0 (0.0)
pT stage (T3–4, %) 150 (65.5) 25 (64.1) 0.865 68 (69.4) 13 (76.5) 0.588

pN stage (positive, %) 97 (42.4) 19 (48.7) 0.488 34 (34.7) 6 (35.3) 0.962
EMVI (positive, %) 77 (33.6) 14 (35.9) 0.855 35 (35.7) 6 (35.3) 0.973

Note. MSS, microsatellite stability; MSI, microsatellite instability; CEA, carcinoembryonic antigen; CA19-9,
carbohydrate antigens 19-9; DIS, distance from the end of the convex edge of the tumor to the edge of the
anus; mrEMVI, MRI-based extramural venous invasion; CRM, circumferential resection margin; ACI, anal canal
invasion; EMVI, extramural venous invasion; SD, standard deviation; IQR, interquartile range.

3.2. Radiomics Features Selection

A total of 4148 radiomics features were extracted from each patient. Then, 2816 robust
features with ICCs > 0.80 were obtained and used for dimension reduction. Firstly, analysis
of variance on the 2816 robust features was performed. The variance of each feature was
calculated, and then the features greater than the threshold 1 were retained. In this study,
analysis of variance selected 1752 features. Secondly, dimensionality reduction of the
selected 1752 features was performed using correlation test and univariate logistic analysis,
and 234 and 22 features were selected successively. Following GBDT, 11 features were
ultimately retained from the four sequences—T2WI (n = 1), T1WI (n = 1), ADC (n = 2),
and + C (n = 7)—to construct the radiomics models. Among these 11 features, there were 4
LoG transform features and 7 wavelet transform features, as shown in Figure 3.

3.3. Model Construction and Comparison

The RSD value of the radiomics model based on logistic regression was the lowest
(4.64%), followed by Bayes (5.44%) and KNN (5.45%), which was significantly better than
that of the SVM (19.11%) and tree (11.94%) algorithms, as shown in Figure 4.

Among the five different radiomics models, the logistic model performed best with
AUCs of 0.827 and 0.739 in the training and test sets, respectively, followed by the Bayes
model with AUCs of 0.817 and 0.713, respectively, although there were no statistical
differences (p > 0.05, Table 3 and Figure 5). In addition, the DeLong test showed that the
prediction performance of the logistic model performed better than that of the SVM model
(AUC = 0.783, p = 0.013) and the tree model (AUC = 0.590, p < 0.001) in the training set.
Furthermore, the logistic model performed better than that of the KNN model (AUC = 0.606,
p = 0.047) and the tree model (AUC = 0.520, p < 0.001) in the test set (Table 3 and Figure 5).
Additional performance metrics of the logistic model (F1 score, 0.417; Matthews correlation
coefficient, 0.337; G-mean, 0.723) were all higher than those of the other four models in the
test set.
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Table 3. Predictive performance of different models in training and test sets.

Models
Training Set Test Set

AUC (95% CI) Sensitivity Specificity AUC (95% CI) Sensitivity Specificity

Logistic 0.827 (0.776, 0.870) 0.923 0.616 0.739 (0.649, 0.816) 0.882 0.663
Bayes 0.817 (0.766, 0.862) 0.795 0.773 0.713 (0.622, 0.794) 0.824 0.592
SVM 0.783 (0.728, 0.830) 0.821 0.673 0.688 (0.595, 0.772) 1.000 0.398
KNN 0.854 (0.806, 0.894) 0.821 0.756 0.606 (0.510, 0.696) 0.765 0.418
Tree 0.590 (0.528, 0.649) 0.180 1.000 0.520 (0.425, 0.614) 1.000 0.041

Note. AUC, area under the receiver operating characteristic curve; CI, confidence interval.
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3.4. Logistic Model Verification

The logistic model exhibited good calibration in the training set (p = 0.401) and the
test set (p = 0.153) using the Hosmer–Lemeshow test. The Rad-score was calculated using
the following formula:

Rad-score = −2.467 + 0.542 × T1WI-log-sigma-3-0-mm-3D_glrlm_LongRunLowGray
LevelEmphasis

+ 0.305 × T2WI-wavelet-LLH_glszm_SmallAreaLowGrayLevelEmphasis
+ 0.403 × ADC-wavelet-LLH_ngtdm_Busyness
− 0.204 × ADC-log-sigma-3-0-mm-3D_glcm_Correlation
− 0.377 × +C-log-sigma-3-0-mm-3D_glcm_Imc1
+ 0.245 × +C-log-sigma-3-0-mm-3D_glszm_SmallAreaLowGrayLevelEmphasis
+ 0.210 × +C-wavelet-LLH_glcm_Imc1
− 0.087 × +C-wavelet-HLL_glszm_SmallAreaEmphasis
− 0.378 × +C-wavelet-HHL_glszm_SizeZoneNonUniformityNormalized
− 0.591 × +C-wavelet-LLL_glcm_InverseVariance
− 0.877 × +C-wavelet-HLH_glrlm_RunVariance
The Rad-scores in the MSI group were significantly higher than in the MSS group in

both the training and test sets (p < 0.05, Figure 6). Red represents MSS, and blue represents
MSI in the rad-score plot (Figure 7a). Patients with rad-scores greater than −2.260 were
stratified into the high-risk group, and the others were stratified into the low-risk group.
There were significant differences in the number of patients whose predicted MSI were
between the low-risk and high-risk groups in both the training and test sets (p < 0.001),
indicating the clinical applicability of the logistic model (Figure 7b).
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4. Discussion

The preoperative prediction of MSI is of great significance for clinical decision making
and prognosis. In this study, five different machine learning algorithms were compared,
and the results showed that the logistic regression algorithm had the best stability. The
logistic radiomics model based on multiparametric MRI can effectively predict MSI status
and proved that it had great potential in the noninvasive preoperative prediction of MSI in
RC patients.

Imaging can better capture the overall heterogeneity of the tumor and is superior
to invasive tissue biopsy with sampling error due to insufficient samples or sampling
techniques. Several studies have reported the correlation between CT-based radiomics and
MSI status in colorectal cancer patients [19–23]. However, CT scan results in more radia-
tion in patients receiving preoperative therapy and follow-up. Multiparametric MRI can
provide more useful information and is recommended as the preferred examination for RC
patients. Moreover, compared with MSS, colorectal cancer patients with MSI have distinct
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clinical and pathological features, including proximal colonic dominance and poor tumor
differentiation [22,23]. In our study, the prevalence of MSI was 14.62% (56/383) in RC cases,
which was consistent with the incidence of 10% to 20% in previous studies [26,31,32]. There
were no significant differences in clinical, radiological, and pathological features between
MSI and MSS in our study. Therefore, it is urgent to mine more in-depth quantitative
radiomics features based on multiparametric MRI to predict MSI in RC patients.

Currently, only a few recently published studies have developed MRI-based radiomics
for the preoperative prediction of MSI in RC patients [31–33]. However, the radiomics
features extracted from these studies were all first-order, shape-based, and texture features.
In addition to the above features, LoG and wavelet transform features were extracted in
our study, in accordance with the Image Biomarker Standardization Initiative (IBSI) [34].
Surprisingly, the 11 features retained in our study were all LoG (n = 4) and wavelet
(n = 7) transform features, indicating that transform features can capture more valuable
information related to MSI in RC patients and better reflect the biological characteristics
and heterogeneity of tumors [35]. Furthermore, the rad-score calculated based on these
11 features was significantly higher in MSI than in MSS, which was consistent with a
previous study on CT-based radiomics for predicting MSI in colorectal cancer [22]. These
findings indicate that quantitative radiomics features have certain value in predicting MSI
in RC patients, which deserves further research and exploration.

In addition, radiomics models based on machine learning algorithms have attracted
great attention to overfitting. Previous studies have used different algorithms to construct
models [31–33]. The most valuable part of our study was the comparison of five different
commonly used machine learning algorithms. The results showed that logistic regression
algorithm had the lowest RSD (4.64%), followed by Bayes (5.44%) and KNN (5.45%),
which was significantly better than that of SVM (19.11%) and tree (11.94%) algorithms.
Therefore, the logistic regression algorithm with the best stability had great potential in
predicting the MSI status of RC patients. Besides, the radiomics model based on the
logistic regression algorithm performed best in predicting MSI, with AUCs of 0.827 and
0.739 in the training and test sets, respectively. Encouragingly, the logistic model can
also afford the good classification and recognition of MSI status in RC patients, further
demonstrating its superiority in clinical application. These confirmed that radiomics based
on multiparametric MRI can noninvasively extract deeper quantitative image information
and timely capture and reflect the biological characteristics of tumors. These also realized
the preoperative individualized prediction of MSI status in RC patients, which was in line
with the current trend of personalized and precise medicine.

Some limitations should be noted. Firstly, this retrospective study may lead to selection
bias. Secondly, this study was a single-center study with a limited sample size. Therefore,
further studies using large-scale multicenter prospective study are needed to reduce the
impact of selection bias and to verify our findings. Finally, the manual segmentation may
be affected by subjective evaluation, which may not be suitable for data processing in large
samples. It is necessary to further find a suitable algorithm for automatic segmentation.

5. Conclusions

In conclusion, we compared and selected the optimal logistic regression machine
learning algorithm to construct a radiomics model based on multiparametric MRI in this
study. The logistic model was an effective and noninvasive approach for predicting the
MSI status of RC patients and demonstrating better predictive performance, which could
potentially be used to facilitate the individualized prediction of MSI status. Our study also
provided important evidence for the potential use of the radiomics model for individualized
treatment and improve the long-term survival outcomes of RC patients in the future.
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