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Abstract: Diabetic retinopathy (DR) is a severe complication of diabetes. It affects a large portion
of the population of the Kingdom of Saudi Arabia. Existing systems assist clinicians in treating DR
patients. However, these systems entail significantly high computational costs. In addition, dataset
imbalances may lead existing DR detection systems to produce false positive outcomes. Therefore,
the author intended to develop a lightweight deep-learning (DL)-based DR-severity grading system
that could be used with limited computational resources. The proposed model followed an image
pre-processing approach to overcome the noise and artifacts found in fundus images. A feature
extraction process using the You Only Look Once (Yolo) V7 technique was suggested. It was used to
provide feature sets. The author employed a tailored quantum marine predator algorithm (QMPA)
for selecting appropriate features. A hyperparameter-optimized MobileNet V3 model was utilized
for predicting severity levels using images. The author generalized the proposed model using the
APTOS and EyePacs datasets. The APTOS dataset contained 5590 fundus images, whereas the
EyePacs dataset included 35,100 images. The outcome of the comparative analysis revealed that the
proposed model achieved an accuracy of 98.0 and 98.4 and an F1 Score of 93.7 and 93.1 in the APTOS
and EyePacs datasets, respectively. In terms of computational complexity, the proposed DR model
required fewer parameters, fewer floating-point operations (FLOPs), a lower learning rate, and less
training time to learn the key patterns of the fundus images. The lightweight nature of the proposed
model can allow healthcare centers to serve patients in remote locations. The proposed model can
be implemented as a mobile application to support clinicians in treating DR patients. In the future,
the author will focus on improving the proposed model’s efficiency to detect DR from low-quality
fundus images.

Keywords: diabetic retinopathy; machine learning; MobileNet V3; Yolo V7; deep learning; artificial
intelligence

1. Introduction

DR is a retinal complication of diabetes [1]. It impairs or completely degrades an
individual’s vision. Uncontrolled diabetes over an extended length of time increases the risk
of visual impairment due to diabetic maculopathy [2–4]. Retinal capillaries are susceptible
to damage from high blood sugar. In a longer period, this deterioration leaves blood
vessels more vulnerable to further damage or even rupture [5]. The risk of DR depends on
diabetes duration, blood sugar management, genetic susceptibility, hypertension, and lipid
abnormalities [6–8]. DR is more likely to develop in type 1 and 2 diabetics with poor blood
sugar management [9]. DR is the primary factor of irreversible blindness in individuals
across the world [10]. In addition, DR contributes to serious disorders like proliferative
DR, the most prevalent microvascular implication [11]. Early diagnosis is one of the crucial
factors for reducing the severity of DR.

The field of ophthalmology relies heavily on analyzing blood vessel structures in
retinal fundus images. Permanent vision loss can occur due to age-related macular de-
generation and diabetic macular edema [11]. Optical Coherence Tomography (OCT) is
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a crucial tool for ophthalmologists in diagnosing DR [12]. Ophthalmologists must de-
vote a considerable amount of time to detecting abnormalities. This is crucial to prevent
or mitigate DR-related visual impairment. Adopting minimally invasive methods and
robotic-assisted surgery has become increasingly prevalent in ophthalmology, especially
for treatments such as cataract surgery and glaucoma treatment [11]. These advancements
have demonstrated the ability to reduce patient discomfort and expedite healing. To in-
crease the efficacy of ocular drugs, new drug delivery devices such as sustained-release
implants and punctal plugs have been developed [12]. Utilizing teleophthalmology facili-
tates both the remote evaluation of retinal images and consultations with patients [12]. It
has demonstrated enhanced accessibility to DR screening. Emerging imaging techniques
like hyperspectral and multispectral imaging have demonstrated potential in the realm of
early disease identification and tissue characterization [12]. Medical diagnosis and therapy
have greatly benefited from developments in 3D and 4D medical imaging, which have
enhanced the visualization of anatomical structures [12]. The implementation of portable
and handheld imaging technologies has experienced a surge in popularity, as it allows
healthcare practitioners to conduct imaging activities to provide effective treatments.

In the Kingdom of Saudi Arabia (KSA), it is estimated that 13.4% of individuals are
affected by diabetes mellitus, making it an extremely serious medical condition [11,12].
An automated and affordable screening system is required to serve DR patients across
Saudi Arabia [12]. Medical and surgical operations for these individuals are more costly,
and their unfavorable prognoses impose a financial strain on them and the healthcare
system. The Saudi National Diabetes Center was recently founded to address the prevalence
and severity of diabetes [12]. The center has spearheaded a strategy plan to significantly
enhance diabetes treatment in the Saudi population over the upcoming years. There is a
demand for an automated detection model to identify DR in the earlier stages.

In contrast to more traditional procedures, such as the dilatation of the eye pupil, auto-
mated retinal image processing has greatly facilitated the diagnosis of retinal diseases [13].
In recent years, artificial intelligence (AI) and machine learning (ML) algorithms have
made significant advancements in the automated identification and assessment of DR using
retinal images. The primary objective of these systems is to optimize the early detection of
medical conditions and increase the overall care and treatment of patients [14]. AI systems
can examine retinal images and scans to identify the earliest stages of DR. These algorithms
can detect and categorize DR severities [14]. The computerized screening procedure aids
in making a timely diagnosis, which is essential for effective therapy. AI applications
can help prioritize patients according to the severity of their conditions [15]. It can be
used to evaluate large datasets of retinal images and patient information to improve DR
detection strategies.

Fundus images, including OCT scans and ultrasonography, are widely applied to
DR detection. These images cover blood vessels, the macula, and the retina’s interior
part. The fundus camera provides high-quality retinal images. These images are used in
deep-learning (DL) models for detecting abnormalities [16].

A convolutional neural network (CNN) is a subset of artificial neural network archi-
tecture. It is primarily used in processing videos and images [16]. In recent years, CNNs
have played a pivotal role in advancing computer vision by assisting in resolving various
visual recognition challenges [17]. CNNs are built from numerous distinct convolutional
layers, each of which must learn and identify certain image characteristics or patterns.
The computation of feature maps is the goal of convolutional operations, which entail
shifting extremely small filters across the input image [18]. It is possible to fine-tune pre-
trained CNN models for use in multiple applications. These models have been exposed
to extensive data and have gained an enormous amount of knowledge in various fea-
ture domains. Transfer learning (TL) approaches present an exceptional outcome using
smaller datasets [19]. To enhance feature extraction and prediction for DR detection and
to overcome the limitation of unbalanced and noisy fundus image data, existing studies
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have employed many data-augmentation approaches, sampling techniques, cost-sensitive
algorithms, and hybrid and ensemble architectures [20].

The large datasets, including MESSIDOR, EyePacs, and APTOS, provide the fundus
images [21]. Ophthalmologists were involved in gathering the ground truth images. The
researchers employ these datasets to generalize their DR-detection models [21]. The CNN-
based DR-detection models are widely used to detect and grade DR severity. These models
demand a higher number of computational resources for producing an outcome. There is a
lack of lightweight CNN models for detecting DR severity. This motivated the author to
develop a lightweight model for grading the DR-severity level using the fundus images. In
addition, an effective mobile-based DR image classifier is required to provide services to
the individuals in the remote locations of the KSA.

The contributions of this study are as follows:

i. A feature-extraction technique to improve the accuracy of the DR-detection model.
ii. A DR-severity grading model that demands fewer parameters, FLOPs, and convolu-

tional layers.
iii. An evaluation of the proposed model using the benchmark datasets and evalua-

tion metrics.

This proposed study is structured as follows: Section 2 presents the existing DR-
severity literature. Section 3 outlines the proposed methodology for classifying the DR-
severity levels. The findings are presented in Section 4. Section 5 discusses this study’s
contribution to the DR-detection literature. Finally, Section 6 concludes this study.

2. Literature Review

Medical professionals can benefit greatly from deep-learning-based systems that auto-
mate the interpretation of retinal pictures and provide objective and consistent assessments
of the severity of DR [21]. DL-based screening methods can test a large diabetic population
for DR. Deep-learning algorithms can monitor the course of diseases over time by evaluat-
ing successive retinal images [21]. As a result, physicians may fine-tune their approaches
to treating patients. Implementing these technologies plays an essential role in augmenting
the efficacy and proficiency of DR screening and therapy, ultimately yielding advantages
for both patients and healthcare practitioners. Nagpal et al. (2022) [22] discussed the recent
developments in the DR-detection models. The noise and low contrast levels of the images
may reduce the DR-image-classification performance. The morphological changes in the
retinal images are the key factors in detecting DR [23]. In addition, DR-detection models
identify lesions to compute severity levels.

Orlanda et al. (2017) [23] proposed a DL-based lesion-detection model using ensemble
values. Al-hazaimeh et al. (2022) [24] developed a multi-class classification model for
detecting DR severity. They followed blood-vessel-based segmentation and optic-disc-
based detection techniques for pre-processing the images. In addition, they applied feature
extraction and selection techniques to improve the classifier accuracy. Suganyadevi et al.
(2022) [25] proposed a DR-detection model for detecting the severity of the fundus images.
They employed the CNN models for processing the images. The multi-class classifier
achieved an optimal outcome. Similarly, Nahiduzzaman et al. (2023) [26] developed a
DR-identification model using a parallel convolutional neural network. They used an
extreme learning machine to extract the key patterns. They adjusted the CNN model’s
parameters using hyperparameter optimization. They used a smaller number of parameters
for classifying the fundus images.

Abbood et al. (2022) [27] developed a hybrid retinal image enhancement algorithm
using the DL technique. They applied a retinal-cropping technique to extract the features.
Gaussian blur and circle cropping were used to enhance the image quality. They employed
a ResNet 50 model to classify the fundus images. Canayaz (2022) [28] proposed a clas-
sification technique to detect DR severity. Binary Bat algorithm, Equilibrium optimizer,
Gray Wolf optimizer, and Gravity search algorithm were used for feature extraction. They
used a Support Vector Machine and Random Forest for classifying DR-severity levels.
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Modi and Kumar (2022) [29] developed a DR-severity detection using a Bat-based fea-
ture selection algorithm. They employed a deep forest technique for image classification.
The K-mean-based segmentation algorithm was used to identify the lesion region. The
feature extraction was performed using a multi-grained scanning method. Dayanna and
Emmanuel (2022) [30] proposed a grading system for identifying the severity levels of the
fundus images. The coherence-enhancing energy-based regularized level set evolution was
used for blood-vessel segmentation. An attention-based fusion network was employed
to detect the candidate lesion region. They applied a deep CNN model to classify the
fundus images.

Furthermore, Savelli et al. (2020) [31] employed the multi-context ensemble-based
CNN for detecting lesions in the fundus images. Chetoui et al. (2020) [32] employed
EfficientNet to identify the abnormalities. Karki et al. (2021) [33] proposed an integrated
EfficientNet model for DR classification. Kajan et al. (2020) [34] proposed a CNN model
for identifying DR. They followed the TL technique for classifying the images. Patil et al.
(2020) [35] employed a TL technique for DR-severity grading. Tariq et al. (2022) [36]
employed ResNet50 and DenseNet121 models for the DR-severity-level classification
model. They utilized APTOS and EYEPACS datasets for evaluating the model. Kobat et al.
(2022) [37] applied a pre-trained DenseNet model to grade the DR-severity levels. Luo et al.
(2023) [38] built a DR-detection model using deep CNN. They used local mining and long-
range dependence techniques for the image classification. Lastly, Ishtiaq et al. (2023) [39]
proposed a hybrid technique for classifying the fundus images.

To train deep-learning models, it is necessary to have access to extensive datasets
that are both sizable and of superior quality. It can be challenging to obtain a diverse and
representative dataset of retinal images, especially when dealing with rare DR conditions.
The presence of imbalanced data may influence the model to produce more false posi-
tives [39]. It presents challenges in identifying severe instances of DR. Interoperability and
user-friendly interfaces for healthcare professionals are essential to integrate DL models
into clinical settings and EHR systems [39]. Processing retinal images in real time for
prompt diagnosis and prioritization in telemedicine or point-of-care environments can
impose a significant demand on resources and require specialist technology. The existing
CNN models, including VGG, ResNet, and DenseNet models, demand huge computational
resources for classifying DR severities [39]. There is a demand for lightweight applications
to overcome the shortcomings of the existing models and to detect DR severities with
limited computational resources.

3. Materials and Methods

The author presents a DL-based DR-severity grading model. MobileNet V3–Small
is a lightweight CNN model that classifies complex images with fewer computational
resources. However, the complexities in the fundus images may reduce the performance
of the MobileNet V3. Integrating feature extraction and selection techniques enables the
MobileNet V3 to produce optimal results and reduces the possibility of data overfitting. In
addition, it minimizes the number of parameters of the model in learning the DR severity
in the fundus images. The traditional feature-extraction and selection techniques demand
a higher computational time for exploring the search space to reduce the dimensionality
of the feature set. Yolo V7 [40] is the recent version of the Yolo techniques. It applies deep
CNN in extracting the crucial features that represent DR severity. It processes the image
at multiple layers and extracts hierarchical features. In addition, it can extract the key
features in a short period. QMPA [41] is one of the optimization techniques that reduces
the computation time in identifying the feature sets. Therefore, the author applies Yolov
V7 and QMPA techniques in the proposed study for classifying DR severities using the
fundus images.

Figure 1 highlights the proposed model for classifying the fundus images. Initially,
the images were extracted from the APTOS [42] and EyePacs [43], which are benchmark
datasets for DR. The author applies CLAHE and Wiener filter functions to enhance the
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image quality. The Yolo V7 technique [42] is applied to extract the key features. QMPA [41]
is modified to improve the performance in selecting the crucial features. In addition, an
Adam Optimizer (AO) is used to optimize the hyperparameters of the MobileNet V3 model.

Figure 1. Proposed framework.

3.1. Data Acquisition

In this study, the author utilizes the APTOS and EyePacs datasets. The APTOS dataset
is available in the repository [42]. It was generated by Aravind Eye Hospital, India. The
clinicians captured the fundus images across India. The images were captured using
multiple cameras. Thus, the images contain noise and artifacts. The EyePacs dataset is
publicly available in the Kaggle repository [43]. It covers a larger number of fundus images.
The images were collected from primary care centers across the USA. The dataset provider
resized the images into 1024 × 1024 pixels and cropped the black spaces. Based on the
severity, the clinicians rated each image as 0 (no DR), 1 (mild), 2 (moderate), 3 (severe), and
4 (proliferative DR). Table 1 presents the properties of the datasets and the definition of the
notations used in this section is presented in Table 2. Figure 2 shows the sample images of
the datasets.

Table 1. Dataset characteristics.

Dataset Training Testing

EyePacs 24,570 10,530

APTOS 3662 1928

Table 2. Notation and definition.

Notation Definition

I Fundus image

WF Wiener filter

e Mean square error

k(X, Y) Original image with X and Y co-ordinates
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Table 2. Cont.

Notation Definition

k̂(X, Y) Reconstructed image with X and Y co-ordinates

Fs Feature sets

Yolo_V7 Yolo V7 function

N Number of images

E(t + 1) Post mutation position of Elite

E Current position of Elite

F(E) Fitness value of E

F(Eα) Fitness value of E at α

| | The absolute value

Cauchy
(
0, σ2) and Gauss

(
0, σ2) Random variables of Cauchy and Gauss

distribution with wavelet (σ)

θ Quantum constant

KBest and MBest Optimal feature sets in the specific iteration (i)

−−→
RQ

Chaotic number

−−→
Elitei and

−−→
Preyi

Elite and Prey vectors in the specific iteration (i)

⊗ Element wise addition

λ1 and λ2 Dynamic parameters

IC Multi-class classification

ReLu Rectified linear unit

So f tmax Softmax function for the multi-class classification

MobileNet V3− Small MobileNet V3—Small model

FC Fully connected layer

M̂ Predicted class

M Mean value of predicted class

D Data point

µ Mean

Figure 2. Sample images.
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3.2. Image Pre-Processing

To overcome the noise and artifacts, the author employs CLAHE and Wiener filter
techniques. Firstly, CLAHE is used to improve the contrast and visibility of the fundus
images. It divides the images into blocks and computes histograms for each block. A
Wiener filter is applied to remove the noise from each pixel. It employs the frequency
domain to reduce the mean square error between the original and reconstructed image. The
transfer function is used to compute element-wise multiplication for removing the noise.
Let I be the fundus image and WF be the Wiener filter function. Equation (1) computes the
process of removing noise from the images.

I = WF (Ii) where i = 1, . . . , N (1)

where i = 1,..., N
Equation (2) presents the computation of error between the original and recon-

structed image.
e = k(X, Y)− k̂(X, Y) (2)

3.3. Data Augmentation

The author applied the rotation-range function to generate a set of images with a
pre-defined range of degrees. Horizontal and vertical flips are used to produce randomly
mirrored images. The author applies the shear-range method to distort the images to
rectify the perception angles. In addition, width-shift and height-shift ranges are employed
for shifting the images to horizontal and vertical positions, respectively. The proposed
data-augmentation process is used to overcome the data imbalance of the dataset. The
images are resized into 608 × 608 pixels, and each image is transformed into multiple
angles. This process assists the training phase in providing an additional set of features to
the CNN model.

3.4. Feature Extraction

The author employs Yolo V7 to extract the image features and generate the feature sets.
It processes the textures of the fundus images in the lower layer and derives the semantic
features in the higher layer. Figure 3 highlights the generation of the feature sets using the
Yolo V7 technique.

Figure 3. Feature-set generation.

In the feature map grid, Yolo V7 employs the detection head to compute the bounding
boxes, likelihood of the object’s existence, and confidence score. Equation (3) shows the
mathematical form of the feature set generation.

Fs = Yolo V7(Ii) where i = 1, . . . , N (3)

3.5. Modified Quantum Marine Predator Algorithm-Based Feature Selection

To select the key features from the feature sets, the author employs the QMPA algo-
rithm. QMPA is a metaheuristic algorithm for selecting interesting features for DR-severity
detection. It generates a feature set to support the following MobileNet V3 model. The
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feature set represents the presence of the useful feature. Equation (4) shows the initial
feature set with size N.

Fi(t + 1) = Fmin + r ∗ (Fmax − Fmin) (4)

QMPA derived Elite and Prey matrices from the traditional MPA to represent the
predator with search strategy and the prey’s position data, respectively. However, QMPA
faces challenges in achieving the global optima to obtain optimal features. Optimization
algorithms frequently employ Cauchy and Gauss mutation [44] to improve efficiency. By in-
troducing randomness into the population of potential solutions, these mutation operators
broaden the search space and prevent the algorithm from being trapped in a local opti-
mum. Thus, the author introduces the Cauchy–Gaussian mutation method to improve the
searching strategy of the QMPA. Equations (5)–(7) outline the Cauchy–Gaussian mutation
to achieve the global optimum.

E(t + 1) = E
[
1 + λ1Cauchy

(
0, σ2

)
+ λ2Gauss

(
0, σ2

)]
(5)

σ = exp
(

F(E)− F(Eα)

|F(Eα)|

)
(6)

Fs(t + 1) =
{

E(t + 1) f (E(t + 1)) ≤ f (E)
E, Otherwise

(7)

Furthermore, to find the best set of features, QMPA applies Equation (8) for computing
the feature sets.

Fs = θ ∗ KBesti + (1− θ) ∗MBesti (8)

QMPA computes the iteration using Equation (9).

−−−−−−−−→
iteration =

−−→
RQ ⊗

(−−→
Elitei −

−−→
RQ ⊗

−−→
Preyi

)
, i = 1, . . . , N/2 (9)

3.6. MobileNet V3–Small Model-Based DR-Severity Prediction

The author employs the MobileNet V3–Small model for classifying the fundus images.
The MobileNet V3–Small neural-network architecture is the latest version of a series of
networks developed for mobile and embedded devices. It has a versatile design enabling
modification according to individual use cases with the trade-off between speed and ac-
curacy. The MobileNet V3–Small architecture has been specifically designed and tuned
to provide better inference performance and accommodate devices with limited computa-
tional resources. It incorporates the Hard swish activation function, a non-linear activation
function that incorporates the favorable characteristics of the ReLu and sigmoid activation
functions. The Hard swish function is specifically engineered to possess computing effi-
ciency and exhibit a non-zero derivative at zero. It performs appropriate gradient-based
optimization throughout the training process. Integrating squeeze and excitation (SE)
blocks into MobileNet V3 is undertaken to augment channel-wise feature recalibration.

Utilizing SE blocks facilitates the adaptive scaling and recalibration of feature channels.
It enables the network to prioritize the key features. The architectural design permits
the incorporation of various configurations of layers and blocks under specific criteria.
Equation (10) highlights the multi-class classification using the MobileNet V3–Small model.

IC = MobileNet V3–Small + ReLu(FC(FC(So f tmax(Fs)))) (10)

Figure 4 shows the MobileNet V3–Small model for the DR-severity detection model.
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Figure 4. MobileNet V3—Multi class classification.

Furthermore, AO is used to fine-tune the hyper-parameters of the Mobile-Net V3
model. Dropout layers are integrated with the classifier to achieve an optimal outcome
based on the outcome.

3.7. Evaluation Metrics

The author employs the commonly used metrics, including accuracy, precision, recall,
and F1-Score. Accuracy presents the model’s efficiency in correctly classifying the DR-
severity levels. However, it may not be suitable for imbalanced datasets. Therefore,
precision and recall are used to evaluate the model’s performance using true positives
and true negatives. In addition, F1-Score provides a model’s performance based on false
positives and false negatives. Equations (11)–(14) outline the computation of accuracy,
precision, recall, and F1-Score.

Accuracy =
Number o f correctly identi f ied f undus images

Total number o f images
(11)

Precision =
Number o f correctly identi f ied f undus images

(Number o f DR severity classes) + (Number o f wrongly predicted f undus images)
(12)

Recall =
Number o f correctly identi f ied f undus images

(Number o f DR severity classes) + (Number o f wrongly predicted normal f undus images)
(13)

F1− Score =
2× Precision× Recall
(Precision + Recall)

(14)

Cohen’s Kappa (K) is used to find the relationship between the predicted and actual
classifications. It measures the inter-rater reliability using true positives (TP), true negatives
(TN), false positives (FP), and false negatives (FN). Equation (15) shows the mathematical
expression for calculating K.

K =
2× (TP× TN − FN × FP)

(TP + FP) + (FP + TN) + (TP + FN) + (FN + TN)
(15)

It is widely applied for measuring the efficiency of multi-class classification. Mean
absolute deviation (MAD) and root mean square error (RMSE) are used to measure the
model’s performance based on the actual observed values. The uncertainty levels are
computed for the classifiers using confidence interval (CI) and standard deviation (SD).
Equations (16) and (17) highlight the mathematical form of MAD and RMSE.

MAD =
∑|D− µ|

N
(16)
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RMSE =

√√√√ 1
N

N

∑
i=1

(
M− M̂

)2 (17)

Furthermore, the author applies the model development settings to evaluate the
computational complexities of the DR-severity models. The total number of parameters,
learning rate, and floating point operations (FLOPs) are used to identify the model’s
computational requirements for learning the key patterns of the fundus images. The
testing time is used to find the model’s efficiency on the real-time images. Epochs (number
of iterations) and the number of convolutional layers are used to evaluate the model’s
capability to detect the DR severity. In addition, the ratio of input/output data is used to
evaluate the model’s efficiency in handling the feature sets to predict the DR severity.

4. Results

In this study, the author implemented the proposed DR-detection model using Python
3.8.3, NVIDIA GeForce GTX, Windows 10 Professional, and Intel i7 processor with 3.2 GHz.
The author generalized the proposed in APTOS and EyePacs datasets, respectively. The
datasets are divided into training (70%) and testing (30%). Pytorch and Tensorflow libraries
are employed for constructing the MobileNet V3 model. The MobileNet V3 model is
optimized using Adam Optimizer (AO). The batch sizes of 54 and 86 and Epochs of 214 and
426 are used for APTOS and EyePacs datasets, accordingly. A softmax function, two
dropouts, and three fully connected layers are added to the MobileNet V3 model. Table 3
highlights the performance of the proposed model in the APTOS dataset. The proposed
model achieved a better outcome due to the feature extraction and selection techniques. In
addition, the higher value of Kappa highlighted the significance of the proposed model in
classifying multi-label images.

Table 3. Proposed DR performance analysis—APTOS.

Classes/Metrics Accuracy Kappa Precision Recall F1-Score

0 (No DR) 97.5 91.4 92.4 93.4 92.9

1 (Mild DR) 98.3 90.8 91.5 92.5 92.0

2 (Moderate DR) 97.8 92.5 94.8 95.2 95.0

3 (Severe DR) 98.6 91.4 93.4 93.8 93.6

4 (Proliferative DR) 97.9 89.5 95.2 94.8 95.0

Average 98.0 91.1 93.4 93.9 93.7

Likewise, Table 4 outlines the proposed model’s performance in the EyePacs dataset.
Compared to the APTOS dataset, EyePacs covers a larger number of samples. The samples
were used to train the proposed model to learn the crucial patterns of DR severity. The
outcome highlighted that the proposed model obtained superior results. A higher value of
F1-Score represents the model’s efficiency in dealing with true positives, true negatives,
false positives, and false negatives. Figure 5 highlights the proposed model’s performance
in APTOS and EyePacs datasets, respectively.

Table 5 highlights the findings of the comparative analysis. The proposed model
achieved an exceptional outcome in the APTOS dataset. It achieved an average accuracy of
98.0 for the APTOS dataset. The APTOS dataset is highly imbalanced, and the proposed
image pre-processing approach addressed the data imbalance by integrating high-quality
images. In addition, Yolo V7 identified the tiny spots related to DR severity. Figure 6
presents the findings of the comparative analysis for the APTOS dataset.
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Table 4. Proposed DR performance analysis—EyePacs.

Classes/Metrics Accuracy Kappa Precision Recall F1-Score

0 (No DR) 98.7 95.2 95.4 94.8 95.1

1 (Mild DR) 98.5 91.4 92.5 93.4 92.9

2 (Moderate DR) 97.9 90.5 93.4 92.7 93.0

3 (Severe DR) 98.6 94.3 94.2 91.8 92.9

4 (Proliferative DR) 98.3 90.8 93.7 90.4 92.0

Average 98.4 92.4 93.8 92.6 93.1

Figure 5. Performance analysis outcome.

Table 5. Findings of comparative analysis—APTOS.

Methods/Metrics Accuracy Kappa Precision Recall F1-Score

Proposed DR 98.0 91.1 93.4 93.9 93.7

Ishtiaq et al. model [39] 95.2 85.6 90.1 91.4 90.7

Tariq et al. model [36] 93.0 81.2 94.5 93.8 94.1

Luo et al. model [38] 82.4 80.4 93.4 91.8 92.5

Karki et al. model [33] 89.1 90.1 91.6 92.7 92.1

Kobat et al. model [37] 84.9 86.4 82.4 83.1 82.7

Similarly, Table 6 reveals the performance of the DR-severity detection models in the
EyePacs dataset. The EyePacs dataset presents the images at a high pixel rate. It favored
the proposed model to resize the images without any compromise in the image quality.
Yolo V7 identified the patterns, effectively. The Cauchy–Gaussian mutation has improved
the computational efficiency of the suggested DR-severity detection model. The proposed
model outperformed the existing models. Figure 7 shows the comparative analysis outcome
for the EyePacs dataset.

Table 7 presents the computational strategies of the DR-severity detection models. The
proposed model employed the MobileNet V3 model, which demands fewer parameters
and FLOPs for image classification. Moreover, the MobileNet V3 model was trained
using the ImageNet dataset. Thus, the proposed model obtained an optimal outcome in
APTOS and EyePacs with fewer parameters and FLOPs. It reduces the computational
complexities in classifying the DR severity using the fundus images. Thus, the proposed
DR is a lightweight model that requires fewer parameters, a learning rate, and FLOPs to
generate an exceptional outcome.
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Figure 6. Comparative analysis findings—APTOS [33,36–39].

Table 6. Findings of comparative analysis—EyePacs.

Methods/Metrics Accuracy Kappa Precision Recall F1-Score

Proposed DR 98.4 92.4 93.8 92.6 93.1

Ishtiaq et al. model [39] 98.8 82.3 91.2 90.7 90.9

Tariq et al. model [36] 70.0 63.0 72.0 76.0 73.9

Luo et al. model [38] 83.6 82.4 81.9 83.5 82.6

Karki et al. model [33] 85.4 92.4 83.4 85.2 84.2

Kobat et al. model [37] 86.7 81.4 86.1 87.3 86.7

Figure 7. Comparative analysis findings—EyePacs [33,36–39].
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Table 7. Computational strategies.

Methods

APTOS 2019 EyePacs

Learning
Rate

Parameters
(in Millions

(m))

FLOPs
(in Giga (G))

Learning
Rate

Parameters
(in Millions

(m))

FLOPs
(in Giga (G))

Proposed DR 1 × 10−4 47 M 2.3 G 1 × 10−3 77 M 4.5 G

Ishtiaq et al. model [39] 1 × 10−3 86 M 4.7 G 1 × 10−2 94 M 5.1 G

Tariq et al. model [36] 1 × 10−3 72 M 4.3 G 1 × 10−3 98 M 5.6 G

Luo et al. model [38] 1 × 10−3 64 M 3.7 G 1 × 10−2 97 M 5.9 G

Karki et al. model [33] 1 × 10−3 57 M 4.1 G 1 × 10−2 91 M 5.3 G

Kobat et al. model [37] 1 × 10−2 71 M 3.9 G 1 × 10−2 89 M 4.9 G

Table 8 outlines the findings of the loss-function analysis. It indicates that the proposed
model obtained fewer errors in APTOS and EyePacs datasets. The feature extraction and
selection approaches supported the proposed model to achieve an optimal outcome. The
suggested model addressed the challenges in classifying the fundus images by integrating
the Yolo V7 and QMPA models. Moreover, the inclusion of the Cauchy–Gaussian search
strategy has played a significant role in the proposed model’s performance.

Table 8. Outcome of loss-function analysis.

Methods

APTOS EyePacs

MAD RMSE
Testing
Time

(seconds)
MAD RMSE

Testing
Time

(seconds)

Proposed DR 0.385 0.754 1.26 0.423 0.821 1.38

Ishtiaq et al. model [39] 0.425 0.823 1.83 0.518 0.914 1.45

Tariq et al. model [36] 0.398 0.912 2.31 0.467 0.965 1.52

Luo et al. model [38] 0.405 0.864 2.42 0.523 0.974 1.69

Karki et al. model [33] 0.512 0.845 2.51 0.612 1.012 1.54

Kobat et al. model [37] 0.487 1.021 2.35 0.724 1.125 2.24

Finally, Table 9 highlights the uncertainty and variability of the proposed model’s
efficiency in detecting DR severities. The proposed model achieved a better CI and SD
for APTOS and EyePacs datasets, respectively. The higher value indicates the effective
prediction in the unknown data. Moreover, the proposed model combined Yolo V7, QMPA,
and MobileNet V3 models for image classification. The findings favored the integrated
approach of the proposed model in detecting DR severity.

Table 9. Uncertainty analysis.

Methods
APTOS EyePacs

CI SD CI SD

Proposed DR [97.53–97.61] 0.0014 [98.32–98.56] 0.0019

Ishtiaq et al. model [39] [95.80–96.32] 0.0022 [95.68–96.18] 0.0028

Tariq et al. model [36] [96.30–97.12] 0.0021 [95.24–95.86] 0.0032

Luo et al. model [38] [95.83–95.89] 0.0016 [96.40–97.12] 0.0017

Karki et al. model [33] [97.10–97.45] 0.0017 [97.19–98.40] 0.0018

Kobat et al. model [37] [97.42–97.65] 0.0019 [96.58–96.68] 0.0021
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5. Discussions

In this study, the author proposed a DR-severity detection model for grading the
severity of DR using fundus images. The proposed image processing process has produced
high-quality images. Initially, the contrast was improved using the CLAHE technique. The
author applied a Wiener filter to remove the noise. The data augmentation process has
supported this proposed study to overcome the data imbalances in the APTOS dataset.
In addition, it produced an additional number of training samples to train the proposed
model. The fundus images undergo preprocessing techniques aimed at improving image
quality and reducing noise interference. The model was trained with a special focus on the
diagnosis of DR. It was trained using benchmark datasets. During the training process, the
model acquired the ability to identify and extract pertinent characteristics from the fundus
images. Based on the training, the proposed model detected the DR-severity levels from
the real-time images.

In feature extraction, Yolo V7 provided the relevant features to the proposed classi-
fier. It identified the crucial patterns of DR severity and generated the feature sets. The
identified objects were collected as features. The author tailored the Yolo V7 model and
retrieved the feature sets. The architecture of Yolo V7 has assisted the process of feature
extraction to produce an outcome in a limited time. On the other hand, QMPA was used
for the feature selection. The author introduced the Cauchy–Gaussian mutation searching
strategy in the QMPA search space to improve the feature-selection process. Finally, the
MobileNet V3–Small model classified the DR-severity levels using the feature sets. The
author optimized the CNN model using an Adam optimizer. The model weights are
iteratively modified to minimize the loss function that measures the discrepancy between
the anticipated and the actual severity levels. Following the classification process, the
proposed DR detects the degree of severity found in the fundus images.

Karki et al. [26] employed the EfficientNet model for DR-severity detection. They
achieved a Kappa score of 92.4% in the EyePacs dataset. The EfficientNet model is the
recently developed pre-trained image classifier. However, it requires an extended training
time and a larger dataset for image classification. The complexity of the EfficientNet model
may cause limitations in image classification. In contrast, the proposed model achieved a
Kappa value of 91.1% with a lower computation cost.

Tariq et al. [29] proposed a DL technique for classifying the fundus images. They
employed the ResNet 50 and DenseNet 121 models in the DR-severity classification. They
obtained an accuracy of 63.0%. The CNN models face challenges in classifying images and
demand additional training time. On the other hand, the proposed model is a lightweight
application. It requires a small set of samples to learn the new environment.

Ishtiaq et al. [32] applied the local binary patterns for extracting the features. They
employed the Binary Dragon Fly and Sine Cosine algorithms for optimizing the feature
extraction process. They achieved an accuracy of 98.8 % in the EyePacs dataset. Similarly,
the proposed model obtained an accuracy of 98.0%. However, the proposed model achieved
a better Kappa value than the Ishtiaq et al. model.

Kobat et al. [30] proposed a DR-detection model using the pre-trained DenseNet
model. They employed the horizontal and vertical patch division in extracting the features.
They obtained an average accuracy of 84.9% and 86.7% in the APTOS and the EyePacs
datasets. However, the proposed model outperformed the Kobat et al. model by achieving
an exceptional outcome with fewer computational strategies.

Luo et al. [31] developed a DR-detection model using the deep CNN model. They
employed long-range dependency among the lesion features for DR-severity detection. In
addition, they followed patch-wise relationships to improve the local patch features. They
obtained an average accuracy of 83.6% in the EyePacs dataset. In contrast, the proposed
model detected the severity levels with higher accuracy.

The findings outlined that the proposed DR-severity detection model has the potential
to play a role in the diagnosis and evaluation of the various severity levels associated with
DR, a retinal disease that poses a risk to vision. It demonstrated a high level of suitability
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due to its exceptional proficiency in processing and evaluating the fundus images. The
integration of CNN-based models into telemedicine and screening programs enables the
streamlined and automated screening of extensive populations, hence enhancing efficiency.
Immediate evaluation and therapy might be emphasized for patients who present more
severe diabetic DR.

Healthcare and disease management greatly benefit from the proposed automated
DR-severity detection system. These benefits aid in better patient outcomes, more effective
healthcare delivery, and lower overall healthcare costs. The proposed model can identify
DR in its earliest stages, typically when patients have any obvious symptoms. It can
accurately and consistently analyze retinal images. To efficiently screen many patients,
the suggested model can process a huge number of retinal pictures in a short amount of
time. The application of the proposed model can substantially minimize the likelihood of
human errors while interpreting retinal images. This practice improves the dependability
of diagnoses and mitigates the likelihood of erroneous diagnostic assessments. The pro-
posed model possesses the capability to speed up the delivery of outcomes and reduce
the diagnostic duration. Telemedicine and other forms of remote healthcare delivery can
utilize the suggested framework to provide DR screening to patients in underprivileged
and remote areas. The proposed model can offer a reliable and uniform means of as-
sessment, consequently reducing the potential for diagnostic discrepancies across diverse
healthcare practitioners.

The proposed model produced a remarkable performance in DR identification and
management. However, the author encountered limitations in classifying the fundus
images using the proposed model. The expertise of ophthalmologists and other experts is
still essential for deciphering AI-generated data, determining the best course of therapy,
and caring for patients. The accuracy and dependability of the proposed model in clinical
practice depend on thorough validation and ongoing improvement. A significant reference
in the context of DR screening is microaneurysm. The dimensions of microaneurysms can be
extremely small, rendering their detection challenging and susceptible to misidentification
with other types of lesions. Additionally, the poor contrast between lesion pixels and
background pixels, the irregular form of lesions, and the significant variations between
the same lesion spots may cause limitations in diagnosing ophthalmic disorders. Thus,
an effective image pre-processing technique is required for detecting DR severity in the
real-time environment.

6. Conclusions

In this study, the author developed a multi-class DR-severity grading model using the
DL technique. The proposed model integrated the image pre-processing, Yolo V7, QMPA,
and MobileNet V3-Small models. The fundus image datasets are highly imbalanced. In
addition, it contains noise and artifacts. The suggested image pre-processing technique
has improved the image quality. The dataset biases were addressed using the data aug-
mentation process. The feature extraction process applied the Yolo V7 technique to extract
the key features. The author applied the QMPA with the Cauchy–Gaussian mutation
strategy to select the critical features related to the DR severity. The MobileNet V3 model
was employed to classify the images based on severity levels. The benchmark datasets,
including APTOS and EyePacs, were used to generalize the proposed model. The findings
highlight the significance of the proposed model in diagnosing DR severity. The proposed
model offers an opportunity to develop a mobile-based application with which to treat
DR patients. However, it encountered limitations in classifying the fundus images. The
small dimension of DR severity in the fundus images may reduce the proposed model’s
prediction accuracy. Effective image pre-processing is required to improve the quality
of the real-time images. In the future, the author will extend the research to resolve the
shortcomings of the proposed model.
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