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Abstract: Introduction: Breast cancer is the most common cancer in women; its early detection plays
a crucial role in improving patient outcomes. Ki-67 is a biomarker commonly used for evaluating the
proliferation of cancer cells in breast cancer patients. The quantification of Ki-67 has traditionally
been performed by pathologists through a manual examination of tissue samples, which can be time-
consuming and subject to inter- and intra-observer variability. In this study, we used a novel deep
learning model to quantify Ki-67 in breast cancer in digital images prepared by a microscope-attached
camera. Objective: To compare the automated detection of Ki-67 with the manual eyeball/hotspot
method. Place and duration of study: This descriptive, cross-sectional study was conducted at the
Jinnah Sindh Medical University. Glass slides of diagnosed cases of breast cancer were obtained from
the Aga Khan University Hospital after receiving ethical approval. The duration of the study was
one month. Methodology: We prepared 140 digital images stained with the Ki-67 antibody using
a microscope-attached camera at 10×. An expert pathologist (P1) evaluated the Ki-67 index of the
hotspot fields using the eyeball method. The images were uploaded to the DeepLiif software to detect
the exact percentage of Ki-67 positive cells. SPSS version 24 was used for data analysis. Diagnostic
accuracy was also calculated by other pathologists (P2, P3) and by AI using a Ki-67 cut-off score of 20
and taking P1 as the gold standard. Results: The manual and automated scoring methods showed
a strong positive correlation as the kappa coefficient was significant. The p value was <0.001. The
highest diagnostic accuracy, i.e., 95%, taking P1 as gold standard, was found for AI, compared to
pathologists P2 and P3. Conclusions: Use of quantification-based deep learning models can make
the work of pathologists easier and more reproducible. Our study is one of the earliest studies in this
field. More studies with larger sample sizes are needed in future to develop a cohort.

Keywords: AI (artificial intelligence); breast neoplasms; deep learning; computer-assisted image
processing; immunohistochemistry; Ki-67 antigen

1. Introduction

Breast cancer is the leading cause of cancer-related deaths in women worldwide. The
early detection and accurate evaluation of the proliferation of cancer cells play a crucial
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role in the management of this disease. Ki-67 is a well-established biomarker used in the
assessment of breast cancer patients, as it provides valuable information on the rate of
cell division and the prognosis of the disease [1]. Ki-67 is also referred to as the marker of
proliferation and is encoded by the MKI67 gene. Since Ki-67 remains active during the G1,
S, G2, and M phases of the cell cycle, it is a very accurate indicator of cell proliferation and
a widely recognised indicator of oncogenesis. Due to its association with the proliferative
activity of cancer cells, the immunohistochemical examination of Ki-67 is currently included
in the paradigm for a variety of tumour types. In a range of malignancies, including breast
tumours, neuroendocrine tumours, and gastrointestinal stromal tumours (GIST), reliable
analysis utilizing Ki-67 as the sole biomarker has been verified [2]. Therefore, it could be
utilised to estimate outcomes over time and, in certain instances, to predict responsiveness
to specific treatments like chemotherapy and endocrine therapy [1].

A large number of luminal tumours, which account for 70% of all occurrences of breast
cancer, are hormone receptor (HR)-positive. Endocrine therapy is extremely useful for
luminal A cancers, which have a low proliferation and a better prognosis, while luminal B
tumours, which have a significant proliferation and a worse prognosis, are less sensitive
to it. HER2-enriched subtypes are aggressive tumours with a poor prognosis. Ki-67 is
crucial for identifying luminal A-like and luminal B-like tumours among HR+/HER2
malignancies, and by doing so, determining the need for chemotherapy. Over the past
three decades, numerous efforts have been made to assess the Ki-67 proliferation index’s
prognostic potential. However, the inability to standardise Ki-67 assessment methods
has prevented this biomarker from becoming a fully integrated part of clinical decision
making or pathological reporting [3]. Traditionally, Ki-67 quantification has been performed
through a manual examination of tissue samples by pathologists. This method is time-
consuming and subjective, leading to inter- and intra-observer variability. Furthermore,
manual examination is limited by the expertise of the observer and the results can be
impacted by factors such as fatigue and eyestrain [1,4].

The Ki-67 biomarker needs a more precise and well-defined scoring system because it
has not yet been widely standardised, unlike other immunohistochemistry markers like
the oestrogen receptor, progesterone receptor, and HER2. This has restricted its use in both
research and diagnostic contexts [1]. Inconsistencies in scoring are inevitable, according to
the International Ki-67 Working Group’s (IKWG) recommendations. Differences in Ki-67
scores can result from the type of specimen, such as cytological or histological, and from
individual pathologists’ observational differences [5]. In addition, there are several tech-
niques used for staining and scoring Ki-67, which may result in scoring discrepancies [2,5].
Therefore, the IKWG has suggested the development of an automated Ki-67 scoring system
to overcome these limitations to the optimal utilization of this marker [5].

Recently, advances in artificial intelligence and computer vision have led to the devel-
opment of automated methods for Ki-67 quantification. These methods use deep learning
algorithms to analyse images of tissue samples and accurately quantify the level of Ki-67
expression. The use of these algorithms has the potential to significantly improve the
accuracy, speed, and consistency of Ki-67 quantification [6,7]. Various studies have been
conducted on the automated scoring of the Ki-67 index [8]. Boyaci et al. assessed its
reproducibility among pathologists utilizing artificial intelligence algorithms. By reaching
intraclass correlation coefficient values similar to those in the IKWG study, they proved that
the artificial intelligence-based automated Ki-67 scoring method may be used to achieve
good reproducibility compared to pathologists [9,10]. Furthermore, a comparative analysis
of the visual assessment and automated digital image analysis of the Ki-67 index in breast
cancer was performed by Zhong et al. [11] and found a significant degree of consistency
between both methods [11].

In this study, we present concordance of manual and automated methods for Ki-67
quantification in breast cancer through an open-source software in patients belonging to
South Asian regions. Our study aimed to evaluate the accuracy and performance of the
automated method using annotated images. We also compared the results obtained by the
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novel deep learning model for Ki-67 quantification with the manual method. Furthermore,
the current study also experimented with digital images captured via microscope-attached
camera, in the absence of digital scanners, setting the stage for a low resource setup, where
pathologists can benefit from AI-based deep learning models in a similar manner.

The results of this study will provide valuable insights into the potential use of
automated methods for Ki-67 quantification and will demonstrate the advantages as well
as limitations of both manual and automated methods. The findings of this study will
have important implications for the clinical management of breast cancer patients and will
contribute to the advancement of the field of medical image analysis.

2. Methodology

About 140 digital images of invasive ductal carcinoma of the breast stained with
Ki-67 Immune marker were obtained from the Section of Histopathology, Department of
Pathology and Laboratory Medicine, Aga Khan University Hospital after obtaining ethical
approval from the Ethical Review Committee. The current study was carried out during a
one-month period from 25 December 2022 to 25 January 2023.

Three expert pathologists evaluated the Ki67 index in the hotspot fields using the
manual eyeball method. The average number of cells was around 1400 in each specimen.
Digital images were taken from the hotspot areas of tumour and all slides were digitalized
at 10×. The score of the pathologist P1 was considered as the gold standard for those who
manually quantified both tumour positive and negative cells. The images were uploaded
to the open-source DeepLiif software [12,13]. This particular software helped to detect
and quantify Ki67 positive and negative tumour cells along with the percentage of tumour
positive cells. The cells which were positive for Ki-67 showed red outlines while tumour
negative cells showed blue outlines (Figure 1). We used different tools available in the
software including size gating, marker threshold as well as excluding the regions for
achieving more accurate and reproducible results (Figures 2 and 3). DeepLIIF provides an
exclusion/inclusion region-of-interest lasso/selection tool that was used to exclude all the
stromal cells after running, as shown in Figure 3. Scores prepared by the remaining two
pathologists (P2 and P3) and scores provided by AI-based software were compared with
the scores of pathologist P1.

Diagnostics 2023, 13, x FOR PEER REVIEW 4 of 13 
 

 

and only support 20× or 40× which has a low coverage for developing regions. This makes 
DeepLIIF the only advanced AI solution currently available to low/limited resource de-
veloping region settings that need it the most. 

 
Figure 1. Ki-67 image at 10× showing positive tumour cells as red outlines and tumour negative cells 
as blue outline. 

 
Figure 2. With the help of tools regions where software has picked up wrongly can be excluded with 
the exclude region tool, used here as magenta outlines in both Figures 1 and 2. 

Figure 1. Ki-67 image at 10× showing positive tumour cells as red outlines and tumour negative
cells as blue outline.



Diagnostics 2023, 13, 3105 4 of 13

Diagnostics 2023, 13, x FOR PEER REVIEW 4 of 13 
 

 

and only support 20× or 40× which has a low coverage for developing regions. This makes 
DeepLIIF the only advanced AI solution currently available to low/limited resource de-
veloping region settings that need it the most. 

 
Figure 1. Ki-67 image at 10× showing positive tumour cells as red outlines and tumour negative cells 
as blue outline. 

 
Figure 2. With the help of tools regions where software has picked up wrongly can be excluded with 
the exclude region tool, used here as magenta outlines in both Figures 1 and 2. 
Figure 2. With the help of tools regions where software has picked up wrongly can be excluded with
the exclude region tool, used here as magenta outlines in both Figures 1 and 2.

Diagnostics 2023, 13, x FOR PEER REVIEW 5 of 13 
 

 

 
Figure 3. With the help of the excluding region tool as yellow outline, only the tumour region can 
be selected. 

Statistical Analysis 
The data were entered and analysed by using SPSS Version 24. Normality of contin-

uous data was assessed by using the Kolmogorov–Smirnov test. The data were repre-
sented by Med [Q1, Q3]. Agreement between P1 with P2, P3, and AI was measured by 
applying Kappa analysis and validity was assessed by correlation. Cronbach’s alpha and 
intraclass correlation coefficient (ICC) were also calculated to assess the internal con-
sistency and reliability, respectively. ROC was plotted and AUC was evaluated for each 
variable to find the quality of test. Diagnostic accuracy was also calculated for P2, P3, and 
AI by using Ki67 cut-off score as 20 and taking P1 as gold standard. The Bland–Altman 
analysis was also performed to visualize the agreement of P2, P3, and AI with the refer-
ence standard P1, for the quantification of the Ki67 score. 

3. Results 
By using the Kolmogorov–Smirnov test, the distribution of P1, P2, P3, and AI were 

found to be non-normal (p-value < 0.05). The median [Q1, Q3] for P1 is 15 [10, 24], P2 is 15 
[10, 22], P3 is 20 [10, 25] and for AI is 14.15 [10, 25], as reported in Table 1. 

Table 1. Descriptive statistics for P1, P2, P3, and AI. 

Variables Minimum Maximum Median 
25th Percentile 

(Q1) 
75th Percentile 

(Q3) 
P1 2 94 15 10 24 
P2 1 100 15 10 22 
P3 2 100 20 10 25 
AI 2 98 14.15 10 25 

In Table 2, the agreement measure of P1 was assessed with P2, P3, and AI to observe 
the inter-rater reliability. Out of 140 cases, evaluated by P1 and P2, 92 cases have Ki-67 
score ≤ 20, as agreed by both pathologists (P1 and P2). In addition, both pathologists 
agreed that there were 29 cases which have Ki-67 score > 20. Therefore, there were 19 cases 
(i.e., 8 + 11 = 19) for whom the two pathologists could not agree. So, statistically the value 
of kappa was found to be 0.660, which indicates a good strength of agreement. 

Similarly, these 140 cases were also evaluated by P1 and P3. Out of which, 88 cases 
have a Ki-67 score ≤ 20 that was agreed by both pathologists (P1 and P3). Also, they agreed 
that 36 cases have a Ki-67 score > 20. But there were 16 (i.e., 12 + 4 = 16) such cases for 

Figure 3. With the help of the excluding region tool as yellow outline, only the tumour region can be
selected.

DeepLIIF software is a state-of-the-art tool for clinical IHC Ki-67 quantification. It uses
a novel approach for virtual/digital multiplex immunofluorescence re-staining of clinical
IHC slides to outperform other previous state-of-the-art algorithms. More information on
the rigorous benchmarking and comparisons with state-of-the-art algorithms can be found
in the three cited Ghahremani et al., Nature Machine Intelligence 2022 [12], CVPR 2022 [13],
and MICCAI 2023 [14] papers.

DeepLIIF [12–14] uses a multitask-supervised deep learning approach to digitally/
virtually re-stain clinical IHC slides with multiplex immunofluorescence staining while
simultaneously performing semantic segmentation to differentiate between IHC+/− cells.
Specifically, DeepLIIF represents a novel supervised generative adversarial network ap-
proach for virtual re-staining of clinical slides.

DeepLIIF is also a completely open-source platform with code, pretrained AI models,
and training/testing datasets publicly available for reproducibility and full transparency. It
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is also the only AI IHC scoring model available for free via cloud-native platform with user-
friendly interface (https://deepliif.org, accessed on 25 December 2022) for anyone in the
world to upload their images and obtain results including developing region pathologists
facing financial constraints in being able to afford digital scanners. DeepLIIF supports both
scanned images as well as microscope snapshots (with large tumour coverage at 10×); no
commercial solutions support uploading of microscope snapshots at 10× and only support
20× or 40× which has a low coverage for developing regions. This makes DeepLIIF the
only advanced AI solution currently available to low/limited resource developing region
settings that need it the most.

Statistical Analysis

The data were entered and analysed by using SPSS Version 24. Normality of continu-
ous data was assessed by using the Kolmogorov–Smirnov test. The data were represented
by Med [Q1, Q3]. Agreement between P1 with P2, P3, and AI was measured by applying
Kappa analysis and validity was assessed by correlation. Cronbach’s alpha and intraclass
correlation coefficient (ICC) were also calculated to assess the internal consistency and
reliability, respectively. ROC was plotted and AUC was evaluated for each variable to find
the quality of test. Diagnostic accuracy was also calculated for P2, P3, and AI by using Ki67
cut-off score as 20 and taking P1 as gold standard. The Bland–Altman analysis was also
performed to visualize the agreement of P2, P3, and AI with the reference standard P1, for
the quantification of the Ki67 score.

3. Results

By using the Kolmogorov–Smirnov test, the distribution of P1, P2, P3, and AI were
found to be non-normal (p-value < 0.05). The median [Q1, Q3] for P1 is 15 [10, 24], P2 is 15
[10, 22], P3 is 20 [10, 25] and for AI is 14.15 [10, 25], as reported in Table 1.

Table 1. Descriptive statistics for P1, P2, P3, and AI.

Variables Minimum Maximum Median 25th Percentile (Q1) 75th Percentile (Q3)

P1 2 94 15 10 24
P2 1 100 15 10 22
P3 2 100 20 10 25
AI 2 98 14.15 10 25

In Table 2, the agreement measure of P1 was assessed with P2, P3, and AI to observe
the inter-rater reliability. Out of 140 cases, evaluated by P1 and P2, 92 cases have Ki-67
score ≤ 20, as agreed by both pathologists (P1 and P2). In addition, both pathologists
agreed that there were 29 cases which have Ki-67 score > 20. Therefore, there were 19 cases
(i.e., 8 + 11 = 19) for whom the two pathologists could not agree. So, statistically the value
of kappa was found to be 0.660, which indicates a good strength of agreement.

Similarly, these 140 cases were also evaluated by P1 and P3. Out of which, 88 cases
have a Ki-67 score ≤ 20 that was agreed by both pathologists (P1 and P3). Also, they agreed
that 36 cases have a Ki-67 score > 20. But there were 16 (i.e., 12 + 4 = 16) such cases for
which these two pathologists could not agree. The Kappa statistic was found to be 0.736
that shows a good strength of agreement.

Most importantly, these 140 cases were also evaluated by AI. The results showed that
out of 140 cases, the pathologist P1 and AI were agreed that there are 94 cases that have a
Ki-67 score ≤ 20 and 39 cases have a Ki-67 score > 20, while for 7 cases (i.e., 6 + 1 = 7) there
was a disagreement between the pathologist P1 and AI. The Kappa statistic was calculated
as 0.882 that indicates a very good strength of agreement between the pathologist P1 and AI.

https://deepliif.org
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Table 2. Measurement of agreement.

P1
Total Kappa Standard Error Strength of Agreement

≤20 >20

P2
≤20 92 11 103

0.660 0.071 Good>20 8 29 37
Total 100 40 140

P3
≤20 88 4 92

0.736 0.061 Good>20 12 36 48
Total 100 40 140

AI
≤20 94 1 95

0.882 0.043 Very Good>20 6 39 45
Total 100 40 140

Table 3 depicts the findings that were evaluated by ROC curves and area under the
ROC curve (AUROC) through which we were able to assess the test quality and the best
cut-off value by using Youden’s Index Method. The value of AUC for P2 was found to be
0.940 which indicates an excellent test quality with the best cut-off score for Ki-67 as 16.5,
with TPR as 92.5%, and FPR as 20%.

Table 3. Findings Evaluated by ROC.

Test Variables AUC 95% CI TEST
QUALITY

CUT OFF
VALUE

SENSITIVITY
(TPR)

1–SPECIFICITY
(FPR)

P2 0.940 0.904–0.976 Excellent 16.5 0.925 0.200
P3 0.934 0.893–0.975 Excellent 24.5 0.900 0.110
AI 0.993 0.980–1.000 Excellent 21.5 0.975 0.020

The AUC value for P3 resulted in being 0.934, which also indicates the excellent quality
of test with best cut-off score for Ki-67 as 24.5 with TPR as 90% and FPR as 11%.

Similarly, for AI, the value of AUC was found to be the highest as 0.993, indicating
that the quality of the test is excellent. The best cut-off score for Ki-67 was found to be 21.5,
with TPR as 97.5%, and FPR as 2%.

Table 4 was constructed to evaluate the diagnostic accuracy of P2, P3, and AI by using
the Ki-67 cut-off score as 20, taking P1 as the gold standard. The sensitivity, specificity, PPV,
NPV and diagnostic accuracy of P2 were calculated as 92%, 72.5%, 89.32%, 78.38%, and
86.43%, respectively.

Table 4. Sensitivity, specificity, PPV, NPV and diagnostic Accuracy of P2, P3, and AI by taking P1 as
gold standard (by Using Ki67 cut-off score as 20).

Sensitivity Specificity PPV NPV DIAGNOSTIC ACCURACY

P2 92% 72.5% 89.32% 78.38% 86.43%
P3 88% 90% 95.65% 75% 88.57%
AI 94% 97.5% 98.95% 86.67% 95%

Similarly, the sensitivity, specificity, PPV, NPV, and diagnostic accuracy of P3 were
found to be 88%, 90%, 95.65%, 75%, and 88.57%, respectively.

For AI, the sensitivity, specificity, PPV, NPV and diagnostic accuracy were calculated
as 94%, 97.5%, 98.95%, 86.67%, and 95%, respectively. As a whole, the highest diagnostic
accuracy was found for AI, i.e., 95%, in comparison to other pathologists, by taking P1 as
the gold standard.
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Figure 4 represents the correlation between P1, P2, P3, and AI. The findings of Ki-67
by this correlation matrix showed that P1 is very strongly correlated with P2, P3, and AI
with values of 0.93, 0.94, and 0.99, respectively.
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Figure 4. Correlation matrix.

Here, Cronbach’s alpha = 0.985 which indicates excellent internal consistency and
Intraclass Correlation Coefficient (ICC) = 0.930 with 95% CI (0.900–0.951) which indicates
excellent reliability.

In Figure 5, ROC curves were plotted for P2, P3, and AI to evaluate the quality of the
test, taking P1 as reference standard.

Figure 6 represents that most of the differences between the two pathologists’, P1 and
P2, findings are lying between 95% confidence limits of agreement (−11.3307, 13.5349).
Each individual data point on the plot represents the difference between the measurements
for each Ki-67 score. The vertical position of each point indicates the difference between the
two pathologists’ findings, while the horizontal position indicates the average of the two
measurements. The scattered points around the line of mean difference provides insight
into the variability of the differences. Since the majority of points are clustered around the
mean difference line without a clear pattern, it suggests an insignificant systematic bias
between the two pathologists’ findings. A narrow spread of the scattered points indicates
low variability in the differences.
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Similar to the above findings, Figure 7 also depicts that mostly differences between
the findings of two pathologists P1 and P3 are lying between 95% confidence limits of
agreement (−15.2499, 8.9971). An insignificant systematic bias was found between these
two pathologists’ findings, because most of the points are clustered around the mean
difference line without any clear pattern.
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pathologist P1 and AI for the Ki-67 score lie between 95% confidence limits of agreement
(−4.7302, 5.0716) with an insignificant systematic bias.
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Figure 8. Bland–Altman plot for P1 and AI.

As a whole, it can be concluded by Bland–Altman analysis that the 95% confidence
limit of agreement is smallest for (P1 and AI) as compared to (P1 and P2) and (P1 and P3).
It indicates that AI findings can be considered reliable as an alternative to a pathologist.
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4. Discussion

Through this study, we attempted to observe the agreement of Ki-67 scoring among
three histopathologists. Comparison was also made between the outcomes of the novel
DeepLiif deep learning model for Ki-67 assessment with the conventional manual Ki-67
scoring method.

The findings of Ki-67 scoring by P1 very strongly correlated with scoring by P2, P3,
and AI. By comparing both methods, we were able to achieve a Cronbach’s alpha of
0.985 indicating an excellent internal consistency and an intra-class correlation coefficient
(ICC) = 0.930 at 95% confidence interval (Figure 4). These findings depict outstanding relia-
bility when comparing our results with a survey by IKWG which investigated 10 pieces of
AI software as well as approximately seven scanners and observed an ICC = 0.83 at 95% CI.
Another study assessed Ki 67 scoring at eight different sites utilizing one scanner and
achieving an ICC of 0.89, which outperformed the pathologist-based scoring methodology
at an ICC = 0.87 [5,15]. This demonstrates that the DeepLiif novel algorithm provides a
statistically better outcome. Another working group on ki-67 quantification experimented
with Qupath a free open-source accessible tool, and observed an ICC in the range of
0.9–0.95, which in comparison to the current algorithm gives either a lower or equivalent
yield [15]. DeepLIIF has been extensively tested across multiple benchmark datasets from
scanners/microscopes from different labs. It was used out-of-the-box on our microscope
snapshot images which had significantly low quality due to microscope limitations than the
images reported in their Nature Machine Intelligence paper. This shows the generalizability
of the DeepLIIF approach/model [12].

Improvement in the Ki 67 scoring protocol by both manual and automated methods
require standardization of inter-laboratory protocols at different levels and controlling vari-
ability among various laboratories in the preanalytical phase including type of specimen,
fixation, and staining methodology. Similarly, at the interpretation level, selection of ROI,
type of scanner used, quality of digital imaging, and pathologists’ experience all contribute
to the outcome [16].

In the current study, we took into account the tumour hotspots for counting the Ki-67
positive cells. Calculation of a Ki-67 score by pathologist 1 was considered as the gold
standard. We compared it with the sensitivity, specificity, positive predictive value, negative
predictive value, as well as accuracy of the scoring performed by pathologists 2, 3, and AI,
respectively (Figure 5). However, amongst them, the highest values were achieved with
AI diagnosis (TABLE 4), including sensitivity = 94%, specificity = 97.5%, PPV = 98.95%,
NPV = 86.67%, and diagnostic accuracy as 95%, respectively.

The current DeepLiif software of Ki67 scoring yielded an AUC = 0.993 which is an
indicator of an excellent prediction model for both low and high Ki-67 values. In addition,
this value is significantly higher in comparison to the values obtained by the three observers
involved in the current study (Table 3). Stålhammar et al. [17], similarly, performed the
digital analysis of Ki-67 in the hotspots of breast cancer counting 200 tumour cells under
40X objective. They obtained an AUC = 0.734, sensitivity = 81.5%, and specificity = 65.6%.
Our results were significantly better in comparison to their study. Results reported by
Stålhammar et al. [17] also are in agreement with our findings that application of digital
imaging methodology biomarkers like Ki-67 can definitely boost reproducibility [17,18].
The significance of considering hotspots for biomarker evaluation lies in the fact that they
exhibit intra tumour heterogeneity, are physiologically active, are good candidates for
prognosis, and possess the greatest metastatic potential [19,20].

The good inter-observer agreement indicated by the Kappa score ranging between
0.660 and 0.736 showed marked improvement with a kappa score of 0.887 using AI ki-67
scoring methods, indicating very good agreement between the manual and DeepLiif AI
algorithm (Table 2). In comparison to our findings, Ekholm et al. showed a kappa value
between 0.83 and 0.88 of inter-observer agreement. Their work involved three different
pathologists for manual scoring, similar to our study design. However, the number of cells
counted in the hotspots also contributed to the difference of the outcome [21].
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Various studies have agreed that straightforward guidelines need to be developed
for Ki-67 biomarker quantification in breast cancer tissue by taking into consideration
the pre-analytical as well as the analytical phases of the laboratory procedures [5,17,22].
Furthermore, it is now an established fact that AI-based digital methods can help mitigate
the pathologist’s workload in dealing with repetitive complex tasks and their precious time
can be utilized for complex cases and important decision making. Experimental AI-based
studies require validation for their optimal utilization in clinical practice [23–27].

5. Conclusions

The potentials of digital pathology are hidden in the use of deep learning-based AI
technologies, to produce clinically useful intuitions from large number of digitized slides
with minimal user involvement. Despite all these potentials and benefits, the digital pathol-
ogy revolution is not benefiting pathologists in low- and high-resource settings similarly.
Most of the focus of the commercially available deep learning-based computational pathol-
ogy vendors has been on the high-resource settings with expensive whole-slide image
(WSI) scanners. Little attention has been paid to low-resource settings where decreasing
numbers of trained pathologists are tasked with even larger caseloads and only have ac-
cess to a conventional microscope and a connected digital camera to create digital images
for AI analysis. In this work, we clinically validated an open-access pathologist-assisted
framework for immunohistochemistry quantification against multi-pathologist manual
interpretation/annotations in both low-resource settings. This was our first study in which
we validated open-source software on digital images. The results were significant and we
are planning more projects on larger cohorts in future.
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