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Abstract: Since its introduction in 2016, researchers have applied the idea of Federated Learning
(FL) to several domains ranging from edge computing to banking. The technique’s inherent security
benefits, privacy-preserving capabilities, ease of scalability, and ability to transcend data biases have
motivated researchers to use this tool on healthcare datasets. While several reviews exist detailing FL
and its applications, this review focuses solely on the different applications of FL to medical imaging
datasets, grouping applications by diseases, modality, and/or part of the body. This Systematic
Literature review was conducted by querying and consolidating results from ArXiv, IEEE Xplorer,
and PubMed. Furthermore, we provide a detailed description of FL architecture, models, descriptions
of the performance achieved by FL models, and how results compare with traditional Machine
Learning (ML) models. Additionally, we discuss the security benefits, highlighting two primary
forms of privacy-preserving techniques, including homomorphic encryption and differential privacy.
Finally, we provide some background information and context regarding where the contributions
lie. The background information is organized into the following categories: architecture/setup type,
data-related topics, security, and learning types. While progress has been made within the field of FL
and medical imaging, much room for improvement and understanding remains, with an emphasis
on security and data issues remaining the primary concerns for researchers. Therefore, improvements
are constantly pushing the field forward. Finally, we highlighted the challenges in deploying FL in
medical imaging applications and provided recommendations for future directions.

Keywords: federated learning; medical imaging; brain imaging; COVID-19; pancreas; skin disease;
breast imaging; computer vision; artificial intelligence; differential privacy

1. Introduction

Federated Learning (FL) is a machine learning, specifically decentralized learning,
technique that allows multiple entities to train an algorithm collaboratively without ex-
changing their respective local data [1]. McMahan et al., the group that coined the technique,
describe the approach as a loose federation of devices coordinated by a central server that
collectively learns from separate datasets by passing model parameters to each other rather
than the raw training data. The process utilizes secure encryption and communication
advances to transfer models to clients rather than datasets [2]. In contrast to traditional
machine learning examples, where institutions must share and centralize their data, FL
instead shares only the model parameters, allowing for a common, robust model without
sharing data [3].

Since McMahan et al. proposed the concept in 2016, researchers have utilized FL in
several domains, such as edge computing, blockchain, IOT, and others [1,4–6]. Recently,
however, many developments have occurred within the healthcare domain. FL’s inherent
security features and convenience, coupled with the strict regulations governing patient-
related data, establish a situation where FL could significantly improve research endeavors
within the healthcare space.
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Although there have been significant advancements in the healthcare space regarding
artificial intelligence (AI), progress, specifically generalizability, has been stifled due to
the lack of quality data available to researchers [7]. Availability of high-quality labeled
data, although an inherent problem for any domain, is challenging in the case of health-
related data due to its sensitive nature and strict regulations. Local and national laws
such as the California Consumer Privacy Act (CCPA) and Health Insurance Portability
and Accountability Act (HIPAA) in the United States or the General Data Protection Rule
(GDPR) in Europe limit the transfer of personal data across organizations and countries
even when data is anonymized. The sensitive nature of the data also requires enhanced
security measures that often lead to a reticence toward sharing. From these struggles,
researchers began applying FL to healthcare datasets.

In the past years, the number of papers published within the field of FL has increased
drastically. While most of these papers vary in terms of their focus, the healthcare field
is one of particular importance. As previously mentioned, AI has begun to transform
the medical field, particularly medical imaging, which has been the subject of several
remarkable achievements. As a result, this paper focuses on providing a survey regarding
how researchers apply FL in medical imaging so that it can be easily referenced and built
upon rather than focusing on the technical rigor of FL.

2. Review Methodology
2.1. Research Questions

To provide a structured and extensive overview of the relevant FL papers, we posed
the following research questions.

RQ1: How does federated learning differ from centralized learning when dealing with
medical imaging applications?

RQ2: What are the different tasks/scenarios federated learning is used in for medical
imaging applications?

2.2. Search Process

The literature included in this review came directly from the results of ArXiv, IEEE
Xplorer and PubMed searches. Some articles came indirectly from the cited works sections
of the papers included. This was done to create as comprehensive a list of works as possible.

2.3. Inclusion/Exclusion of Literature

The articles have been selected based on FL and/or medical imaging. The date exclu-
sion criteria applied to the results were relevant articles before January 2023, except for two
articles. No exclusion criteria were applied regarding the type of publications. The articles
included primarily focused on FL or provided important background information.

3. Results

In this review, 7708 articles were screened, and 103 were cited, as well as three websites.
The flow diagram of the search process for the literature review can be seen below in
Figure 1. Additionally, Table 1 below summarizes the different search terms used and the
articles that resulted. As an example, when using the keyword “federated learning” ArXiv,
including the quotation marks to restrict results to that phrase, resulted in 3291 results,
while PubMed (PM) resulted in 354 articles; additionally, IEEE Xplore’s search resulted in
4063. Additionally, 18 other articles were identified by looking at the reference sections of the
selected articles. Lastly, three of the websites referenced contained background information
or information related to the discussion section. While the initial search term included some
results, many were excluded because of the scope of the review paper. The use of other terms,
such as medical and healthcare, were used to include more relevant results.
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Table 1. Literature search results.

Keywords PubMed ArXiv IEEE Xplorer

“Federated Learning” 354 3291 4063
“Federated Learning” + “Medical” 151 59 354

“Federated Learning” + “Healthcare” 90 25 192
“Federated Learning” + “Medical Imaging” 23 41 38

“Federated Learning” + “COVID-19” 43 19 63
“Federated Learning” + “Brain” 18 26 58

“Federated Learning” + “Cancer” 37 5 29
“Federated Learning” + “Breast” 2 3 11

“Federated Learning” + “Pancreas” 1 2 2

For each subsection of the paper (brain, pancreas, breast, COVID-19), separate, smaller
literature searches were conducted. These searches started off as general searches but were
aimed at understanding how federated learning has evolved over time in these respective
areas. Attempts were made to find all relevant articles solely by database searches.

4. Background

While this review focuses primarily on medical imaging, other reviews provide valu-
able insight into FL’s background, status, and remaining challenges. To name a few,
Castiglioni et al. wrote a review that provides excellent context around FL, providing an
explanation of how AI in medical imaging has evolved, as well as discussing the basics
of FL [7]. Joshi et al. and Pfitzner et al. spent a significant amount of time discussing
the fundamentals of FL and the different variations explored over the years and relating
them to various works conducted within the healthcare sector [8,9]. Nguyen et al. briefly
discussed the reviews published before but then discussed FL’s advantages, requirements,
motivations, and applications in a medical context [10]. While several reviews remain
broad regarding their subject matter, others, such as Kaissis et al., focused on security and
privacy-preserving applications, providing context to those related works [11]. Moreover,
several other reviews focused on a particular disease, such as [12], which focused on ocular
diseases. However, Chowdhury et al. focused on how researchers apply FL to various
cancer detection scenarios [2]. Rauniyar et al., like this paper, provide an overview of
medical applications rather than focusing on technical rigor [5]. Table 2 briefly summarizes
the various reviews referenced in this paper’s writing.
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Table 2. Summary of Literature Reviews.

Author Primary Focus Specific to Medical Field Summary/Strengths of the Review

Kamble et al. [13] Frameworks Yes Summarizes applications of FL on medical imaging tasks.

Abreha et al. [14] Edge Computing No
Relates FL to Edge computing. Compares methods of

learning such as Centralized learning, Deep learning, and
Cloud Computing Services.

Aouedi et al. [15] FL in MedIOT Yes

Aggregates FL works in MedIoT. Provides information
about the variations of FL, such as decentralized vs.

centralized as well as the different aggregation techniques.
Focuses significantly on COVID-19 applications. Extensive

discussion section proposing several future directions.

Beltran et al. [16] CFL vs. DFL Yes
Compares and explains the differences between

Decentralized FL and Centralized FL. Reviews the
applications of DFL and analyzes DFL framework.

Castiglioni et al. [7] Background of AI in medical
imaging Yes

Provides context surrounding FL. Explains well what AI is
and how it is applied to medical images, as well as the

challenges at each step.
Chowdhury et al. [2] Cancer Research FL Yes Reviews applications of FL to various forms of cancer.

Crowson et al. [3] FL in healthcare Yes Evaluates the current state of FL in healthcare. Only
includes up to 2020, so only 13 sources.

Adamidi et al. [17] AI in COVID-19 Yes
Conducts a systematic review of published and preprint

reports of AI models for Coronavirus disease 2019. Some of
the reports include FL applications.

Joshi et al. [8] FL background and healthcare Yes
Explains in detail the fundamentals of FL and the possible
variations. Introduces various FL applications categorized

into prognosis, diagnosis, and clinical workflow.
Mahlool et al. [18] Applications of FL and DL Yes Medical applications of FL and DL.

Kaissis et al. [11] Security in FL Medical Imaging Yes

Provides some context surrounding the challenges of
security in FL medical imaging. Demonstrates by

discussing the different kinds of attacks and the solutions
provided by various other works.

Zhang et al. [19] Security in FL Yes

Focuses on the challenges of security and proposes novel
applications of privacy-preserving FL in the following

scenarios: high communication cost, system heterogeneity
and statistical heterogeneity. Nicely generalizes how the

issues can be fixed.

Li et al. [20] Applications of FL in Industrial
Engineering and healthcare Some

Discusses the numerous issues that tend to arise when
talking about FL. Focuses on the applications related to

Industrial Engineering and, secondly, healthcare.

Narmadha et al. [21] Applications of FL in
healthcare Yes A high-level review of FL in healthcare

Ng et al. [22] FL applications with small
datasets Yes

Provides insight into FL in healthcare applications,
focusing specifically on how the problem of small datasets

can be alleviated through FL and how different applications
were trained and implemented. There were only a handful
of direct applications. The group highlights four challenges
for FL: weight updating, participation incentives, hardware

requirement burdens, data heterogeneity and labeling.

Nguyen et al. [10] Systematic review of FL in
healthcare Yes

Provides insight into some of the other reviews published
before this one. Talks about the key principles around FL in

healthcare, motivations for using FL in healthcare,
requirements for FL and advanced FL designs for

healthcare. In Section 5, the paper then goes into the
applications of FL in healthcare.

Pfitzner et al. [9]
Extensive review of parameters

and application of FL in
healthcare

Yes Extensive systematic review that discusses the concepts
and research in FL relevant to healthcare.

Nguyen, T. et al. [12] FL in Ophthalmology Yes
FL applications in ophthalmology, as well as some

applications on EMR data, Internet of Things in healthcare,
as well as medical imaging.

Rauniyar et al. [5] FL applications in medical field Yes

Focuses on medical applications rather than technical rigor;
provides significant background information as well as

information regarding frameworks, challenges, and future
directions.

Rootes-Murdy et al. [23] FL in Neuroimaging Yes
Provides a summary of federated neuroimaging data
analysis tools. The paper also talks about the different

platforms available for neuroimaging, such as COINSTAC.

Yang et al. [24] Technical FL Summary and
applications No

Focuses heavily on the technical aspects and concepts of FL.
Provides general applications not specific to the medical

field.

Zhou et al. [25] Review of Deep Learning in
medical Imaging Yes

Focuses on the application of Deep Learning, not
specifically FL, in the medical imaging field. Provides

insight into the strides that have occurred in various fields,
organizing each section by the part of the body.

4.1. What Is FL?

As previously mentioned, FL is a decentralized learning technique that allows mul-
tiple entities to train an algorithm collaboratively without exchanging their respective
local data [1]. Depending on which approach of FL is applied, the workflow can change
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significantly. Figure 2 below depicts a commonly used server-centric version of FL. The first
step is for the central server to distribute the global model to the participating client devices.
These individual clients (nodes) then train on their dataset updating, creating a local version
of the model. The nodes then send their versions of the model back to the central server.
Depending on the aggregation schemes, the central server reconciles the variations from
the local models to update the global model. This entire process repeats itself multiple
times until the training is complete [11].
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Although the setup above is the most used, researchers have devised variations of
the original setup to suit their needs [8]. Variations in the number of nodes, presence
of a central server, type of data, aggregation style, and communication protocol are all
characteristics that would shape the approach and, thus, workflow. Due to their flexibility
while still maintaining data governance, federated learning approaches have the possibility
of becoming the most widely used next-generation privacy-preserving technique, both in
industry and medical AI applications [11]. The types of variations can be classified into a
few overarching categories: those that are hardware-inspired, those that are data-inspired,
and those that are security-inspired. It is worth noting that this paper uses these categories
to establish some organization for the research; however, these categories intertwine heavily.
The following paragraphs give context to the solutions researchers have proposed in a later
part of the paper.

4.2. Setup/Architecture

Data analysis, especially within the medical field, requires many resources.
These resources encompass physical hardware, including hard drives, computers, and
internet connections, and expenses related to electricity, heat dissipation, and maintenance
teams. Moreover, these devices must be correctly secured and compliant when dealing
with sensitive patient health information. As a result, traditionally, smaller institutions did
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not contribute to scientific research as much as their larger research-oriented counterparts.
Due to the decentralized nature of FL, the methodology has allowed smaller institutions to
contribute to developing a global model. As a result, numerous contributions to the field
have focused on enabling multi-institutional collaboration by developing more resilient
methodologies compatible with diverse hardware configurations.

Two primary ways to set up FL systems are centralized and decentralized, as depicted
in Figure 3 above. This terminology should not be confused with centralized vs. decen-
tralized learning, which describes how data is stored. All FL is a form of decentralized
learning. The choice of architecture must consider the task at hand and how much any
institution can afford hardware, communication, and time. The original proposition posed
by McMahan et al. included using smaller cell phone-like devices in an edge-computing
fashion to conduct FL methods [1]. However, due to security and cost-based reasons, most
medical research institutions usually have a single computer that interfaces with the rest of
the federation.
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Figure 3. Decentralized (top) vs. Centralized Federated Learning (bottom). The yellow box in the
middle of the centralized learning (bottom) represents a central server while the blue represent the
individual clients. The green boxes with orange outlines in the de-centralized setup (top) represent
the individual clients. Thje dark green circles reprsent the starting model for ech architecture.
In step 2 the different color fractions represent the different contribu-tions a local node makes to the
overall model. Step 3 shows the transferring of knowledge to the different servers and depicts the
stark difference between the two setups. Step 4 depicts how the models aggregate and also depict the
differences by which the setups differ. Afterwards the cycle starts over, where that aggregated model
then becomes the starting point (dark green circle) for the next iteration Figure heavily influenced by
one presented in [27]. Created with BioRender.com.

In centralized setups, a single central server is responsible for initializing a learning
sequence, coordinating with participating trusted client devices, and updating the model.
This system, although the most popular due to the ease of setup and low client numbers
due to the nature of medical institutions, has some drawbacks that have led researchers
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to explore other options [28]. The major bottleneck with this setup is that client devices
usually communicate only with the server; hence, the server acts as a system bottleneck.
A second drawback with centralized settings is that it provides the entire system with
single-point failure, so the entire system is affected if there is some sort of issue with
the central server. In contrast with the centralized setup, in a decentralized setup, the
client devices can communicate to train a global model and update it directly with each
other without any central server. A decentralized setup addresses and thus prevents the
single-point failure issue but introduces a higher complexity level due to the infrastructure
required. Researchers have identified device heterogeneity as another crucial hardware
factor in federated learning, resulting from variations in computer hardware speed and
connection speed [29]. For more information regarding the various types of FL setups
concerning the computational burden, as discussed in this section, please refer to the work
of Beltran et al. [16].

4.3. Security

Once this network of computing devices is identified and created, the next series
of issues arise when figuring out how they will communicate. Due to their geographic
locations and device type, it is improbable that a dedicated offline setup is achievable.
FL infrastructure offers an approach to privacy and data, but there is a need for further
implementation of measures to expand its privacy-preserving goals. Therefore, it is no
surprise that the second most prominent research topic within FL is security.

Researchers have taken two main ways to improve security: anonymization/ dei-
dentification/pseudonymization and encryption [11]. Deidentification is removing any
information that may lead to identifying the patient. In the case of HIPAA, there are 18 types
of identifiers that, if removed, can transform PHI into anonymized data. Pseudonymiza-
tion, on the other hand, is replacing certain identifiable parts of data, such as name, with a
pseudonym or a fake piece of information (e.g., Samuel Clemen’s pseudonym was Mark
Twain). However, these methodologies become complex depending on the type of imag-
ing. For example, researchers have demonstrated that the capability of reconstructing the
contours of a patient’s face from a computed tomography (CT) scan of a head facilitates
reidentification, whereas tracing back an X-ray of the leg to an individual is more compli-
cated. Encryption, however, uses cryptography on data so that any party that intercepts
data would have a more difficult understanding. Studies have demonstrated that data
can leak or tamper with algorithms, highlighting the importance of encrypting communi-
cation. Inherently, neural networks represent a form of memory; therefore, it is possible
to reconstruct training data solely from the model’s weights alone. Model inversion or
reconstruction attacks refer to reconstructing images from the model weights, resulting in
unacceptable data leakage [11].

As a result, researchers often employ two primary forms of privacy-preserving tech-
niques that implement the two methods discussed above: differential privacy (DP) and
homomorphic encryption (HE) [11,30,31]. DP is the approach of reducing recognizable
information about an individual while still maintaining the global statistical distribution
of a dataset, e.g., researchers can determine the relationship between body mass index
(BMI) and insulin levels without knowing the individual patient’s BMI, thereby preserving
privacy. The implementation DP ranges from simply shuffling the input data to more
commonly introducing noise. Applying DP can involve applying the input data, the com-
putation results, or the algorithm. A significant drawback of DP is that data manipulation
often results in degradation, which can be problematic when data is scarce.

Moreover, DP can easily be applied to tabular data but is more complex in medical
imaging. Homomorphic encryption (HE) is regarded as the gold standard by information
systems, allowing for certain mathematical operations on encrypted data as if unencrypted.
The main trade-off with HE is efficiency, specifically computational performance.

Security is an important topic within the field of FL; the lack of a secure physical
connection initializes the need for security. The implementation’s basis and nature depend
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on the data being analyzed or communicated. Data composition, distribution, and reconcil-
iation are the next overarching theme of FL research topics. For a summary of the different
kinds of attacks and more information regarding the security-based implementations,
please reference the following reviews [9,11,32,33]

4.4. Learning Schemes

Another way data characteristics shape FL approaches that we will cover, but by no
means is the only remaining way possible, is how data determines the learning type for FL.
FL can be broken down into three main task categories: Horizontal, Vertical, and Transfer.
These follow the same core principles of the FL paradigm but are distinguished by how
their data sources differ.

In the case of Horizontal learning, each site has a different set of users in their data,
but all the users share a similar feature set as depicted in Figure 4a. For instance, four
hospitals or institutions in different countries collect MRI data on Alzheimer’s disease
(AD) in the same feature space. Given that each hospital trains the model based on
its data using the Horizontal FL, these four hospitals can develop the training model
collaboratively, increasing sample size and, as a result, the model’s performance, reliability,
and generalizability.
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Figure 4. Visual depictions of Horizontal, Vertical, and Transfer Federated Learning.
(a) During Horizontal FL, the features from one dataset are shared by those of another dataset.
(b) During Vertical FL, the samples/patients are the same in two datasets, but the features are
different. (c) During Transfer FL the learnings of one dataset can be applied to another dataset
(represented by the star) even though they have little to no overlap of features or samples (depicted
by the red box). Figure heavily influenced by thosepresented in. Created with BioRender.com.

Vertical FL, also named feature-based FL, is when multiple sets of data with different
features (feature space) from the same sample can be combined to help create a single
decision [9]. Vertical FL can increase the feature space dimension by combining different
features as depicted in Figure 4b. For example, three different hospitals or institutions in a
city perform cognitive tests, MRIs, or blood gene expression on AD patients. Many patients
probably visit these institutions since these three tests are the most common AD testing.
So, there will be a significant intersection of patients, and Vertical FL can aggregate these
different tests as features for the same patients to increase the feature space for more robust
and reliable training of ML models. In medical imaging, it would be possible for a patient
with both a CT and an MRI of the same area to be combined and the insights of both to be
combined to make a singular decision [34].

The third method of FL is Transfer learning. Transfer learning can be used where
both feature space and sample space of the clients’ datasets have a relatively small overlap
as depicted in Figure 4c [9]. Following the above example for diagnosis of AD, consider
three institutions or hospitals in three different countries, each of which does one of the
cognitive tests, MRI, or blood gene expression on the AD patients. Because of the geograph-
ical distance, the sample space might have no overlap or barely overlap of information.
Moreover, each institution or hospital does a different test on AD patients, resulting in no
overlap in feature space. In such scenarios, Transfer learning can create an efficient and
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reliable model while transferring and adapting knowledge from different but related tasks.
A subcategory of Transfer learning is called domain shift, which occurs when there are
significant differences between institutions and their practices, ultimately causing a change
in the data distribution between the algorithm’s training set and the dataset it encounters
once installed [35]. Another example of Transfer learning in medical imaging would be
for the task of using a model that can identify a pancreas in one set of imaging to conduct
tumor segmentation of the brain in another set of imaging [36].

Advances in ML within the medical imaging field have been greatly afflicted due to
the sensitive nature and variety of medical data. Therefore, FL has been applied in different
ways to help compensate for the various shortcomings of traditional methods.

4.5. Data Partitioning

The largest and most prominent set of topics in FL is data-centric. The quality, type,
and distribution of data significantly impact the approach one must adopt. Furthermore,
the data available in medical imaging datasets are scarce and specific, creating a unique
environment for researchers to explore.

As previously mentioned, an ML model’s quality depends on the data quality.
ML aims to conduct tasks that generally require significant amounts of time, attention,
and training. Creating a large dataset is not as simple as simply aggregating the data in a
single location and randomly picking images to create a training set. Instead, curating the
training data and understanding how to train a model properly is essential to achieve the
best possible result. A model requires training on a diverse range of cases or a substantial
volume of heterogeneous data to achieve generalizability.

A second characteristic of data sets is how well distributed the data is amongst the
categories that make it up. In ML, specifically, to properly evaluate the performance of
a model, the data must adhere to the assumption that it is Independent and Identically
distributed (IID). For data to be IID, each random variable has the same probability distri-
bution as the others, and all are mutually independent. However, in the case of real-world
data, the distribution is rarely IID and thus must be accounted for by researchers.

These two characteristics plague the world of medical imaging. Data from a single
source can be significantly biased based on the equipment, demographics, protocols, and
pathologists labeling the data [2]. Researchers have shown that training data only from
a single source tends to skew the performance of that population. In the case of medical
imaging, specifically histopathology images, deep models tend to fail to generalize well
when used in a different hospital. The diverse imaging methods, devices, and types of
annotations would also cause issues with the IID premise [8,37,38]. FL, however, set
out to help alleviate non-IID issues, overcoming the biases of a particular institution by
aggregating with the models of other institutions [22].

4.6. Aggregation Methods

Another data-based research topic within FL is regarding how the global model
updates or the aggregation technique. Step 4 in Figure 4 depicts when the aggregation
techniques are used within the FL process. The methodology of reconciliation of a model
and architecture can influence the resulting global model’s accuracy. The most used
aggregation method is FedAVG; in this technique, the global model is simply an average of
the local models [8]. Aggregation techniques help to optimize non-IID data distributions
and imbalanced properties of the data. However, as shown in Figure 3, variances in data
distributions, data biases, and limited resources have led researchers to explore other
techniques [39].

5. Medical Imaging Applications

FL was implemented to help facilitate collaboration between groups and institutions;
however, this has led to a series of issues requiring researchers to develop new tools to
address them. The information and background provided in the previous section will
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help provide some context for the applications we will mention. In this systematic review,
our objective was to explore the current state of FL in medical imaging by exploring the
different workflows, architectures, algorithms, and frameworks deployed by other groups
that have implemented their applications. In this review, we will categorize the author’s
contributions based on the part of the body being imaged, the disease, and the task of
machine learning. A high-level overview of the categories is depicted in Figure 5 below.
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5.1. Brain

The need for data sharing in neuroimaging was evident to researchers early on.
Thus, the field embraced data collaboration before other fields. Radiographs of the head
are much easier to link back to patients due to the contours of the face present in them.
Therefore, the need for security on these images was more significant than on the image of
a foot, for example [11]. As a result, public funding agencies and journal publishers have
set forth mandates that ultimately resulted in the development of data repositories and
consortia [40]. Additionally, efforts such as the Collaborative Informatics and Neuroimag-
ing Suite Toolkit for Anonymous Computation (COINSTAC), as well as other analysis
frameworks, were also established within the field (for a more comprehensive list of neu-
roimaging platforms and tools, please refer to [23]). The efforts of these research groups
are organized by the disease they applied their FL efforts towards; the main ones include
tumor detection, Alzheimer’s/Parkinson’s detection, general structure classification, and
other disease groups. Table 2 lists and summarizes efforts within FL that relate to the brain.

5.1.1. Brain Tumor Detection

The first application of FL on medical imaging data was conducted on a brain MRI
dataset by Sheller et al. in 2018 [41]. The first of two publications by the group was
conducted as a case study that implemented semantic segmentation on the public BraTS
dataset. The group compared their FL efforts to two other alternative collaborative learning
techniques (institutional incremental learning and cyclic institutional incremental learn-
ing) [41,42]. Li et al. published their work shortly after Sheller et al.’s first work [43].
This group focused its efforts on security by implementing a parameter-sharing method
that would ultimately combat model inversion techniques that can be used to reconstruct
the training examples. The group also implemented gradient clipping as a model regulator
to prevent over-fitting using the same BraTS dataset as Sheller et al.

As FL’s popularity increased, variations in how it was implemented began to occur.
Fay et al. was a group that focused on a different type of FL called Private Aggrega-
tion of Teacher Ensembles, which trains local models and then labels unlabeled data
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that then makes up the global model [44]. In late 2021, a group, Machler et al., also
won a challenge that utilized the Federated Tumor Segmentation Challenge 2021 [45].
The group implemented a new method called FedCostWAvg, which aggregated the models
trained on different data differently than the gold standard of FedAVG to ultimately be
the best-performing brain tumor segmentation algorithm. In August of 2021, Knolle et al.
introduced MoNet, an FL architecture that reduces the number of parameters needed
for FL, thus allowing it to be used in resource-constricted environments [36]. The group
used CT images from the Medical Segmentation Decathlon to conduct their experiments.
Later, in 2021, another group, Ads et al., implemented a nontraditional FL model by be-
ing the first split learning and Vertical distribution FL for brain tumor classification [34].
Split learning differs from the traditional FL methods by splitting how the training is done
between the client and server.

In 2022, He et al. worked on how information is shuttled back and forth/communication
[46]. As model complexity grows, the cost of communication in terms becomes a significant
bottleneck for the FL system. As a result, the group conducted a case study that imple-
mented a cosine-based quantization scheme that encrypted and compressed the model
weights and gradients, allowing for a security-based improvement to FL. Around the same
time as He et al. [46], Zhang et al. [29] created a method that leveraged network level split
and feature map concatenation strategy to help combat statistical data heterogeneity, an
issue that afflicts FL models. This group implemented their case study on the BraTS dataset
to conduct tumor segmentation and on simulated data from retinopathy and bone age data.
Additionally, Rawat et al. introduced a Robust Learning Protocol when participating in the
Federated Tumor Segmentation Challenge in 2022 [47]. Through their method, the group
combined server-side adaptive optimization and parameter (weights) aggregation schemes
to address data heterogeneity issues and the communication cost of training.

Later, in 2022, Islam et al. claimed to be the first to apply a complex convolutional
neural network (CNN) model to FL [48]. The group locally trained a complex CNN
model by combining the weights of DenseNet21, VGG19, and InceptionV3 models to
create an average CNN model. They then implemented this average CNN model in an FL
setup and evaluated its performance. They found that the resulting model performed well
compared to the other models; however, not as well as a locally trained average CNN model.
The group concludes that although the performance of the FL average model is slightly
less than the locally trained average model, it is worth the privacy-preserving benefits that
the FL model offers.

In 2022, Pati et al. presented the most extensive FL study spanning 71 different sites to
detect glioblastoma sub-compartment boundaries [49]. This group did what other groups aspire
to one day conduct: an at-scale FL model. Pati et al. presented many insights. However, the
consensus was that FL at scale was, in fact, more effective than locally trained models.

5.1.2. Alzheimer’s/Parkinson’s

Shortly after the contributions of Sheller et al. in 2020, Silva et al. wrote a series of
papers that proposed an open-source framework for federated learning in healthcare [50,51].
The group demonstrated their framework by creating a model that analyzes subcortical
volumes and cortical thicknesses through MRIs to help identify the most critical dimensions
to help classify healthy Alzheimer’s and Parkinson’s imaging.

In 2021, Huang et al. noticed that data, when pooled together from multiple institu-
tions, especially MRI data, is susceptible due to the variability of scanners and sites [52].
This variability is due to the acquisition protocols, recruitment criteria, and different ma-
chines, not to mention the variability from the labeling. As a result, the group proposed a
framework named Federated Conditional Mutual Learning or FedCM and applied their
framework on T1w MRIs to be the first federated learning on multi-dataset Alzheimer’s
disease classification by 3DCNN.

In 2022, Stripelis et al. utilized an FL framework they proposed in their previous works
and applied it to MRI datasets to classify Alzheimer’s disease and estimate Brain Age [53].



Diagnostics 2023, 13, 3140 12 of 26

While the group’s previous works detailed their security enhancements and architecture
development, this later work was more of a case study implementing their previous works
on a heterogeneous dataset to prove the capabilities [31,39,53].

In late 2022, Dipro et al. applied FL to Parkinson’s Disease detection in Single-photon
emission computed tomography [54]. This group utilized data from the Parkinson’s
Progression Markers Initiative to conduct image classification to detect Parkinson’s Disease.

5.1.3. General Brain Structure Classification

In 2019, Roy et al. proposed and created an FL framework that looked to cut out the
need for a central server, allowing for another level of decentralization and, hence, more
security [28]. The group implemented their framework on T1 MRI scans and carried out
whole brain segmentation. The group named this framework BrainTorrent.

In 2021, Bercea et al. proposed another framework called federated Disentanglement
or FedDIS to help combat issues of data heterogeneity [55]. The group found that when
analyzing MRI images of the brain, the anatomical structures remain similar across insti-
tutions. Therefore, sharing only shape characteristics of abnormal structures with clients
would be more beneficial. The group conducted their experiments on data from multiple
sites and found they could outperform the state-of-the-art auto-encoder by 42%.

Later, in 2021, Parekh et al. demonstrated a cross-domain application by demonstrating
the ability to transfer between PET and CT scans [56]. The group was able to demonstrate a
cross-task model by applying a model trained on brain lesion segmentation and transferring
it to breast lesions in multi-parameter MRIs.

Brain Age is the estimation of the person’s age from their brain structural MRI scan.
A difference between the person’s actual age and the predicted age has been proven to be a
valuable biomarker for the early detection of various diseases. As a result, the works of
Stripelis et al. and others have utilized this biomarker [31,39,53]. Moreover, Gupta et al.
sought to demonstrate vulnerability within FL learning setups by demonstrating the ability
to conduct an attack known as a membership inference attack successfully [57]. The group’s
work was used to complement those of Stripelis et al.

5.1.4. Others
Dementia

The later work of Stripelis et al. sought to improve security by proposing a framework
that utilized homomorphic encryption to alter how the central model is updated [31,39].
They applied their framework to MRI scans that would help determine the age of the
brain by analyzing the structures present, ultimately classifying stages of Dementia rather
than Alzheimer’s in their previous works. Shortly after their initial work, Stripelis et al.
worked on an architecture called MetisFL that encrypts the parameters before transmis-
sion, computes the community model under fully homomorphic encryption, and uses
information-theoretic methods to limit leakage [53].

Autism

During the time of Stripelis et al., another group, X. Li et al., was trying to implement
a privacy-preserving strategy to be used in multi-site fMRI classification [35]. Unlike the
other groups mentioned before, this group was using fMRIs instead of MRIs to experiment
with identifying robust biomarkers for Autism Spectrum Disorders (ASD) on the Autism
Brain Imaging Data Exchange (ABIDE) dataset. The group proposed an FL approach
where random, Gaussian and Laplace mechanisms alter the model weights. The group
also claims to be the first group to investigate domain adaptation, which is when data
issues arise due to utilizing medical images from different institutions. Another group
that utilized the ABIDE dataset was Fan et al.; this group set out with two primary goals
and they were the first to create a federated learning framework for 3D medical images,
specifically for multi-site 3D brain MRI images [58]. Due to the nature of the data, they also
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implemented privacy security measures to keep their data secure. The group set out to use
their framework to accurately diagnose autism spectrum disorder, much like X. Li et al.

Shamseddine et al., in 2022, conducted a series of experiments with an FL framework
where they predicted whether a patient was diagnosed with ASD based on two methodolo-
gies [59]. The first methodology was based on a behavioral screening where the responses
were analyzed, and then the diagnosis of ASD was rendered. The second experiment was
conducted using a clear facial image of patients.

Multiple Sclerosis

Liu et al. is a group that worked on Multiple Sclerosis lesion segmentation and found
that the way the disease presented itself in a scan and domain shifts within datasets left
current FL techniques subpar when set for this task [60]. The group then set out to create a
new framework to modify the weight placed on parts of their training data based on the
local node and volume of the lesion. This framework, coined as FedMSRW, claims to be the
first of its kind, outperforming other FL methods.

Brain Metastasis

Huang et al. identified and implemented a way to implement continual learning for
the difficult task of brain metastasis identification [61]. The group utilized the DeepMedic
neural network and achieved identical results to mixed data.

Schizophrenia and Depressive Disorders

Another disease state susceptible to domain shift issues is using fMRIs to diagnose
Schizophrenia and major depressive disorders. Zeng et al. set out to create a method known
as GM-FedDA, where a two-stage method can be implemented to increase performance [62].
The group showed that better performance can be achieved by using one common source
adversarial domain adaptation strategy and fine-tuning the model using a gradient match-
ing method. The group demonstrated the ability of this method on Resting-state functional
MRIs for diagnostic classification of Schizophrenia and major depressive disorder.

MRI Reconstruction

MRIs have transformed the world of medicine by allowing clinicians to picture the
inside of the body non-invasively. MRIs are incredibly complicated; one aspect that has
been shown to increase efficiency is the reconstruction algorithms. Deep learning models
have been developed to help in this endeavor; however, they often fall short because they
typically show poor generalization. Therefore, in 2021, Guo et al. proposed a framework
called FL-MR that would enable FL for MRI reconstruction [63]. Additionally, the group
identified that domain shift is a significant issue in this application and thus proposed
to align the latent space distribution between the source and target domains. Moreover,
in 2022, Elmas et al. worked on creating an MRI reconstruction model that utilized a
two-stage FL-based approach [64]. The group approach included across-site learning of
a generative MRI prior and prior adaptation following injection of the imaging operator.
A note regarding these two tasks: while these papers focus on medical MRIs, they do not,
however, diagnose a particular disease; therefore, in Table 3, they have been labeled as
Non-Diagnosis.

Table 3. Summary of Brain-related applications.

Author Task Disease Goal

Sheller et al. [41] Tumor segmentation Tumor Use FL to achieve generalizability of ML models.

Li et al. [43] Tumor segmentation Tumor 1. Implement differential privacy and prove feasibility; 2. Test
effects of imbalanced training nodes.

Silva et al. [50] Analysis of subcortical
thickness and shape features Alzheimer’s, Parkinson

Introduce an easy-to-use framework to share any biomedical data
with a case study that analyzes subcortical thickness and shape
features across diseases such as Alzheimer’s and Parkinson’s,

while comparing to healthy individuals.
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Table 3. Cont.

Author Task Disease Goal

Roy et al. [28] Whole brain segmentation General Create a central server-less FL system.
Sheller et al. [42] Tumor segmentation Tumor Use FL to increase 1. Generalizability; 2. Performance.

Silva et al. [51] Analysis of subcortical
thickness and shape features Alzheimer’s, Parkinson

A case study that analyzes subcortical thickness and shape
features across diseases such as Alzheimer’s and Parkinson’s

while comparing them to healthy individuals.

Stripelis et al. [39] Brain Age prediction Dementia Demonstrate an approach to address heterogeneous environments
by predicting Dementia using Brain Age.

Stripelis et al. [31] Brain Age prediction Dementia

1. Demonstrate a successful implementation of
Cheon-Kim-Kim-Song scheme for a more secure Transfer

supporting fully homomorphic encryption; 2. Demonstrate
performance on skewed data.

Li et al. [35] Autism spectrum disorder
biomarker discovery Autism 1. Privacy-preserving pipeline for fMRI; 2. Address data

heterogeneity due to domain shift.

Huang et al. [52] Detection and stage
classification of Alzheimer’s Alzheimer’s

1. Set up a way to conduct multisite Alzheimer’s classification by
3D convolutional neural network and t1w MRI; 2. Compare

results to other models.

Bercea et al. [55] Brain anomaly segmentation General Create a framework that can identify anomalies by only sending
shape and intensity parameters.

Machler et al. [45] Tumor segmentation Tumor Create a better way to average updated model weights.
Fan

et al. [58]
Autism spectrum disorder

diagnosis Autism 1. Create an FL framework for analyzing 3D Brain MRI images; 2.
Implement privacy measures to enhance security.

Parekh et al. [56] Organ localizing, lesion
segmentation General 1. Demonstrate the feasibility of training cross-domain; 2.

cross-task FL models.

He et al. [46] Image classification Tumor Implement a simple cosine-based nonlinear quantization to
achieve results in compressing round-trip communication costs.

Dipro et al. [54] Image classification Parkinson’s A novel approach to detecting Parkinson’s disease with FL.

Zhang et al. [29] Tumor segmentation Tumor Create a new FL method to overcome the performance drops from
data heterogeneity.

Liu et al. [60] Lesion segmentation Multiple Sclerosis Create a framework that addresses domain shifts that are specific
to Multiple Sclerosis lesion segmentation tasks.

Stripelis et al. [53] Brain classification Alzheimer’s and Brain Age

Build an architecture 1. That encrypts parameters before
transmission, computes models via homomorphic encryption and

uses methods to limit leakage; 2. Performs well across
heterogeneous environments.

Islam et al. [48] Image classification Tumor First study to use Complex CNN model for FL MRI-based tumor
classification.

Huang et al. [61] Metastasis Segmentation Brain Metastasis Overcome catastrophic forgetting by implementing Continual
Learning on Brain Metastasis Identification.

Zeng et al. [62] Image classification Schizophrenia, Major
Depressive Disorder

Propose a 2-stage method of gradient matching that aims to
reduce domain discrepancy. The group demonstrated the ability of

this method on resting-state functional MRIs for diagnostic
classification.

Ads et al. [34] Image classification Tumor Implement both split learning and Vertical distribution for brain
tumor classification.

Elmas et al. [64] MRI reconstruction
(Not Diagnostic) General

Introduce FedGIMP for MRI reconstruction, which leverages a
2-stage approach: cross-site learning of generative MRI prior and

prior adaption following injection of the imaging operator.

Fay et al. [44] Tumor segmentation Tumor Implement a Private Aggregation of Teacher Ensembles based on
the FL model on the BraTS dataset.

Guo et al. [63] MRI reconstruction
(Not Diagnostic) General

1. Introduce a method called FL-M that enables multi-institutional
collaborations for MRI reconstruction; 2. Address domain shift

issues by aligning the latent space distribution between the source
and target domain; 3. Conduct experiments that provide insights

about FL in MRI reconstruction.

Gupta et al. [57] Brain Age prediction General Demonstrate the ability to conduct membership interference
attacks on deep learning models.

Pati et al. [49] Tumor segmentation Tumor
Conduct experiments on the largest dataset to date regarding the

feasibility and effects of FL on glioblastoma sub-compartment
boundary detection.

Shamseddine et al. [59] Autism spectrum disorder
diagnosis Autism Use FL models to determine if a patient has Autism or not based

on: 1. behavioral screening data; 2. A clear facial picture.

Rawat et al. [47] Tumor segmentation Tumor

Introduce robust learning protocol, which is a combination of
server-side adaptive optimization and parameter aggregation

schemes to tackle data heterogeneity issues and communication
cost of training.

Knolle et al. [36] Pancreas segmentation and
tumor segmentation General pancreas and tumor

Create an FL architecture that can operate in resource-constrained
environments by decreasing the amount of image features being

used and transferred.

5.2. Chest and Abdomen
5.2.1. COVID-19

Over the past few years, there have been monumental strides when it comes to Deep
Learning in Chest x-ray radiology. The influx of annotated chest X-rays has spurred
significant contributions due to the recent COVID-19 pandemic. The COVID-19 pandemic
that struck the world in 2020 tested the world in many ways; one of the most prominent
needs throughout the pandemic was the need to share data and knowledge with colleagues
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and institutions worldwide. FL was a prime candidate in the minds of researchers at the
time to help solve issues and make a better set of machine learning models. As a result,
one of the most common applications of FL in medical imaging is regarding COVID-19.
A summary of COVID-19 applications of FL can be seen in Table 4.Unlike the previous
Brain section, which had several diseases classified under that part of the body, COVID-
related studies all relate to the lungs; therefore, we will be splitting the sections based on
the modality utilized.

Table 4. COVID-19 Applications.

Author Task Modality Goal

Liu et al. [65] Classification CXR Compare distributed learning/FL to four other classic models.

Xu et al. [66] Classification CT
1. Introduce UCADI, a global AI CT model collaborative;
2. Create a large COVID-19 dataset;

Kumar et al. [67] Segmentation/
Classification CT

1. Create a new data normalization technique;
2. COVID-19 detection technique;
3. introduce blockchain.
4. And create a new dataset.

Lydia et al. [68] Classification CXR Create an FL-based COVID-19 detection model on an Internet of Things, enabling edge
computing environment.

Dayan et al. [69] Classification CXR + EMR
Provide proof of concept that will demonstrate the ability to create an FL model that can be used
across heterogeneous, unharmonized datasets for the prediction of clinical outcomes in patients

with COVID-19.

Zhang et al. [70] Classification CT, CXR
1. Create a more communication-efficient FL technique that also better handles
2. data heterogeneity;

Dou et al. [71] Segmentation/
Classification CT

1. Demonstrate the feasibility of FL for detecting COVID-19-related CT abnormalities in a
multinational study;

2. Longitudinal case studies to estimate lesion burden;

Feki et al. [72] Classification CXR
1. Demonstrate the ability to implement FL on COVID-19 detection in X-rays;
2. Demonstrate the ability of FL to overcome non-IID issues;

Yang et al. [37] Segmentation/
Classification CT

1. Use FL on chest CT to demonstrate COVID-19 detection capabilities in a multinational study
that could demonstrate the ability to overcome domain shift;

2. Implement semi-supervision to help increase annotated dataset size to improve FL
performance;

Salam et al. [73] Classification CXR + EMR
1. Prove Efficacy of FL vs. traditional learning in CXR COVID-19 detection;
2. Determine which parameters affect prediction accuracy;

Alam et al. [74] Segmentation/
Classification CXR

1. Explore 2 decision-making tasks, COVID-19 detection and lung area segmentation detection
of chest radiology images;

2. Compare the abilities of a high-end computer and a low-end computer; the low-end did
better on lung segmentation and high-end did better on COVID-19 detection;

Liang et al. [75] Segmentation/
Classification CT+ EMR

1. Create a framework where CT + EMR information can be used to diagnose COVID-19;
2. Create a model that can automatically segment lung lesions to keep track of progress;

Zhang et al. [30] Segmentation CXR Create a privacy-preserving data augmentation method enhancing security;

Ho et al. [76] Classification CXR + EMR.,

1. Construct an FL system using chest X-rays and symptom information;
2. Add spatial pyramid pooling to a 2D convolutional neural network to improve accuracy;
3. Explore how different parameters can improve accuracy for non-IID data;
4. Apply a differential privacy stochastic gradient descent to improve the privacy of

patient data;

Qayyum et al. [77] Classification CXR + ultrasound 1. Create a clustered FL method to develop a multimodal COVID-19 FL detection system using
X-ray and ultrasound;

Durga et al. [78] Classification CT 1. Propose a novel framework based on blockchain and FL model;
Zheng Li et al. [79] Classification CXR 1. Create a FL framework with a dynamic focus on COVID-19 detection on CXR;

COVID-19 Chest X-rays

The first application of FL to COVID-19 was conducted in July 2020 by Liu et al.,
who focused on comparing the performance of FL and non-FL models [65]. In total,
Liu et al. compared the performance of four different ML models on CXR images from
the publicly available COVID-19 x database. Lydia et al. is another group that used the
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COVID-19 x database to implement FL. The group focused on creating a detection model
on an IOT-enabled edge computing environment [68].

In 2021, Feki et al. also implemented FL on COVID-19 detection in Chest X-rays.
Their work also showed that FL can perform well on datasets with skewed distributions and
conducted several experiments comparing the decentralized and centralized models [72].

Longling Zhang et al. focused on enhancing the security of FL by implanting a
Generative Adversarial networks framework [30]. The group also demonstrated through
their work that they could alleviate issues in non-IID data.

COVID-19 CXR + EMR

Salam et al. built upon the works of Liu et al. and 33 others by creating a custom ML
model and optimizing FL parameters [73]. Additionally, Salam et al. added descriptive
data to their X-ray images. The group studied the efficacy of FL vs. traditional learning
by developing two ML models based on Keras and TensorFlow; the group also tried to
identify which parameters affect model prediction accuracy. Dayan et al., another group,
significantly highlighted the differences between FL and non-FL models. Dayan et al. had
previously published work within the field using local ML models and transferred their
knowledge into their FL findings [69]. The group found that their approach and use of
FL allowed their model to become more generalizable, overcoming certain data biases.
Dayan et al., much like Salam et al., had multidimensional data that included EMR and
Chest X-ray images. Data quality and robustness were another primary focus among
groups implementing FL in COVID-19 imaging applications.

Another group, Ho et al., found that using non-IID or similar-looking data is the
source of a significant issue in FL systems [76]. The group went on to find that the size and
distribution of the data sources can directly affect the performance and thus were able to
increase performance by increasing the total number of clients, parallelism (client–fraction),
and computation per client (batch size). Finally, Ho et al. found that splitting the dataset
not only provided better results on the training of the model but also helped to increase the
security of the data.

COVID-19 CT

One of the first applications of FL to COVID-19 CTs was done by Xu et al. This
group identified a need for a large, diverse, and generalized dataset and thus set out to
create a collaborative in which researchers could share data [66]. In 2021, another group,
Kumar et al., also applied FL to CTs; however, they also proposed a way to normalize
the data, proposed a novel COVID-19 detection technique, enhanced security through
blockchain technology, and introduced a new dataset [75].

Lydia et al. focused heavily on the Internet of Things and edge computing-enabled
computing environments. They used the publicly available COVID-19 x dataset to develop
a detection model. The model utilized the Squeeze Net model, and the parameters were
optimized with glowworm swarm optimization. The group ultimately classified images as
normal, pneumonia, or COVID-19. They then compared their findings to other methods
and found that FL COVID-19 techniques outperformed the other methods [68].

Shortly after, Salam et al. built upon the works of Liu et al. and 33 others by creating a
custom ML model and optimizing FL parameters [73]. Additionally, Salam et al. added
descriptive data to their X-ray images. Salam et al. also concluded that the federated
machine learning model performs better in terms of accuracy and loss; however, the time
required by this method is longer than that of traditional machine learning models [73].
Dayan et al., another group, significantly highlighted the differences between FL and
non-FL models. Dayan et al. had previously published work within the field using local
ML models and transferred their knowledge into their FL findings [69]. The group found
that their approach and use of FL allowed their model to become more generalizable,
overcoming certain data biases. Dayan et al., much like Salam et al., had multidimensional
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data that included EMR and Chest X-ray images. Data quality and robustness were another
primary focus among groups implementing FL in COVID-19 imaging applications.

In a multinational study, another group, Dou et al., focused on demonstrating the
feasibility of using FL for detecting COVID-19-related CT abnormalities. The group used
datasets from four multinational centers to show the benefits of FL. The group also did a
longitudinal case study estimating lesion burden at these different institutions [71].

Yang et al. looked to create a robust and generalized dataset by consolidating the
data from numerous geographical locations using FL to conduct semi-supervised learning
and label previously unlabeled data to define areas of interest within 3D chest CTs [37].
Ultimately, the group focused heavily on the issues around domain shift and demonstrated
the utility of FL.

Durga et al. proposed a novel framework that was based on blockchain and FL [78].
The group utilized lung CT images from multiple publicly available datasets and compared
the performance of their proposed model with the other existing model architectures in
predicting COVID-19 while effectively preserving privacy.

COVID-19 CT + Clincal Data

Liang et al. worked on a framework that utilized CT imaging with and without EMR
data to detect and distinguish COVID-19 from other lung issues and also worked on a
model that could automatically segment the lesion within the CT, tracking the progress of
disease over time [75].

COVID-19 CT/X-rays

Zhang et al. ran their models on both CT images and X-rays. The group found
that rather than constantly updating the model, it should only be updated when the new
data improves the model’s performance, proposing a dynamic fusion-based approach [70].
This scheme not only helps battle the issue of homogeneous data but also helps to save on
the cost of computation and transmission of data but only updates when necessary.

COVID-19 X-ray and Ultrasound

Qayyum et al. proposed a clustered federated learning framework that processed multi-
modal imaging data [77]. The group utilized X-ray and ultrasound imaging. The group
compared CFL with conventional FL.

5.2.2. General Chest X-rays

Ziegler et al. evaluated the feasibility of differential private FL on chest X-ray classifica-
tion [32]. The group focused on the security aspect of FL by introducing Reyni differential
privacy with Gaussian noise into the local training model.

5.3. Pancreas

Pancreatic cancer is the second leading cause of cancer-related death in American
males [80]. Over the years, machine learning has made significant strides within the field.
However, there have not been many instances where research groups have implemented
FL in pancreatic tumor segmentation. A summary of pancreas related applications of FL
can be seen in Table 5.

Table 5. Applications of FL to Pancreatic Imaging.

Author Task Goal

Wang et al. [81] Pancreas
segmentation Generate and evaluate an FL model for pancreas segmentation.

Shen et al. [82] Pancreas
segmentation

Investigate heterogeneous optimization methods that show improvements for the
automated segmentation of pancreas and pancreatic tumors in abdominal CT images.

Knolle et al. [36] Pancreas
segmentation

Create an FL architecture that can operate in resource-constrained environments by
decreasing the amount of image features being used and transferred.
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Wang et al. were the first to perform FL on pancreas segmentation data hosted at
multinational sites [81]. The group used a set of abdominal CTs to conduct pancreas
segmentation to highlight tumors and the pancreas itself. Shen et al. collaborated with
Wang et al. to create one of the first pancreas segmentation to highlight the pancreas and
the tumors [82]. This paper differs from Wang et al. because they use a 3rd publicly anno-
tated dataset. Additionally, this group aimed to investigate three main points, introduce
dynamic task prioritization for each task in multi-task learning, investigate dynamic weight
averaging aggregation, and compare the effects of FEDavg and FEDprox on pancreas
segmentation tasks—a multi-task FL method. The group’s experiments found that FL
Dynamic Weight averaging model aggregation performed best but required significant
manual tuning. Overall, the group focused its efforts on optimization and how the models
are updated. Knolle et al., as mentioned in the brain section, created an efficient FL architec-
ture that minimized the number of parameters required to conduct semantic segmentation
on not only brain CTs but also pancreatic CTs [36].

5.4. Breast

Breast cancer is the leading cause of cancer-related deaths in women; as a result,
women are screened for breast cancer regularly. Due to an 11% positivity rate, the datasets
at these institutions tend to be overwhelmingly filled with negative results. As a result,
traditional machine learning becomes difficult, with the dataset skewed in a particular
direction. Researchers have combined datasets from other institutions to make a better
classification system, providing a case for FL within the task. A summary of breast cancer
applications of FL can be seen in Table 6.

The first implementation of FL in breast cancer classification was done by Roth et al.,
who applied FL to BIRADS, which was applied to a series of multi-institutional mam-
mography data images [83]. These images are 2D X-ray images focused mainly on breast
density calculation. Shortly after Sanchez et al., the group built upon the works of Roth
et al. by continuing their pursuit of implementing federated learning in breast cancer
classification [84]. The group implemented the first use of Curriculum Learning to boost
classification performance while improving domain alignment. Lastly, Agbley et al. aimed
to apply federated learning to detect breast cancer and appropriately classify them into sub-
types [85]. This data differs from the predecessors because it uses local Invasive carcinoma
of no particular type (IC-NST) from the breast histopathology image dataset. The group
implemented FL on this dataset and experimented with a second set of neural networks
that implemented Gabor kernels to extract another set of features.

Table 6. Applications of FL to Breast Cancer.

Author Task Goal

Agbley et al. [85] Tumor Segmentation Leverage FL to securely train mathematical models over multiple
clients with local no special type images from the BIH dataset.

Roth et al. [83] Breast Density
classification Create an FL model that can classify breast densities using BI-RAD data

Sanchez et al. [84] Breast Cancer
Classification Create a novel memory-aware curriculum learning method for FL.

5.5. Skin

Skin diseases have increased in prevalence dramatically in recent decades. Variations
in skin, disease, and tumors, as well as different resolutions, complex contexts, privacy
concerns, and sensitive body part images, make it challenging to create an ML algorithm
that is generalized enough to perform well. The datasets available often limit these efforts,
making it a prime candidate for FL. A summary of skin disease related applications of FL
can be seen in Table 7.
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Table 7. Applications of FL to Skin Diseases.

Author Task Disease Goal

Hashmani et al. [86] Segmentation and
classification Skin tumor Propose an adaptive FL-based skin disease model to create an intelligent dermoscopy device.

Mou et al. [87] Segmentation and
classification

Melanoma
detection Present a feasibility study that demonstrated the capabilities of FL on medical records.

Hossen et al. [88] Classification Skin
diseases

1. Create a custom image dataset prepared with 4 distinct classes of skin disease; 2. Create a novel
CNN model to classify the four disease types; 3. Use FL to enhance the security of medical imaging

using the custom dataset.

Wicaksana et al. [89] Classification Skin lesions Introduce and implement CusFL, a method in which each client trains a private model based on the
global model aggregated from all private models trained in the immediate previous iterations.

Hashmani et al. proposed an FL-based skin disease model that consisted of efforts
to diagnose the type of disease [86]. Mou et al. created an FL model that conducted
statistical and image analysis on skin lesion data across three Germany-wide stations [87].
Hossen et al. implemented their custom dataset to classify if a picture was one of four
skin diseases [88]. The group found that their FL model showed less accuracy than CNN
algorithms but also noted that the accuracy will increase daily as the number of training
images increases.

Wicaksana et al. proposed Customized FL (CusFL) and demonstrated its ability to
detect prostate cancer and identify skin cancer [89]. This group’s approach differed from
traditional FL by iteratively training a client-specific model based on the global model
instead of training a single one, thereby avoiding catastrophic forgetting.

5.6. Prostate

Prostate cancer (PCa) is worldwide the second most common cancer. Moreover, it is
ranked fifth in mortality among men regarding cancer-related deaths [90]. Imaging plays a
pivotal role in the staging process; International guidelines suggest using mpMRI’s PET or
CT with Protein Specific Membrane Antigens. While there have not been many groups that
have explored PCa, some have tried. A summary of prostate cancer applications of FL can
be seen in Table 8.

Table 8. Applications of FL to Prostate Imaging.

Author Task Goal

Yan et al. [91] Prostate classification

1. Introduce the VAFL framework;
2. Improve the performance of the global model for classification;
3. Reduce variation while not increasing communication burden;
4. limit the amount of training data.

Wicaksana et al. [89] Prostate classification
Introduce and Implement CusFL, a method in which each client trains a private model
based on the global model aggregated from all private models trained in the immediate

previous iterations.

Sarma et al. [92] Prostate segmentation Demonstrate the ability to train a FL model across 3 academic institutions while
preserving patient privacy.

In 2020, Yan et al. proposed a variation-aware federated learning framework to
minimize client variations by transforming images into a common image space [91].
The group tested their framework on prostate cancer datasets intending to classify images.
Additionally, Sarma et al. conducted a case study demonstrating their ability to utilize FL
to train a deep learning model across three academic institutions while preserving patients’
privacy [92]. Furthermore, Wicaksana et al., as mentioned in the skin section, proposed a
new way to train the FL model and demonstrated the abilities of the said model on prostate
cancer data [89].

5.7. Others

FL has been applied to several other fields, and it is growing by the day; however,
due to the number within each discipline, we decided to simply mention them in this
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section. Some of these other fields include ophthalmology [12,93–95], cardiac [96–99],
larynx cancer [100,101], thyroid [102], and tuberculosis [103].

A noteworthy variation was conducted by Kassem et al., who used surgical videos
rather than images to apply FL for surgical phase detection (not diagnosis) on Cholecyste-
cotomy procedures [104].

6. Discussion
6.1. Research Questions

i. RQ1: How does federated learning differ from centralized learning when dealing
with medical imaging applications?

Centralized learning is the traditional way ML is conducted, where data is pooled
together in a single location, usually locally, for medical imaging applications. Constructing
such a database requires extensive calibration and exhaustive compliance regulation with
HIPAA practices. The financial, time, and risk costs associated with creating such datasets
have led to only a handful existing, ultimately stifling progress in ML in medical imaging.

FL, however, was created to help address the limits of centralized learning. FL boasts
the ability to train a model collaboratively without requiring all the clients to have access
to each other’s data while still reaping the benefits of a model that has seen all the data.
Moreover, FL can overcome some issues posed by non-IID datasets and, in some cases,
combat the catastrophic forgetfulness of models by altering the importance of a client’s data.
These benefits are significant when dealing specifically with medical imaging applications.

ii. RQ2: What are the different tasks/scenarios federated learning is used in for medical
imaging applications?

COVID-19, brain, breast, and pancreatic are some of the most common implementa-
tions of Federated Learning in the medical imaging space. The main categories in which
most research groups tend to focus their efforts are a proof of concept, comparing central-
ized learning to decentralized (federated learning), enhancing the security of federated
learning applications, and finding ways to compensate for the fact that real-world data
tends to be non-IID.

The application of FL to brain imaging is one of the most advanced partially since it
is where Sheller et al. started off their applications. COVID-19 applications are also quite
involved and have been quickly developing due to the onslaught of the pandemic and
the need to share findings quickly and efficiently. The other applications, in comparison,
remain few and far between; however, they have an overall positive trajectory.

6.2. Future Direction

Since McMahan et al. proposed the idea of Federated Learning, it has gained popular-
ity among various fields that involve the use of machine learning and artificial intelligence.
As a result, the number of research articles and applications of FL has been increasing
in an exponential fashion as depicted in Figure 6. In the field of medical imaging, the
application of the method to specific datasets remains largely unexplored; therefore, there
are numerous articles that are written with the sole purpose of documenting the applica-
tion of FL to a particular task/modality. Many of the applications within this category
encompass semantic segmentation and identification tasks. Moreover, as the background
section mentions, there is also a significant amount of research into enhancing the different
features of FL, such as security and communication protocols. Another area of further
research will be in the use of videos rather than images [104].
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Figure 6. Number (#) of Federated Learning Articles per year. Blue depicts the number of FL articles
per year, with the y axis on the left. Orange depicts the number of Medical Imaging related FL articles
per year with the y axis on the right. Corporate interests in FL revolve around the ability to gather
the learnings of edge devices, such as that on user’s cell phones, without moving large amounts of
data that would be otherwise required [1,105,106]. Additionally, the ability for users to maintain their
own data governance is also a large selling point, especially when dealing with potentially sensitive
information. Larger companies like Google have been utilizing federated learning with its Google
keyboard; additionally, IBM has also been utilizing the methods as well [105]. Healthcare companies
like Rhino Health utilize FL to create a platform for sharing information amongst institutions.

The future of FL in medical imaging will continue to increase; there will be more
articles documenting the application to new datasets. Additionally, the focus on security
and, consequently, advancements will be documented and required as FL becomes more
widely implemented. Although FL makes collaboration easier, the acquisition of partners
to implement any model still remains difficult; therefore, the utilization of Transfer learning,
taking the models trained on similar modalities or tasks, will be used to enhance tasks.
The increased levels of interest within the field have resulted not only in research interest
but also piqued the interest of corporate institutions.

7. Conclusions

The application of FL to medical imaging aims to address issues that previously
plagued the community. However, just as medicine is moving towards a personalized
manner, FL must also be adapted to the specific needs of the image or disease state.
Certain data types require more heterogeneous data; some require more security, while
others are readily generalizable. Moreover, while security-wise, FL is inherently more
secure than the outright sharing of data between institutions, model performance remains
comparable to centralized learning counterparts. As advancements in understanding how
ML models learn, perform, and can be transferred, it seems that it is only a matter of time
before FL models will regularly surpass centralized models in most categories.
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