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Abstract: Among humanized monoclonal antibodies, bevacizumab specifically binds to vascular
endothelial growth factor A (VEGF-A). VEGF-A is an overexpressed biomarker in cervix carcinoma
and is involved in the development and maintenance of tumor-associated neo-angiogenesis. The non-
invasive positron emission tomography using radiolabeled target-specific antibodies (immuno-PET)
provides the longitudinal and quantitative assessment of tumor target expression. Due to antibodies
having a long-circulating time, radioactive metal ions (e.g., 52Mn) with longer half-lives are the best
candidates for isotope conjugation. The aim of our preclinical study was to assess the biodistribution
and tumor-targeting potential of 52Mn-labeled DOTAGA-bevacizumab. The VEGF-A targeting
potential of the new immuno-PET ligand was assessed by using the VEGF-A expressing KB-3-1
(human cervix carcinoma) tumor-bearing CB17 SCID mouse model and in vivo PET/MRI imaging.
Due to the high and specific accumulation found in the subcutaneously located experimental cervix
carcinoma tumors, [52Mn]Mn-DOTAGA-bevacizumab is a promising PET probe for the detection of
VEGF-A positive gynecological tumors, for patient selection, and monitoring the efficacy of therapies
targeting angiogenesis.

Keywords: 52Mn; bevacizumab; cervix carcinoma; positron emission tomography; VEGF

1. Introduction

Cervical carcinoma is the fourth most common gynecologic malignancy in women
behind, breast, colorectal, and lung cancer. In 2018, more than 500,000 women were
diagnosed worldwide with cervical cancer, and of this high number, unfortunately, we
have lost more than 300,000 patients with an incidence of 13.1/100,000 [1,2]. Improving the
overall five-year survival rate, which was only 66% between 2010 and 2016, is essential [3].

Tumor-associated angiogenesis is a great concern, and it can immensely contribute
to the progression and mortality of the disease. One of the players in tumor angiogenesis
is the vascular endothelial growth factor (VEGF) family [4]. Different subtypes of VEGF
exist (VEGF-A, -B, -C, -D, -E, and PDGF) from which VEGF-A is responsible for blood
vessel growth. Its physiological role is to contribute to embryological, reproductive, and
bone angiogenesis. VEGF-A can be overexpressed by several types of malignant cells.
After secretion, VEGF can bind to VEGF receptors (VEGFR) located on the surface of
endothelial cells. VEGF-A has a higher affinity to tyrosine kinase receptors such as VEGFR-
1 and VEGFR-2. Mainly through VEGFR-2, signaling pathways can become activated
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(e.g., PI3K-Akt and PLCγ-PKC-MAPK pathways) that lead to both tumor growth and
angiogenesis [5].

Bevacizumab, as an anti-VEGF antibody, is a widely used monoclonal antibody in
the therapy of advanced cervical cancer [6]. It can block the proliferation and angiogen-
esis of cancer cells and, therefore, slow the progression of cervical carcinoma by bind-
ing to VEGF [7]. However, no biomarker has been developed that would be a useful
modality to predict the effectiveness of bevacizumab therapy and monitor later-developed
drug resistance.

Nuclear medicine plays an important role in diagnosing and staging malignancies and
in treatment planning using 18F-FDG PET/CT [8]. Molecular imaging has further potential
through radiolabeling targeted therapeutic agents, such as bevacizumab (immuno-PET) [9].
Within the tools of nuclear medicine and molecular imaging, PET/CT and PET/MRI—as
hybrid imaging techniques—make visual assessment possible; moreover, the appearance
of each lesion can be described objectively using numerical parameters obtained from the
images [10].

Monoclonal antibodies are promising candidates for molecular imaging, as they specif-
ically bind to their target molecule, and their labeling with a radioactive isotope can be
easily carried out. Antibodies have a long circulation time in the blood, and due to this
property, radioactive metal ions with a long half-life are the most suitable for their radioiso-
tope labeling; however, metal ions are not capable of direct binding to immunoglobulins, so
the use of chelating agents is necessary [9]. It is difficult to find an isotope that forms a stable
metal ion-chelator complex. Several isotopes (e.g., 89Zr, 86Y, 64Cu, 111In) conjugated with
bevacizumab have been investigated, from which zirconium-89 (89Zr) positron-emitting
isotope seemed to be the most promising due to its ideal half-life (t1/2 = 3.27 days) [11]. A
chelator suitable for the coordination sphere of 89Zr, which can prevent its release from
the complex leading to the accumulation of the isotope in the bones, has not been found
so far [12]. According to this, the use of an isotope whose stable complex can be more
easily produced would be a safer and better choice for patients. Manganese-52 (52Mn)
(t1/2 = 5.59 days) is a novel positron-emitting isotope, so there is not much literature about
its use as a PET radiotracer, but a lot of data on the complex-forming properties of Mn2+

ion have been collected due to the use of manganese as an MRI contrast agent [13–16].
The aim of this preclinical study was to investigate the in vivo biodistribution and

tumor targeting potential of the newly synthesized 52Mn-labeled DOTAGA-bevacizumab
PET probe in the VEGF-A positive cervix carcinoma tumor-bearing mouse model.

2. Materials and Methods
2.1. General

For the radioactivity measurements, a Perkin Elmer Wizard gamma counter and
the MED Isomed 2010 dose calibrator were used. To confirm the success of the labeling
reactions, a radio-HPLC was used with the Waters Acquity UPLC I-class system, connected
to a radioactivity detector (Berthold LB513; Radchem Co. Ltd., Budapest, Hungary) with a
20 µL plastic scintillator (MX) cell.

2.2. Chemicals

Rotipuran Ultra H2O (u.p. H2O), 34% Rotipuran Ultra HCl (u.p. HCl), and
Pufferan ≥ 99.5% Cellpure HEPES were purchased from Carl Roth. Ultra-pure ammo-
nium acetate (u.p. NH4OAc) was bought from VWR. HPLC-MS grade ACN was provided
by Scharlau. The Xbridge Premier Protein SEC column (250 Å 2.5 µm, 4.6 × 150 mm) was
supplied by Waters.

2.3. Radiolabeling

Bevacizumab (Avastin®; Roche Pharma AG, Grenzach-Wyhlen, Germany) was deriva-
tized with a fivefold excess of 2,2′,2”-(10-(1-carboxy-4-((4-isothiocyanatobenzyl)amino)-4-
oxobutyl)-1,4,7,10-tetraazacyclododecane-1,4,7-triyl)triacetic acid (p-NCS-Bn-DOTA-GA;
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Chematech) in NaHCO3 buffer (pH 8.2) at room temperature. DOTAGA-bevacizumab was
purified by ultrafiltration on an Amicon Ultra (Merck KGaA, Darmstadt, Germany), 0.5 mL,
30 kDa centrifugal filter (Millipore). Radiolabeling was implemented at pH 6 for 15 min at
room temperature. The required pH value was adjusted by sodium-acetate (0.04 M) buffer
and sodium hydroxy. The efficiency of radiolabeling was followed by Raytest miniGita
Star radio-thin layer chromatography scanner. 3 µL of the reaction mixture was dropped
onto a glass macrofibre chromatography paper impregnated with silica gel (iTLC-SG) strip
and developed in 0.1 M sodium citrate solution. [52Mn]Mn-DOTAGA-bevacizumab was
remained near the start point (Rf = 0.1–0.2), whereas 52MnII as citrate complex was eluted
with the solvent front (Rf = 0.8–1). The [52Mn]Mn-DOTAGA-bevacizumab product was
used without further purification in experiments.

2.4. Determination of In Vitro Stability of [52Mn]Mn-DOTAGA-Bevacizumab

[52Mn]Mn-DOTAGA-bevacizumab was diluted with fourfold excess of 0.01 M EDTA
(pH 7.3), 0.01 M oxalic acid (pH 5.7), and mouse serum solution to investigate its stability.
In the case of stability experiments against EDTA and oxalix acid, the reaction was carried
out at 25 ◦C for 0.17, 1.5, 3, 21, and 47 h. In the case of stability investigation in mouse
serum, the reaction mixture was incubated at 37 ◦C, and sampling was performed at 0.2,
4, 22, 47, 118, and 167 h, where samples were diluted fivefold with water before directly
injected into UPLC. In each case, samples were analyzed on an Xbridge Premier Protein
SEC 250 column (Waters) using an isocratic method with 0.45 mL/min flow rate, where the
liquid phase was 100 mM ammonium acetate (pH 7.2) solution.

2.5. Cell Lines

Human KB-3-1 cervix carcinoma cell line [17] was obtained from Dr. Katalin Goda
(University of Debrecen, Faculty of Medicine, Department of Biophysics and Cell Biol-
ogy). For cell culturing, the Dulbecco’s Modified Eagle’s medium (DMEM, GIBCO Life
Technologies Magyarország Ltd., Budapest, Hungary) was used supplemented with Fetal
Bovine Serum (10%, heat-inactivated FBS from GIBCO, Life technologies Magyarország
Ltd., Budapest, Hungary) and Antibiotic and Antimycotic solution (1%, Sigma-Aldrich,
Merck KGaA, Darmstadt, Germany). KB-3-1 cells were maintained at standard culturing
conditions (5% CO2 and 37 ◦C). For subcutaneous tumor inoculation, cervix carcinoma
cells were used at 80% confluency, and the cell viability was confirmed by the trypan blue
exclusion test.

2.6. In Vivo Cervix Carcinoma Tumor Model

Immunodeficient CB17 SCID mice (12-week-old; female; n = 35) were housed under
sterile conditions in individually ventilated cage system (IVC cages, Techniplast, Akro-
nom Ltd., Budapest, Hungary) under standard conditions (25 ± 2 ◦C and 55 ± 10%).
A sterile semi-synthetic rodent diet (SDS VRF, Animalab Ltd., Budapest, Hungary) and
sterile tap water were available ad libitum to all the experimental animals. Experimental
animals were kept and treated in accordance with all the corresponding paragraphs of the
Hungarian Ethical Laws and the regulations of the European Union (permission number:
16/2020/DEMÁB).

For the establishment of the KB-3-1 cervix carcinoma tumor model, experimental
animals were anesthetized by 3% isoflurane (Forane, AbbVie, Budapest, Hungary; OGYI-T-
1414/01), O2 0.4 L/min and N2O 1.2 L/min (Linde Healthcare, Budapest, Hungary; OGYI-
T-20607 and OGYI-T-21090, respectively) using the Tec3 Isoflurane Vaporizer anesthesia
device (Eickemeyer, Sunbury-on-Thames, Surrey, UK), then 5 × 106 KB-3-1 tumor cells
in saline (150 µL 0.9% NaCl) were injected subcutaneously into the right shoulder area
of the experimental animals. In vivo imaging and ex vivo biodistribution studies were
carried out 11 ± 1 days after the implantation of KB-3-1 cancer cells at the tumor volume of
approximately 75 mm3.
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2.7. In Vivo PET/MRI Imaging

KB-3-1 cervix carcinoma tumor-bearing mice were anesthetized by 1.5% isoflurane,
and for the anatomical localization of the investigated tissues, whole-body MRI scans
(T1-weighted) were performed using the preclinical nanoScan PET/MRI system (Mediso
Ltd., Budapest, Hungary). The 3D GRE EXT multi-FOV MRI parameters were set as
follows: TR/TE 15/2 ms; phase: 100; FOV 60 mm; NEX 2. After MRI imaging, animals
were injected intravenously with 9.43 ± 1.03 MBq of 52MnCl2, [52Mn]Mn-DOTAGA, or
[52Mn]Mn-DOTAGA-bevacizumab and dynamic PET scans were performed. The co-
registered and reconstructed (3D-OSEM algorithm with Tera-Tomo reconstruction software,
Mediso Ltd., Budapest, Hungary) decay-corrected PET images were analyzed by the
InterView™ FUSION (Mediso Ltd., Budapest, Hungary) image analysis software. Volumes
of Interest (ellipsoidal 3-dimensional VOIs) were manually drawn around the edge of the
activity of the investigated tissues and organs by visual inspection. The accumulation of
the 52Mn-labeled probes was expressed in terms of standardized uptake values (SUVs).

2.8. Immunohistochemistry

For the detection of the VEGF-A expression of the subcutaneously growing KB-3-
1 cervix carcinoma, xenografts cryosections (5 µm thick) were made from the tumors.
Sections were dried, fixed (10 min at −20 ◦C in pre-cooled acetone), blocked (20 min with
1% BSA-PBS), and were further incubated at 24 ◦C with anti-human VEGF Alexa Fluor®

488-conjugated monoclonal antibody (IC2931G; Bio-Techne R&D Systems Ltd. Budapest,
Hungary). For nuclear counterstaining DAPI, (MBD0020; DAPI ready-made solution with
Antifade; Merck, Darmstadt, Germany) was used. For fluorescence imaging, the Zeiss LSM
510 confocal laser-scanning microscope was used.

2.9. Statistical Analysis

The statistical significancy was assessed by the Student’s t-test (two-tailed), two-
way ANOVA, and Mann-Whitney U-test using the MedCalc software (MedCalc Software
v18.5., Mariakerke, Belgium; https://www.medcalc.org, accessed on 17 December 2022).
Quantitative data were presented as mean ± SD, and the level of significance was set at
p < 0.05.

3. Results

3.1. Radiolabeling and Characterization of [52Mn]Mn-DOTAGA-Bevacizumab

The chemical purity of the DOTAGA-bevacizumab precursor was verified with an
HPLC-UV-MS system. The DOTAGA/bevacizumab ratio was calculated based on the
consumption of DOTAGA pSCN-Bn, during which the DOTAGA/bevacizumab ratio
was 4.42 ± 0.26. DOTAGA-bevacizumab was labeled with 52MnCl2 (Figure 1) with a
specific activity of 0.01 MBq/µg. The final radiochemical yield (RCY) was >90%, measured
by thin-layer chromatography. The stability of [52Mn]Mn-DOTAGA-bevacizumab was
investigated in EDTA, oxalic acid solution, and mouse serum and assessed by size-exclusion
chromatography. [52Mn]Mn-DOTAGA-bevacizumab was stable against EDTA and oxalic
acid, with only about a 5% decrease in radiochemical yield over 48 h (Figure 2A). The
radiochemical yield of [52Mn]Mn-DOTAGA-bevacizumab was above >70% for up to 7 days
in mouse serum (Figure 2B).

https://www.medcalc.org
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serum (B).

3.2. Biodistribution and PET/MRI Imaging Studies

For the assessment of VEGF receptor specificity of [52Mn]Mn-DOTAGA-bevacizumab,
in vivo tissue distribution studies were executed by healthy and KB-3-1 tumor-bearing SCID
mice. In the first experiments, for the confirmation that the newly synthesized [52Mn]Mn-
DOTAGA-bevacizumab probe is stable in vivo, the uptake values of the biodistribution
were compared to that of 52MnCl2 (Figure 3) and [52Mn]Mn-DOTAGA in healthy control
mice (Figure 4). The SUVmean values of the selected organs were assessed at seven different
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time points (4 h, 1, 2, 3, 5, 7, and 10 days) after tracer injection. The qualitative PET image
and the quantitative SUV data analysis showed that the accumulation of 52MnCl2 in the
liver and kidney cortex was initially remarkable; however, the 52MnCl2 content in these
organs decreased with time. The activity concentration of the pancreas and salivary glands
also showed high values, which did not decrease as time progressed (Figure 3).
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In the case of [52Mn]Mn-DOTAGA, only the uptake of the lungs was prominent;
however, this was also decreased rapidly, and [52Mn]Mn-DOTAGA showed very low
uptake values in all of the other investigated organs due to the rapid clearance at the
early time points (Figure 4). [52Mn]Mn-DOTAGA-bevacizumab showed elevated uptake
in the blood, liver, kidney, spleen, and lung, although a continuous decrease in activity
concentration was also observed in these organs till ten days post-injection (Figure 5). In
summary, [52Mn]Mn-DOTAGA showed significantly lower uptake in all examined organs
than that of the two other radiotracers.

The biodistribution and VEGF-A receptor specificity of the newly synthesized [52Mn]Mn-
DOTAGA-bevacizumab was assessed by preclinical PET/MRI imaging using KB-3-1 tumor-
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bearing mice. After the qualitative image analysis, it was found that the subcutaneously
growing KB-3-1 cervix tumors were identifiable from 4 h after the tracer injection; moreover,
an increasing accumulation of radiopharmaceuticals was observed as time progressed
(Figure 5A). The quantitative SUV analysis of the PET images showed that the accumulation
of [52Mn]Mn-DOTAGA-bevacizumab was increasing until day 2–3 (SUVmean: approx. 2)
in the KB-3-1 tumors, then a decrease was observed with slow kinetics; however, the
accumulation remained high for the rest of the investigated time points (SUVmean: approx.
1.2 at day ten post-injection) (Figure 5B, insert). The presence of VEGF-A in the examined
tumors was confirmed by immunohistochemical staining performed on day ten post
injection of [52Mn]Mn-DOTAGA-bevacizumab, and a strong expression was found in the
membrane of the cancer cells (Figure 5C) confirming the target-specific property of the
radiopharmaceutical.
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as mean ± SD and obtained from n = 5 animals.
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Figure 5. In vivo PET/MRI imaging of KB-3-1 cervix carcinoma tumor-bearing mice (A). Representa-
tive decay-corrected coronal PET/MRI images were obtained from 4 h to 10 days post injection of
[52Mn]Mn-DOTAGA-bevacizumab. White arrows: subcutaneously growing KB-3-1 cervix tumors.
(B) The panel shows the biodistribution and the average time-activity curve (TAC) for the VEGF-A
positive KB-3-1 tumors 4 h, 1, 2, 3, 5, 7, and 10 days after the intravenous injection of approximately
10 MBq of [52Mn]Mn-DOTAGA-bevacizumab. SUV: standardized uptake value. Data are presented
as mean ± SD and obtained from n = 5 animals/time point. (C) panel demonstrates the VEGF-A
positivity of subcutaneously growing KB-3-1 tumor by immunohistochemical study. Upper image:
VEGF-A receptors (green color by Alexa-488 staining); lower image: VEGF-A receptors and nuclear
counterstaining (blue color by DAPI staining).

Tumor-to-organ ratios (SUVmean tumor/SUVmean organ) were assessed by quantitative
SUV data analysis of the PET images obtained from KB-3-1 tumorous mice after the i.v.
injection of [52Mn]Mn-DOTAGA-bevacizumab. It was generally observed that the ratio of
the SUVmean values started to plateau 2–3 days after 52Mn-labeled DOTAGA-bevacizumab
was injected, and these ratios remained high until the end of the study (ten days post-
injection); however, in some cases (tumor-to-liver, -blood, -spleen) a slight increase was
observed in the SUVmean ratios from day three to day ten post-injection of [52Mn]Mn-
DOTAGA-bevacizumab (Figure 6).
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4. Discussion

Among humanized monoclonal antibodies, bevacizumab specifically binds to vascular
endothelial growth factor A (VEGF-A), which is an overexpressed biomarker in different
tumor types and plays an important role in the development and maintenance of tumor-
associated angiogenesis. The standard protocol for biomarker quantification is generally
biopsy sampling and immunohistochemistry (IHC) or mRNA validation. Nevertheless, the
evaluation of biomarker expression is influenced by the tumor heterogeneity and sampling
errors. In addition, repetitive biopsies and histopathological confirmation are required
to monitor treatment response, making clinical use challenging [18,19]. In contrast, the
nanomolar sensitivity of the non-invasive positron emission tomography using radiola-
beled target-specific monoclonal antibodies (immuno-PET) provides the longitudinal and
quantitative assessment of tumor target expression [20,21].

In this present study, the VEGF-A targeting ability of the new immuno-PET probe was
assessed by using the VEGF-A expressing KB-3-1 (human cervix carcinoma) tumor-bearing
CB17 SCID mouse model and in vivo PET/MRI imaging. The new [52Mn]Mn-DOTAGA-
bevacizumab PET probe was synthesized with high radiochemical purity and appropriate
stability properties (Figures 1 and 2). Similar stability data were also described by other
authors (e.g., 99mTc-labeled BevMab-DTPA, 131I-bevacizumab); however, they examined
the stability in serum for 24 and 48 h, respectively, due to the difference in the half-life of
the radionuclides used [22,23].

By the biodistribution studies, it has been found that the fastest clearance was seen
with [52Mn]Mn-DOTAGA through the kidney, and therefore, its activity was very low at
all the investigated time points (Figure 4). 52MnCl2 (Figure 3) and [52Mn]Mn-DOTAGA-
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bevacizumab needed longer time for excretion. 52Mn2+ was excreted mainly via the kidneys,
while the antibody stayed in the blood for a long time and showed relatively high uptake
in the lung (Figure 5).

Bevacizumab is specific for the human VEGF and inhibits its biological activity [24].
It is also known that the presence and over-expression of VEGF in cervix carcinomas is
an outstanding prognostic marker and is associated with poor patient survival [25,26].
Accordingly, we also found strong positivity for VEGF expression by immunohistochemical
studies and found high and specific accumulation of [52Mn]Mn-DOTAGA-bevacizumab in
the VEGF-A positive KB-3-1 cervical cancer xenografts (Figure 5), however. In addition, an
important parameter for the assessment of PET images is the radioactivity concentration of
healthy organs and tissues compared to the tumor. These data also provide information on
non-specific and off-target binding. The evaluation of these data is also important due to it
was observed that bevacizumab binds with high affinity to, for example, brain receptors
(dopamine, GABA, histamine), whereas the amounts of substances used in PET diagnostics
do not cause a pharmacological effect or side-effect [24]. In this present study, the tumor-
to-background ratios increased and reached a plateau 2–3 days after the administration of
52Mn-labeled bevacizumab and remained high until the end of the study, indicating the
specific accumulation and high binding affinity in the tumors (Figure 6).

From our observations, we can conclude that [52Mn]Mn-DOTAGA-bevacizumab could
be a useful tracer for patient selection to bevacizumab therapy, as well as monitoring the
efficacy of the targeted therapy and later developed drug resistance. Numerous preclinical
studies have been published using different isotopes for this purpose, including 116Ho,
89Zr, 111In, 86Y, and 99mTc [27–31]. Furthermore, several human clinical studies are known
from the literature in which 89Zr-labeled bevacizumab has outstanding tumor targeting
and PET imaging ability [32–37]. However, the above-mentioned isotopes have shorter
half-lives than 52Mn. Since bevacizumab stays in the circulation for a long time, and tumor-
to-background ratios remain elevated for several days, 52Mn may potentially be a more
ideal candidate to use for immunoPET imaging of anti-VEGF target drug than isotopes
with shorter half-lives. Moreover, the favorable and well-described chelating properties of
Mn2+ make it possible to use chelators that form stable complexes not only with 52Mn but
also with β– and α emitting therapeutic isotopes like 177Lu and 225Ac [38,39]. This feature
could lead to the use of bevacizumab as a theranostic agent as well.

5. Conclusions

In conclusion, due to high and specific accumulation observed in the subcutaneously
growing KB-3-1 experimental cervix carcinoma tumors, [52Mn]Mn-DOTAGA-bevacizumab
is a promising radiopharmaceutical in the imaging of VEGF-A positive gynecological
tumors, in patient selection, and monitoring the efficacy of therapies targeting angiogenesis.
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Abbreviations
52Mn manganese-52 isotope

DOTAGA
2,2′,2”-(10-(1-carboxy-4-((4-isothiocyanatobenzyl)amino)-4-oxobutyl)-1,4,7,10-
tetraazacyclododecane-1,4,7-triyl)triacetic acid

PET positron emission tomography
RCY radiochemical yield
VEGF vascular endothelial growth factor
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