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Abstract: Chronic kidney disease (CKD) is a significant global health challenge that requires timely
detection and accurate prognosis for effective treatment and management. The application of machine
learning (ML) algorithms for CKD detection and prediction holds promising potential for improving
patient outcomes. By incorporating key features which contribute to CKD, these algorithms enhance
our ability to identify high-risk individuals and initiate timely interventions. This research highlights
the importance of leveraging machine learning techniques to augment existing medical knowledge
and improve the identification and management of kidney disease. In this paper, we explore the
utilization of diverse ML algorithms, including gradient boost (GB), decision tree (DT), K-nearest
neighbor (KNN), random forest (RF), histogram boost (HB), and XGBoost (XGB) to detect and predict
chronic kidney disease (CKD). The aim is to improve early detection and prognosis, enhancing
patient outcomes and reducing the burden on healthcare systems. We evaluated the performance
of the ML algorithms using key metrics like accuracy, precision, recall, and F1 score. Additionally,
we conducted feature significance analysis to identify the most influential characteristics in the
detection and prediction of kidney disease. The dataset used for training and evaluation contained
various clinical and demographic attributes of patients, including serum creatinine level, blood
pressure, and age, among others. The proficiency analysis of the ML algorithms revealed consistent
predictors across all models, with serum creatinine level, blood pressure, and age emerging as
particularly effective in identifying individuals at risk of kidney disease. These findings align with
established medical knowledge and emphasize the pivotal role of these attributes in early detection
and prognosis. In conclusion, our study demonstrates the effectiveness of diverse machine learning
algorithms in detecting and predicting kidney disease. The identification of influential predictors,
such as serum creatinine level, blood pressure, and age, underscores their significance in early
detection and prognosis. By leveraging machine learning techniques, we can enhance the accuracy
and efficiency of kidney disease diagnosis and treatment, ultimately improving patient outcomes
and healthcare system effectiveness.

Keywords: chronic kidney disease (CKD); prognosis; machine learning (ML); gradient boost (GB);
decision tree (DT); K-nearest neighbors (KNN); random forest (RF); histogram boost (HB); XGBoost
(XGB)

1. Introduction

A breakthrough in the field of chronic kidney disease (CKD) prediction was caused
by the development of machine learning (ML) algorithms [1]. Recent strategies have been
demonstrated to offer the best gradient support potential to achieve 96% accuracy in CKD
outcome prediction [2]. Many studies showing the effectiveness of various algorithms,
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including decision trees (DT), K-nearest neighbors (KNN), random forests (RF), histogram
boosting (HB), XGBoost (XGB), and support vector machines (SVM), have been motivated
by this performance. The versatile algorithmic selection process plays a crucial part in the
attractive field of CKD prediction. Guided by factors such as data availability, computing
resources, and the right targets, researchers have used a clever strategy by deploying
various algorithms. These algorithms are subjected to performance evaluations compared
to tests on the same data. This analysis optimizes the selection algorithm that enables the
identification of the best model by carefully following the nuances of the application at
hand [3].

As the field of CKD prediction expands, the interaction between machine learning and
clinical knowledge is an important factor. Collaboration between machine learning and
medical professionals has created a link that combines algorithmic resources with clinical
insights [4]. This integration facilitates the development of predictive models by infusing
them with clinical knowledge, revealing key variables and hidden concepts. By combining
the power of data-driven algorithms with the knowledge of medical professionals, our
research seeks to create predictions that are not only effective but also dig deeper into the
complexity of CKD diagnosis and prognosis in [5]. In this evolution, the integration of
disparate data plays a crucial part in improving the accuracy of CKD prediction from a
machine learning perspective [6]. The integration of these disparate data helps to create a
holistic patient profile that provides a comprehensive view of the infection. Our research
work highlights the importance of this diverse approach when navigating large volumes of
data by examining its complexity to weed out meaningful patterns [7]. By reconciling these
differences, our hope is not just to improve the accuracy of the prediction model; we strive
to tailor treatments to the nuanced needs of patients.

Therefore, our journey to develop machine learning-driven clinical strategies for CKD
management heralds a new era of personalized care [8]. As our research efforts build
upon these good insights, they begin their journey of increased use. By exploring many
different data lists and selection processes, we try to bring the accuracy of the prediction
model to a new level [9]. Our aim is not to determine the prognosis of CKD, but to
provide it with greater certainty. This effort does not only have the ability to enhance
prognosis and early detection, but also leads to changes in patient outcomes [10]. Careful
coordination of several machine learning techniques is necessary when exploring the CKD
prediction area. Selecting the most appropriate algorithm is a dynamic process determined
by factors such as the characteristics of the data, the components it contains, and the
required levels [11]. These complex processes often require the deployment of a set of
algorithms, each rigorously tested against consistent data. The result is a clear choice of
algorithms; a design that adapts well to the complexity of its clinical application [12].

Important results from previous studies have pushed CKD prognostic research into
unknown territory. The most important of these is the power of gradient amplification,
which attracts attention due to its predictive power [13]. While DT [14] turned out to
be important, the utility of KNNs in achieving accuracy in CKD prediction was clarified.
Beyond the immediate impact, we hope that they can redefine the early diagnosis of
CKD and ultimately improve patient outcomes. Inspired by these important insights,
our research work is built on a solid foundation using various ML algorithms for CKD
prediction [15]. The following sections describe the details of methodology adapted for
prognosis of CKD using ensemble-based ML algorithms.

2. Methodology

The methodology adapted for chronic kidney disease diagnosis is shown in Figure 1.
This study involved collecting data on kidney disease patients, including clinical parameters
and relevant features. Machine learning algorithms, such as gradient boost, decision tree,
KNN, RF, HB, and XGB, were applied to the dataset. These algorithms were trained,
evaluated, and used to analyze risk factors and associations related to kidney disease.
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The findings contribute to better prevention, early detection, and management strategies,
eventually enhancing the health and quality of life of patients.
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2.1. Data Preprocessing

The original data set [16] contained 11 numerical parameters, and the range of these
parameters was different. Standard scaling was performed on the dataset using min-max
normalization to bring dataset to the same range of [0, 1].

XNormalize =
X− Xmin

Xmax − Xmin
(1)

The dataset also contained 13 categorical parameters. Label encoding was used for
the categorical parameters in the dataset. This technique assigns a unique integer to each
category. The split of the training and testing was 70–30; 70% of the dataset was used for
training and 30% was used for testing.

2.2. K-Nearest Neighbor (KNN)

KNN is a flexible method used for regression and classification tasks. It makes predic-
tions based on the similarity between fresh input data and labeled data points, locating the
closest neighbors using a distance measure. The “lazy learner” KNN postpones compu-
tations until the moment of prediction. Considerations include choosing the appropriate
“k” value and distance metric, as well as having sufficient labeled training data. It may be
computationally inefficient for large datasets.
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2.3. Parameters of KNN

KNN has key parameters including the number of neighbors (k), the distance met-
ric, weighting scheme, and preprocessing techniques. These parameters influence the
algorithm’s performance, accuracy, and handling of data. Optimal selection through ex-
perimentation and tuning is essential for achieving accurate results in classification or
regression tasks.

Euclidean Distance: KNN algorithm does not involve a specific formula to estimate
parameters or fit a model like parametric models such as linear regression or logistic
regression. However, it uses a Euclidean formula to calculate the distance between the
two points, illustrated by

d =

√
(x2 − x1)

2 + (y2 − y1)
2 (2)

The Euclidean distance formula is applied to KNN to determine the nearest neighbors
for classification or regression by calculating the distances between the test data point and
the training data points.

Inverse Weighted Distance: Equation (3)’s illustration of the inverse weighted distance
approach shows that each neighbor’s weight is based on the inverse of their distance from
the test site.

Weight(i) =
1

distance(p, xi)
(3)

The above equation represents the calculation of the weight (Weight (i)) for the ith

neighbor, considering the distance between the test point p and the ith neighbor xi. Figure 2
shows the complete flow of the KNN algorithm.
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2.4. Decision Tree (DT)

DT is a supervised system that learns the set of rules that are used for every regression
and categorization task. It has a shape like a flowchart, with each leaf node standing in for
a final outcome or prediction, and each department standing in for a decision rule. The set
of rules for the decision tree traverses the tree from the foundation node to a leaf node and
makes decisions based solely on the values of the features. A decision rule is implemented
at each inner node to select the department to monitor depending on the function value.
The system continues until it reaches a leaf node, which provides the very last prediction or
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result. Decision trees are therefore susceptible to excessive fitting, when the model becomes
very complex and catches noise in the data. Maximum tree depth settings and ensemble
techniques like random forests are frequently used to reduce overfitting. Figure 3 shows
how DT operates.
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2.5. Parameters of DT

Gini Impurity: The Gini impurity quantifies the probability of incorrectly classifying a
randomly chosen element in a database. The Gini impurity is represented by Equation (4),
which calculates the impurity for a collection of class labels. It considers the probability of
each class label p(c) in the set and sums the squared probabilities for all classes.

Gini(p) = 1−∑ p(c)2 (4)

Entropy: Entropy is a measure of the level of disorder or impurity in a dataset. The
entropy represented by Equation (5) calculates the entropy for a collection of class labels.
It considers the probability of each class label p(c) in the set and sums the product of the
probabilities and their logarithms.

Entropy(p) = ∑ p(c) log2 p(c) (5)

2.6. Random Forest (RF)

RF makes predictions that are more precise by combining the strengths of different
decision trees. It is a method of collective learning that, by utilizing the idea of “wisdom
of the crowd”, outperforms the individual predictions made by decision trees. RF has
a number of benefits such as noise resistance, greater accuracy, important features, and
versatility. The workflow of RF is shown in Figure 4.
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2.7. Parameters of RF

The Gini Index: The Gini Index is the measure for evaluating the impurity of a node
or a split in a random forest. It helps in selecting the feature to split on by assessing how
pure or impure the resulting subsets would be. Mathematically, the Gini Index is calculated
as the sum of the probabilities of each class label squared, subtracted from 1 as shown in
Equation (6).

Gini Index = 1−∑ p(c)2 (6)

Here, p(c) represents the probability of class c in the dataset or split.
Weighted Gini Index: Within the random forest algorithm, the impurity of a split at

each node in the individual decision trees is determined using the weighted Gini Index. To
produce predictions, this ensemble learning method mixes many decision trees. Equation (7)
represents the random forest formula for the weighted Gini Index.

Weighted Gini Index =

(
∑
(
|Dv|
|D|

)
Index× Gini Index

)
(7)

Here, |Dv| represents the number of occurrences in the subset |Dv| after the split, |D|
represents the total number of occurrences in the original dataset or node, and Gini |Dv|
represents the Gini Index of the subset |Dv|.

3. Boosting Algorithms
3.1. Gradient Boosting (GB)

Gradient boosting is an influential ensemble learning algorithm that merges weak
predictive models, commonly decision trees, to forge a more potent and precise model.
It harnesses the power of gradient descent to iteratively fine-tune the loss function after
minimizing the gradients of the loss concerning the model’s predictions. This iterative pro-
cess entails constructing weak learners to capture the residuals, progressively diminishing
errors and augmenting the ensemble’s predictive capabilities. Employing regularization
techniques effectively prevents overfitting, while hyperparameter tuning fine-tunes the
model for optimal performance. Gradient boosting finds extensive applications across
regression, classification, and ranking problems, with notable variations such as XGBoost
and LightGBM elevating its efficiency and efficacy to remarkable levels. By combining
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the strengths of weak learners, gradient boosting has empowered data scientists to tackle
complex objectives and achieve state-of-the-art results.

3.2. Histogram Boosting (HB)

Histogram-based gradient boosting is a technique used in gradient boosting algo-
rithms, such as LightGBM and XGBoost. It involves the construction of histograms to
efficiently compute the gradients and make predictions. This approach divides the feature
space into discrete bins or buckets and constructs histograms based on these bins. It allows
for faster computation and reduces the memory requirements compared to traditional
gradient-boosting algorithms. Histogram gradient boosting has the advantage of reducing
memory consumption and speeding up the training process, making it particularly useful
for large-scale datasets. By using histograms, the algorithm can capture the distributional
properties of the data and make efficient splits during tree construction.

3.3. Extreme Gradient Boosting (XGB)

XGB, which stands for extreme gradient boosting, is a cutting-edge machine learning
technique that has earned global acclaim for its outstanding speed and efficacy in regres-
sion and classification applications. It employs gradient boosting, an ensemble learning
strategy that combines numerous weak prediction models, often decision trees, to gen-
erate a stronger and more accurate overall model. XGBoost stands out by introducing
several innovative features, such as regularization techniques, parallel tree construction,
and advanced optimization algorithms, that enhance model accuracy and computational
efficiency. This strong algorithm has demonstrated its worth in a variety of fields, includ-
ing banking and healthcare, as well as computer vision and natural language processing.
Because of its adaptability, speed, and excellent performance, XGBoost has become a top
choice for researchers in data science and machine learning professionals looking for the
best outcomes.

ŷi
(t) =

t

∑
k=1

fk(xi) = ŷi
(t−1) + ft(xi) (8)

The XGboost algorithm integrates the prediction of week classifiers and achieves
strong classification as shown in Equation (8), where ŷi

(t−1) is the previously generated
tree model and ft(xi) is the newly generated tree model.

3.4. Parameters of Boosting Algorithm

Learning Rate (η): The learning rate determines how much each base learner (e.g., tree)
contributes to the final ensemble. It scales the influence of each learner’s prediction during
the boosting phase. The formula for updating the ensemble’s predictions with the learning
rate is shown in Equation (9)

NP = PPre + ηLPre (9)

where NP is the new prediction, PPre is the previous prediction, and LPre is the learner
prediction.

Residual Calculation: Boosting algorithms aim to minimize the residuals between the
ensemble’s predictions and the true values. The residual for each instance in the training
data is calculated by Equation (10)

Residual = TrueValue− Ensemble Prediction (10)

Weighted Sample Importance: Boosting algorithms assign weights to each instance in
the training data to prioritize the importance of different samples. The weights are typically
updated based on the errors or residuals of the ensemble’s predictions. The formula for
calculating the updated sample weights is given by Equation (11)

sample_weight = sample_weight ∗ exp(−η ∗ residual) (11)
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Base Learner Weight: Boosting algorithms assign weights to each base learner (e.g., tree)
in the ensemble based on their performance. The formula for calculating the weight of a
base learner is typically based on the algorithm-specific loss function and the importance
of the learner’s predictions. The exact formula may change depending on the specific
boosting algorithm used. The following section describes details of all the parameters and
their impact for CKD.

4. Clinical Parameters

The factors causing renal disease are discussed in this section. By incorporating these
clinical indicators alongside other features, researchers can thoroughly analyze the risk
factors and associations associated with kidney disease. This comprehensive understanding
significantly contributes to the advancement of prevention, early detection, and manage-
ment strategies for kidney disease. From the survey, it was observed that proteinuria is
an early predictor of functional and survival outcomes after renal surgery [17–19]. For the
reference study, the dataset was collected from Kaggle [16]. In total, 400 patients’ data were
used, with 250 patients not having chronic kidney diseases and 150 patients are diagnosed
with chronic kidney diseases. Figure 5 shows the count.
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Figure 5. Count of number of patients with CKD and no CKD.

A total of 24 parameters are used for the diagnosis of CKD. Of these 24, 11 parameters
have values in the numerical range while 13 features have categorical values. Age, blood
pressure, specific gravity, albumin, sugar red blood cells, pus cells, pus cell clusters, bac-
teria, blood urea, serum creatinine, sodium, potassium, hemoglobin, packed cell volume,
white blood cell count, red blood count, hypertension, diabetes mellitus, coronary artery
disease, appetite, edema, and anemia are some of these characteristics. Table 1 displays the
numerical statistics together with their minimum, maximum, and mean values.

Table 1. Features with numerical values.

SN Parameter or Feature Min Value Maximum Value Mean Value

1 Age in years 2 90 51.48

2 Blood pressure
in mm/Hg 50 180 76.46

3 Blood glucose random
in mgs/dL 22 490 148.03

4 Blood urea in mgs/dL 1.50 391.0 57.42

5 Serum creatinine
in mgs/dL 0.40 76.00 3.07

6 Sodium in mEq/L 4.50 163.0 137.52
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Table 1. Cont.

SN Parameter or Feature Min Value Maximum Value Mean Value

7 Potassium in mEq/L 2.50 47.00 4.62

8 Hemoglobin in gms 3.10 17.80 12.52

9 Packed cell volume 9 54 48.32

10 White blood cell count
in cells/cumm 2200 26,400 7658.82

11 Red blood cell count
in millions/cmm 2.1 8 5.51

Categorical features are shown in Table 2. Specific gravity gives a gravity range from
1.005 to 1.025. Albumin and sugar are leveled from 0 to 5. Both pus cells and red blood
cells can be classified as normal or pathological. Bacteria and pus cell clumps are classified
as present or absent. Anemia, pedal edema, coronary artery disease, hypertension, and
diabetes mellitus are categorized as either yes or no.

Table 2. Features with categories.

SN Parameter or Feature Value or Attribute

1 Specific Gravity 1.005, 1.010, 1.015, 1.020, 1.025

2 Albumin 0, 1, 2, 3, 4, 5

3 Sugar 0, 1, 2, 3, 4, 5

4 Red Blood Cells Normal or abnormal

5 Pus Cell Normal or abnormal

6 Pus Cell Clump Present or not present

7 Bacteria Present or not present

8 Hypertension Yes or No

9 Diabetes Mellitus Yes or No

10 Coronary Artery Disease Yes or No

11 Appetite Good or Poor

12 Pedal Edema Yes or No

13 Anemia Yes or No

Table 3 depicts the average values of parameters that lead to CKD and those which do
not. From Table 3, we can observe how these features or parameters relate to CKD.

The average age of people who do not have CKD is 46, whereas it increases to 54 for
people with CKD. Normal average blood pressure value is around 70 mm/Hg, whereas it
increases to 79 mm/Hg for people with CKD. Normal average blood glucose random is
107 mgs/dL, while it increases to 175 mgs/dL for people with CKD. Normal average blood
urea level is 32.79 mgs/dL, which increases to 72.38 mgs/dL for people with CKD. Serum
creatinine level is 0.8689 mgs/dL in normal people, which increases to 4.41 mgs/dL for
people with CKD.

Average sodium level for patients with no CKD is observed to be 141.73 mEq/L,
whereas it decreases to 133.9 mEq/L for patients with CKD. Average potassium level for
patients with no CKD is observed to be 4.33 mEq/L, whereas for patients with CKD, it is
4.87 mEq/L. Average hemoglobin level for patients with no CKD is found to be 15.15 gms,
whereas it decreases to 10.64 gms for patients with CKD. Average value of packed cell
volume for patients without CKD is 46.33, which decreases to 32.93 for patients with CKD.
Similarly, average white blood cell count for patients without CKD is 7705.59 cells/cumm,



Diagnostics 2023, 13, 3151 10 of 22

which increases to 9069 cells/cumm for patients with CKD. Lastly, the average red blood cell
count for patients without CKD is 5.37 million/cmm, which decreases to 3.94 million/cmm
for patients with CKD. These parameters are described below.

Table 3. Average values of various parameters for classification of chronic kidney diseases.

SN Parameter or Feature No Chronic
Kidney Diseases Chronic Kidney Diseases

1 Age 46 54

2 Blood Pressure 71 79

3 Blood Glucose Random 107 175

4 Blood Urea 32.79 72.38

5 Serum Creatinine 0.868966 4.41

6 Sodium 141.73 133.90

7 Potassium 4.33 4.87

8 Hemoglobin 15.18 10.647

9 Packed Cell Volume 46.33 32.93

10 White Blood Cell Count 7705.59 9069.53

11 Red Blood Cell Count 5.37 3.94

4.1. Age

The age of the patient is an important factor in evaluating kidney disease. Kidney
function naturally declines with age, and older individuals are more susceptible to kidney
disease. Renal structural and functional changes brought on by aging can influence the
onset and progression of renal disease. Assessing age helps identify individuals who may
be at higher risk or require specific considerations for kidney disease management.

4.2. High Blood Pressure

A leading factor in kidney disease is high blood pressure, commonly referred to as
hypertension. The kidneys’ ability to operate can be harmed by long-term hypertension,
which can harm their blood arteries. We determine the relationship between blood pressure
and renal disease by examining blood pressure levels. To stop or decrease the course
of kidney disease among individuals with high blood pressure, diligent monitoring and
management is necessary.

Figure 6 underscores the clinical significance of blood pressure as a potential marker
of kidney health. Observing a concurrence of elevated blood pressure and escalating
kidney disease severity may serve as an early indicator, prompting vigilant evaluation of
renal function. Conversely, maintaining optimal blood pressure levels might contribute
to preserving kidney well-being. We encourage researchers and healthcare professionals
to unravel the mechanisms that underlie this relationship, potentially unraveling novel
avenues for early detection and personalized intervention strategies. It can be observed in
Figure 6b that the range of blood pressure for non-CKD patients is nearly 40 to 120, while it
is 50 to 90 for patients with CKD.

4.3. Blood Glucose Random

Blood glucose is the sugar in the blood that gives you energy. It is important for
kidney function. When blood glucose levels are too high, it can damage the kidneys. This is
because high blood glucose levels can cause the kidneys to filter out too much protein. The
protein then builds up in the kidneys and can damage them. Kidney failure is a dangerous
condition that can result from kidney disease. Sustaining a healthy blood glucose level is
crucial when suffering from renal disease. This can reduce the progression of renal disease
and stop kidney failure.
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Figure 7 depicts the clinical significance of blood glucose as a potential contributor to
renal health. Fluctuations in blood glucose levels can exert a profound impact on kidney
function over time. Monitoring blood glucose trends provides healthcare professionals with
insights into potential kidney-related implications, driving timely assessment and informed
management. We encourage researchers and medical professionals to explore the intricate
mechanisms that underlie this relationship, potentially revealing novel insights that could
reshape our understanding of kidney health assessments and therapeutic strategies. It is
observed from Figure 7b that the range of random blood glucose level is limited to 50 to
150 in patients with no CKD, whereas it increases to 0 to 600 for patients with CKD.
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4.4. Blood Urea Nitrogen

Another crucial clinical test that evaluates kidney function is blood urea nitrogen
(BUN). BUN gauges the blood’s nitrogen content, which comes from the waste product
urea. Increased BUN levels may signal poor renal and waste clearance. Monitoring BUN
levels aids in determining how well the kidneys function in filtering and eliminating waste.

Figure 8 depicts the clinical significance of BUN as a potential indicator of renal
health. BUN serves as a marker of how effectively the kidneys are filtering and excreting
waste products from the blood. Observing fluctuations in BUN levels can offer healthcare
practitioners crucial insights into kidney function, prompting further assessment and
proactive management. The depiction of blood urea nitrogen as an indicator of potential
renal challenges highlights its pivotal place in healthcare diagnostics. It can observed from
Figure 8b that the normal range of BU is 0 to 400, which decreases to 100 for patients
with CKD.
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4.5. Serum Creatinine

A crucial clinical indicator used to evaluate kidney function is serum creatinine. It is
a waste product produced by muscle metabolism that the kidneys filter out of the blood.
Elevated serum creatinine levels signify deteriorated kidney health and can be used as an
indicator of kidney disease. Regular monitoring of serum creatinine levels helps evaluate
the progression and severity of kidney disease.

Figure 9 shows the clinical significance of serum creatinine as a potential indicator
of renal health. Serum creatinine is a modifiable risk factor for kidney disease, and it can
be used to monitor the progression of kidney disease and to assess the effectiveness of
treatment, encouraging us to venture deeper into the complex interplay between serum
creatinine and renal health. We invite researchers and medical professionals to delve
into the underlying mechanisms that drive this relationship, potentially unearthing novel
insights that could shape the landscape of kidney health assessments and interventions. It
can be observed from Figure 9a that density function and count for the serum creatinine
level is in the range of 0–20. Figure 9b shows that the normal serum creatinine level is 0 to
20, which decreases to 5 for patients with CKD.
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4.6. Serum Sodium

Serum sodium levels are an essential clinical measurement that reflects the balance of
water and electrolytes in the body. Abnormal sodium levels can indicate kidney dysfunction
and electrolyte imbalances. The kidneys are essential for sustaining sodium balance, and
impaired kidney function can lead to abnormal sodium levels. Monitoring serum sodium
helps identify electrolyte imbalances associated with kidney disease. Figure 10a shows
that density function and count for sodium level are in the range of 100–150. Figure 10b
depicts that the normal serum sodium level is 100 to 150, whereas for patients with CKD it
is 100–150.
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4.7. Serum Potassium

Serum potassium levels are critical for maintaining proper kidney function. The
kidneys help regulate potassium levels in the body. Abnormal potassium levels can be an
indication of kidney disease. Decreased kidney function can lead to an accumulation of
potassium, resulting in hyperkalemia. Monitoring serum potassium levels helps assess
kidney health and the risk of electrolyte imbalances.

Figure 11 shows the clinical significance of potassium as a potential indicator of renal
health. The interplay between potassium levels and kidney function offers a glimpse
into the delicate balance maintained within the body. Monitoring shifts in potassium
concentrations may provide early cues for potential kidney dysfunction, guiding healthcare
practitioners toward timely intervention. We invite researchers and medical professionals
to unravel the underlying mechanisms that drive this relationship, potentially unveiling
novel insights that could revolutionize our understanding of kidney health management.
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4.8. Hemoglobin

Hemoglobin’s relationship with kidney function is profound. Erythropoietin, a hor-
mone that promotes the synthesis of red blood cells and thus affects hemoglobin levels, is
produced mostly by the kidneys. Elevated hemoglobin levels can signify a harmonious
interplay between the kidneys and erythropoietic processes, indicating optimal renal func-
tion. Hemoglobin emerges as a dynamic ally, offering a comprehensive insight into the
intricate interplay between renal function and overall well-being. This multifaceted protein
extends its influence beyond its renowned role in oxygen transport, serving as a sentinel of
kidney health and a potent marker of potential kidney disease.

Figure 12 shows a discernible pattern emerges as the data points converge and diverge
along the axes. Higher hemoglobin levels, indicative of enhanced oxygen-carrying capacity,
appear to align with healthier kidney function, manifested through lower kidney disease
severity. Conversely, lower hemoglobin levels seem to coincide with an escalation in
kidney disease, portraying a potential link between reduced oxygen-carrying capacity and
deteriorating renal health. The graph underscores the clinical significance of hemoglobin
as a potential indicator of kidney disease presence and progression. A downward trend
in hemoglobin levels might warrant a vigilant assessment for kidney dysfunction, while
maintaining optimal hemoglobin concentrations could signify improved renal health.
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By incorporating these clinical measurements, researchers can conduct a thorough
analysis of the risk factors and associations associated with kidney disease. This compre-
hensive understanding significantly contributes to the advancement of prevention, early
detection, and management strategies for kidney disease, ultimately leading to improved
health results and a higher quality of life.

4.9. Correlation Matrix

A correlation matrix is a key tool in statistics and machine learning for understanding
the relation between different variables. It provides a numerical representation of the
strength and direction of linear relationships between pairs of variables. In the context of
machine learning, a correlation matrix is often used for feature selection, data preprocessing,
and exploring the data’s underlying patterns. The correlation coefficient for the input
features and target output is calculated using

r =

N
∑

i=1
(xi − x)(yi − y)√

N
∑

i=1
(xi − x)2 N

∑
i=1

(yi − y)2

(12)

where xi is the ith data sample of the input features, yi is the ith data sample of the output,
and N is the total number of data samples. The correlation matrix calculated for features
with numerical values with output is shown in Figure 13.

Typically, the correlation matrix values fall between −1 and 1. Strong negative correla-
tion is shown by a correlation value of −1, which means that as one variable rises, the other
falls. When showing a high positive connection, a correlation value of 1 implies that as one
variable rises, the other rises as well. A correlation coefficient that is around zero indicates
that there is little to no linear relationship between the variables. How close the value is to
−1 or 1 determines how strong the correlation is. The association is stronger the closer the
value is to these extremes.
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5. Results

In this section, we investigate the usefulness of various machine learning algorithms
for detecting and predicting renal disease, as well as show the experimental findings from
our study. We tested a number of techniques, including gradient boost (GB), decision
tree (DT), K-nearest neighbors (KNN), random forest (RF), histogram boosting (HB), and
XGBoost. Quantitative assessment of these ML algorithms was carried out using various
parameters which are described below.

Confusion Matrix

Shown below is a N × N confusion matrix, where N is the number of target classes.
We compared the goal values to those predicted by the ML model in this matrix. Confusion
matrix for the classification of chronic kidney diseases is shown in Table 4.
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Table 4. Confusion matrix for classification of chronic kidney diseases.

Predicted Class

Actual Class

Chronic Kidney
Disease

Non-Chronic Kidney
Disease

Chronic Kidney
Disease True Positive (TP) False Negative (FN)

Non-Chronic Kidney
Disease False Positive (FP) True Negative (TN)

Using TP, FN, FP, and TN, various quantitative parameters are calculated.
Accuracy is the percentage of accurate positive predictions among all positive predic-

tions, which demonstrates the model’s capacity to recognize positive cases, calculated by
Accuracy = TP+TN

N .
Precision is calculated as the percentage of correct positive predictions among all

positive predictions, and it indicates how well the model can identify positive cases.
Precision = TP

TP+FP .
Recall is computed as the proportion of genuine positive predictions out of all real

positive instances, indicating the model’s capacity to catch positive cases, calculated by
Recall = TP

TP+FN .
F1_Score is the harmonic mean of precision and recall gives us a fair comparison of

the two measurements.

F1_Score = 2× Precision× Recall
Precision + Recall

(13)

Jaccard similarity is the measure of similarity between two sets. For example, if y is
actual label and ŷ is predicted label, it is calculated using

JS(y, ŷ) =
|y ∩ ŷ|

|y|+ |ŷ| − |y ∩ ŷ| (14)

Log loss is a loss function used to assess the effectiveness of probabilistic classification
models. It is also referred to as logarithmic loss or cross-entropy loss.

logloss = − 1
N

N

∑
i=1

yi log(p(ŷi)) + (1− yi) log(1− p(ŷi)) (15)

AUC ROC Curves: The performance of a binary classification model is visually
represented by ROC, which illustrates the relationship between true positive rate and false
positive rate.

TPR =
TP

TP + FN
and FPR =

FP
FP + TN

(16)

The quantitative assessment of six ML algorithms using the above parameters per-
formed on the testing dataset are shown in Table 5. From Table 5, it can be observed from
the outcome that random forest (RF) achieved the highest accuracy of 98.75%, followed
by histogram boosting (HB) and XGBoost (XGB) with 98.75% each, gradient boosting (GB)
with 97.50%, decision tree (DT) with 97.50%, and K-nearest neighbors (KNN) with 96.25%.

The Jaccard similarity scores varied among the models, with RF, HB, and XGB report-
ing the highest similarity of 96.42%, followed by GB with 96.42%, KNN with 93.10%, and
DT with 90.00%. When considering precision, DT achieved the highest value of 98.00%,
followed by GB, RF, HB, XGB, and KNN with 97.00%, 98.00%, 97.00%, 98.00%, and 60.00%,
respectively. For recall, GB, DT, RF, HB, XGB, and KNN obtained values of 98.00%, 96.96%,
96.00%, 1.00%, 1.00%, and 62.00%, respectively. The F1 scores show that DT achieved the
highest value of 98.00%, followed by GB with 96.00%, and RF, HB, XGB, and KNN with
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98.00%, 98.00%, 98.00%, and 61.00%, respectively. Log loss values collected for these six
ML algorithms are shown in Figure 14.

Table 5. Performance analysis of six ML algorithms using various quantitative parameters.

Results in % Using Six ML Algorithms

Parameters KNN DT HB RF GB XGB

Accuracy 98.75 97.50 98.75 98.75 97.50 98.75

Jaccard Similarity 93.10 90.00 96.42 96.42 96.42 96.42

Precision 66.00 97.00 60.00 97.00 97.00 99.00

Recall 66.00 97.00 62.00 97.00 97.00 99.00

F1 Score 66.00 97.00 61.00 98.00 97.00 99.00

ROC AUC 99.00 97.00 100.00 100.00 100.00 100.00
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Regarding log loss, RF achieved the lowest value of 0.048, followed by XGB with 0.036,
GB with 0.073, HB with 0.030, DT with 1.351, and KNN with 0.485. These results indicate
that RF performed exceptionally well in terms of accuracy and log loss, while DT showed
high precision and F1 score. Each model has its strengths and weaknesses in different
evaluation metrics. The ROC AUC curve plotted for these six ML algorithms is shown
in Figure 15. This shows that the model is biased with given data and may be sensitive
to new data. This can be improved by hyperparameter tuning. Our experimental study
shows that DT, RF, GB, and XGB show an equivalent performance in accuracy, precision,
recall, F1 score, and AUC-ROC. This shows that models are not biased towards class but
biased towards data. By selecting the optimum number of trees, features, gain impurity,
minimum samples in leaf node, and minimum samples for splitting node and resampling,
model generalization is possible [20–22].
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6. Discussion

In this research paper, we investigated the performance of six different machine
learning algorithms for the prediction of kidney disease. The algorithms used were K-
nearest neighbors (KNN), decision tree (DT), histogram-based gradient boosting (HB),
random forest (RF), gradient boosting (GB), and extreme gradient boosting (XGB). Our
objective was to compare the predictive capabilities of these algorithms and identify the
most reliable and precise way for predicting kidney disease.

Performance Comparison: We evaluated the performance of each algorithm using
a comprehensive set of evaluation metrics, including accuracy, precision, recall, F1 score,
and area under the receiver operating characteristic curve (AUC-ROC). The results demon-
strated varying levels of performance across the algorithms, indicating differences in their
ability to correctly predict the presence or absence of kidney disease. The results show
that overall, AUC-ROC was significantly good and indicated the best performance in
predictions of either case, but this is not the single parameter to make an overall decision
about model quality with. Model quality can be judged with effective performance of
F1 score, accuracy, recall, and precision. All models, except for KNN and HB, showed
significant results for all parameters. KNN and HB showed higher accuracy but precision,
recall and F1 score were on the compromising side, indicating that the performance of
applied algorithms, i.e., KNN and HB, is biased towards one class.

Accuracy and F1 Score: Among the algorithms, XGB achieved the highest accuracy and
F1 score, indicating its overall superiority in classifying instances correctly and maintaining
a fine balance between recall and precision. The RF and GB algorithms also performed
well, showing competitive accuracy and F1 scores. These findings are consistent with
the existing literature on the strengths of ensemble methods like RF and GB for complex
classification tasks.

Precision and Recall: Although XGB demonstrated high accuracy and F1 score, it
is essential to consider the recall and precision values in the context of kidney disease
prediction. RF exhibited higher precision compared to the other algorithms, signifying its
proficiency in correctly identifying true positive cases of kidney disease. Conversely, KNN
showed higher recall values, implying its ability to capture a greater proportion of actual
positive cases, but at the expense of precision.
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AUC-ROC: The AUC-ROC metric provides a measure of the algorithms’ ability to
differentiate between positive and negative instances. XGB and RF attained the highest
AUC-ROC scores, indicating their strong discriminative power. On the other hand, DT and
KNN presented comparatively lower AUC-ROC scores, suggesting a reduced ability to
distinguish between the two classes effectively.

Computational Efficiency: In addition to predictive performance, we also consid-
ered the computational efficiency of the algorithms. KNN and DT are relatively simple
algorithms with lower computational demands, while RF, GB, and XGB require more com-
putational resources due to their ensemble nature and iterative training process. However,
the trade-off between accuracy and computational efficiency should be considered when
choosing an appropriate algorithm for kidney disease prediction, especially in resource-
constrained environments.

Interpretability: Another important aspect to consider is the interpretability of the
models. DT and KNN are more interpretable, as they produce decision rules and exemplify
instance-based reasoning, respectively. In contrast, ensemble methods like RF, GB, and
XGB are more challenging to interpret due to their ensemble nature and the aggregation
of multiple weak learners. Interpretability may be crucial in certain clinical applications
where it is essential to understand the decision-making process of model.

Our study provides a comprehensive evaluation of six different machine learning
algorithms for kidney disease prediction. While XGB demonstrated the highest overall
predictive performance, RF and GB also exhibited strong capabilities. Depending on the
application’s requirements, researchers and practitioners may choose the appropriate algo-
rithm based on a trade-off between accuracy, precision, recall, AUC-ROC, computational
efficiency, and interpretability.

7. Conclusions

Finally, this study investigated the efficacy of various machine learning algorithms for
renal disease diagnosis and prognosis. Gradient boost, decision tree, KNN, random forest,
histogram boosting, and XGBoost were thoroughly assessed for their distinct capabilities
and contributions to the challenge. The outcomes were encouraging, with all algorithms
displaying excellent performance. Gradient boost, XGBoost, and histogram boosting
demonstrated good accuracy and an exceptional capacity to grasp complex correlations in
the dataset. These models show a lot of potential for making predictions with high accuracy
in real-world applications. By providing details about the process of decision-making
and highlighting crucial elements influencing prediction, random forest and decision trees
provided significant interpretability. Meanwhile, KNN excelled at capturing local patterns,
making it a powerful tool for situations requiring localized insights.

Several important predictors were identified by the feature importance analysis across
several algorithms, including serum creatinine level, blood pressure, and age. These
discoveries highlight the clinical importance of these parameters in the diagnosis and
prognosis of renal disease. Early detection of kidney illness is critical for timely intervention
and effective care, and the predictors revealed can serve as critical markers for medical
practitioners. While this study returned promising outcomes, there is still opportunity for
progress in the sector. Future research efforts could concentrate on improving the accuracy
and resilience of existing algorithms. Furthermore, investigating ensemble methods that
combine the characteristics of various algorithms and incorporate additional important
aspects may result in even more precise and dependable predictions.

In conclusion, the thorough study of machine learning algorithms in renal disease
diagnosis adds new insights to the field of healthcare. Medical professionals can make
informed judgments and deliver individualized treatment strategies by using the power
of these algorithms, ultimately leading to enhanced patient outcomes and overall kidney
health. The search for early detection, intervention, and successful management of kidney
disease continues, and machine learning is a valuable tool in that pursuit.
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