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Abstract: This study aims to investigate the feasibility of using diffuse reflectance spectroscopy (DRS)
to distinguish malignant breast tissue from adjacent healthy tissue, and to evaluate if an extended-
wavelength range (450–1550 nm) has an advantage over the standard wavelength range (450–900 nm).
Multivariate statistics and machine learning algorithms, either linear discriminant analysis (LDA) or
support vector machine (SVM) are used to distinguish the two tissue types in breast specimens (total
or partial mastectomy) from 23 female patients with primary breast cancer. EW-DRS has a sensitivity
of 94% and specificity of 91% as compared to a sensitivity of 40% and specificity of 71% using the
standard wavelength range. The results suggest that DRS can discriminate between malignant and
healthy breast tissue, with improved outcomes using an extended wavelength. It is also possible to
construct a simple analytical model to improve the diagnostic performance of the DRS technique.

Keywords: breast cancer; diffuse reflectance spectroscopy; extended-wavelength–diffuse reflectance
spectroscopy; linear discriminant analysis; machine learning; support vector machine

1. Introduction

Breast cancer is the most common form of cancer among women and the second most
common cause of cancer death globally [1,2]. In Sweden, it accounts for roughly 30% of all
cancer cases among women [3]. The diagnosis is obtained using a triple-assessment method,
which includes clinical examinations, radiological investigations, and a core-needle biopsy
that yields a histopathological result. Conventional radiological investigations include
mammography, ultrasound (US), and magnetic resonance imaging (MRI). However, each
modality has its own benefits and limitations. The use of ionising radiation in mammogra-
phy, the high user-dependency in US, and the cost and use of intravenous contrast agents
as part of MRI are only a few such examples. The core-needle biopsy, which is the final
part of the triple assessment, is an invasive procedure with an estimated false-positive ratio
of 1–2% [4]. The procedure is often associated with discomfort, and the rarest and most
severe complications include arterial bleeding, infection, and pneumothorax.

The search for a non-invasive technique that can provide relevant breast tissue diag-
nostic information in real time and without the use of ionising radiation or intravenous
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contrast agents has opened the door for optical modalities such as photoacoustic imaging
(PAI) and diffuse reflectance spectroscopy (DRS) [5–7]. These modalities use a light source
in the visible and near-infrared wavelength region to illuminate a biological tissue of inter-
est. DRS has a portable and relatively simple instrumentation setup in comparison to PAI,
making it a suitable first-line instrument for optical studies. In DRS, the illuminated light
interacts with tissue through absorption and scattering. The absorption spectra depend
on the chemical composition of the tissue (the assortment of molecules). The scattering
spectra depend on the cellular morphology (the size of the molecules). Thus, by measuring
the intensity of the diffusely reflected light, the concentration of different endogenous
chromophores such as haemoglobin, lipids, water, and collagen can be obtained [7,8].

Previous DRS studies have attempted to create an “optical biopsy” for breast tissue by
correlating spectral results with histopathology findings [5,7–13]. However, the number
of studies is limited in this regard. This may be due to breast tissue showing considerable
intra- and intersubject variation. It is, for example, morphologically heterogeneous, and
it also exhibits structural changes, with varying degrees of lipid content in the various
reproductive aging stages. This makes breast tissue a complex biological tissue [7,11].
In addition, many of these studies are based on DRS-spectra obtained in the “standard”
visible to near-infrared wavelength range (VIS-NIR; ~450–900 nm) where haemoglobin
and deoxyhaemoglobin are the major absorbers [8,13]. There are a few studies that have
used an extended-wavelength (EW) range, including not only the VIS-NIR region but
also the near-infrared and short-wave infrared range (NIR-SWIR, i.e., ~750–1600 nm).
The added advantage is that the absorption peaks of water, collagen, and lipids are also
included [12,14].

The majority of the breast-specific DRS studies use mathematical models, such as
diffusion theory or Monte Carlo simulations, for data processing [5,7–13]. In contrast,
there are DRS studies of other human organs, such as the cervix and liver, that have used
multivariate statistical algorithms for data processing [15–17]. The overall advantage of the
latter approach is that no prior knowledge of the absorption and scattering properties is
required. To the best of our knowledge, there are no previous breast-related DRS studies
that have used multivariate statistical algorithms for data processing.

In this work, we use a novel in-house-developed DRS setup that combines two types
of spectrometers (VIS-NIR and NIR-SWIR) to visualise the EW range (~450–1550 nm). The
combination of these two spectrometers covers most of the important chromophores in
breast tissue in a single reading. This setup has successfully been used with liver and
skin malignancies [16,18,19]. In the liver cohort, the main distinguishing feature between
malignant and adjacent healthy tissue was observed in the visible-wavelength range [16].

This study aims to investigate the feasibility of using diffuse reflectance spectroscopy
(DRS) to distinguish malignant breast tissue from adjacent healthy tissue, and to evaluate
if an extended-wavelength range (450–1550 nm) has an advantage over the standard
wavelength range (450–900 nm).

2. Materials and Methods
2.1. Patient Recruitment

Ethical approval was granted by the Swedish Ethical Review Authority (dnr 2019-
04840) for an ex vivo experimental study conducted on breast specimens (total or partial
mastectomy) taken from women undergoing surgery for primary breast cancer. This study
was performed in accordance with the Declaration of Helsinki [20]. In total, 23 female
patients who were scheduled for surgery at Skåne University Hospital, in Malmö, Sweden,
were enrolled. Data collection was performed at the Department of Pathology and at
Unilabs Breast Centre in December 2020 and May 2021. The optical measurements did
not alter the standard clinical workflow. This study included women above the age of
18 with biopsy-verified breast cancer and a pre-operative mammography image showing
a malignant breast lesion measuring at least 1 cm. Exclusion criteria included previous
history of breast surgery or neoadjuvant treatment. Patients who did not comprehend
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Swedish were also excluded. Informed consent was obtained from all subjects involved in
this study.

2.2. Instrumentation

A tungsten–halogen light source (Ocean Optics HL-2000-HP; Ocean Optics, Orlando,
FL, USA) delivered a broadband spectrum (about 360–2000 nm) through a custom-designed
fibre probe (10 mm in diameter) connected to a custom-made probe holder (25 mm diame-
ter), as seen in Figure 1a. The fibre bundle had a central illuminating fibre (diameter 400 µm)
encircled (diameter 5 mm) by ten collecting fibres (diameter 200 µm). Every alternate collect-
ing fibre was attached to a spectrometer operating in the wavelength range of 350–1100 nm
(Ocean Optics QE6500-VIS-NIR), and the remaining fibres were attached to a spectrometer
operating in the wavelength range of 900–1700 nm (Ocean Optics NIRQuest512). All optical
fibres had a numerical aperture of 0.22. The spectrometers’ slits of 50 and 25 µm, respec-
tively, provided optical resolutions of about 3 nm. By using two spectrometers together,
spectra were obtained in the range of 450–1550 nm (see Figure 1b) [16]. Both spectrometers
enable real-time continuous spectra within their respective detector wavelength ranges.
Computer software (Ocean View 2.0, Ocean Insight, Orlando, FL, USA) was used to operate
the spectrometers and collect data on a laptop computer.
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Figure 1. DRS instrumentation. (a) DRS probe (silver) attached to a probe holder (black). (b) The
common leg consists of a central optical fibre connected to a light source and spectrometers. NIR,
near-infrared spectrum; VIS, visible spectrum.

2.3. Data Collection

All measurements were performed on freshly excised breast specimens within 30–60 min
of surgical resection. Both total and partial mastectomy specimens were used in this
study. The partial mastectomy specimens were inked with different surgical dyes by the
breast surgeon, as per clinical routine, with each colour representing a certain anatomical
plane. Unfortunately, these surgical dyes limit optical measurements due to their scattering
and absorption properties [21]. Thus, in the first two patients, DRS data were collected
from total mastectomy specimens (non-skin-covered areas). In the remaining patients, the
specimen was cut into ~5 mm thick slices by the pathologist, as per clinical routine, leaving
the dye at the borders only, thereby allowing the use of partial mastectomy specimens as
well. The slice in which the malignant tumour had its largest diameter was selected for
EW-DRS measurements (see Figure 2a).
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Figure 2. (a) Photograph showing the DRS probe during measurements on a ~5 mm thick partial
mastectomy slice. (b) Mammography image of a partial mastectomy specimen showing a malignant
tumour (orange circle) and adjacent healthy tissue (purple circle). (c) Pre-operative mammography in
mediolateral oblique view showing the malignant lesion, which is marked with an orange circle.

To minimise the effect of warm-up drift, the room temperature was recorded, and
background and calibration spectra were recorded before the first measurement and after
the last measurement, per specimen. The DRS probe was carefully positioned in direct
contact with the malignant tumour, and if the tumour’s size was larger than the DRS probe,
the probe was placed at multiple regions chosen at random. This was followed by measure-
ments on adjacent healthy tissue chosen at random. On average, five separate locations
were used to make DRS measurements in each tissue type. At each measurement site, a
total of five optical measurements were obtained. The standard specimen mammography
image was used as a reference to locate malignant tumour positions and adjacent healthy
tissue, as seen in Figure 2b. Data collection for one measurement took about 12 s, and the
total measurement time was set at about 20 min per specimen.

Patient demographic data (age and body mass index), core-needle biopsy results,
the surgical technique used, and histopathological post-operative results were obtained
from medical records. A protocol was set up to extract information from the standard pre-
operative mammography (Figure 2c) and ultrasound report. Breast density was estimated
based on the pre-operative mammography scan by two radiologists and classified according
to the fifth edition of the Breast Imaging Reporting and Data System (BI-RADS) [22].
Variables such as tumour appearance and size were also noted.

2.4. Histopathological Analysis

Tumour characteristics were retrieved from pathology reports. Breast tumours were
divided into five subgroups according to the 2019 WHO breast cancer classification system [23].

2.5. Multivariate Statistics and Machine Learning Discrimination Models

The included patient, radiological, and pathological variables are reported in numbers
and percentages. Multivariate statistics and machine learning modelling were performed
according to a previously described method used on liver malignancies [16]. More specifi-
cally, the spectral data were evaluated for all patients collectively and classified as either
malignant or healthy tissue based on three steps. Firstly, a principal component analysis
was performed to reduce the dimensions of data. Secondly, by using the first two principal
components, the data were classified into either malignant or healthy tissue by using the
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linear diagnostic analysis (LDA) or the support vector machine (SVM) algorithm. The LDA
algorithm increases the covariance between the two groups and decreases the variances
within the groups. The SVM algorithm finds the hyperplane that can distinguish the
data into two groups. Lastly, a cross-validation was performed using the “leave-one-out”
method. The sensitivity (SE), specificity (SP), classification ratio (CR), and Matthew’s corre-
lation coefficient (MCC) were calculated. Receiver operating characteristic (ROC) curves
were plotted, and the area under the curve (AUC) was calculated. Data processing was
performed in the statistics and machine learning toolbox™ package in MATLAB R2022a
(The MathWorks, Inc., Natick, MA, USA).

3. Results
3.1. Demographics

The median patient age and the mean patient age were 66 and 67 years, respectively
(range: 52 to 84 years). The median and mean BMI values were 28.7 and 27.2 kg/m2,
respectively. About 8% of the women were using hormone-replacement therapy at the time
of diagnosis. Invasive ductal carcinoma was the most common histopathological diagnosis,
accounting for eleven patients (46%), followed by invasive lobular carcinoma, with eight
patients (33%); tubular carcinoma, with two patients (8%); papillary carcinoma, with one
patient (4%); and ductal carcinoma in situ, with one patient (4%) (see Table 1).

Table 1. The demographics, pre-operative radiological imaging features, and histopathological results
for each subject.
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1 68 20.3 No B Spiculated 10 Ill-defined,
diffuse, hypoechoic 10 M ILC

2 84 30.5 No D Partly ill-defined 16 Ill-defined,
diffuse, hypoechoic 13 M IDC

3 70 29.8 Yes A Indistinct,
lobulated elongated 25 Hypoechoic 25 PM IPC

4 54 30.8 No A Spiculated 11 Spiculated 10 PM IDC

5 56 29.4 No B Ill-defined, diffuse 15 Ill-defined,
diffuse, hypoechoic 15 PM IDC

6 66 28.7 Yes B Ill-defined, diffuse 15 Ill-defined,
diffuse, hypoechoic 11 PM IDC

7 52 27.9 No C Spiculated, multifocal 15 + 10 Multifocal, ill-defined
diffuse, hypoechoic 20 PM IDC

8 71 34.6 No A Spiculated 17 Spiculated, hypoechoic 15 PM ILC

9 77 18.5 No D Ill-defined, diffuse * Ill-defined,
diffuse, hypoechoic 30 PM IDC

10 84 29.5 No A Spiculated 18 Hypoechoic 14 PM ILC
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Table 1. Cont.
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11 57 34.3 No C Multifocal 45 Multifocal, ill-defined
diffuse, hypoechoic 36 M ILC

12 52 29.8 No B Spiculated 18 Ill-defined,
diffuse, hypoechoic 15 PM IDC

13 69 26.6 No A Ill-defined, diffuse 10 Ill-defined,
diffuse, hypoechoic 10 M TC

14 71 29.0 No B Ill-defined, diffuse 10 Ill-defined,
diffuse, hypoechoic 8 PM TC

15 73 25.1 No C Partly ill-defined 40 Ill-defined,
diffuse, hypoechoic 40 PM ILC

16 57 18.3 No D Partly ill-defined 12 Ill-defined,
diffuse, hypoechoic 12 PM IDC

17 56 32.0 No A Calcification 20 Normal * PM DCIS

18 61 26.0 No C Spiculated 12 Spiculated, hypoechoic 12 PM ILC

19 72 33.5 No C Distortion 50 Ill-defined,
diffuse, hypoechoic 60 M ILC

20 70 23.5 No B Spiculated 12 Ill-defined,
diffuse, hypoechoic 12 PM IDC

21 56 20.5 No D Distortion 12 Ill-defined,
diffuse, hypoechoic 8 PM IDC

22 61 21.0 No C Partly ill-defined 17 Ill-defined,
diffuse, hypoechoic 17 PM IDC

23 74 26.0 No B Distortion 10 Ill-defined,
diffuse, hypoechoic 10 PM ILC

* Difficult-to-define borders, not measurable. BMI, body mass index; HRT, hormone replacement therapy; MAM,
mammogram; US, ultrasound; OP, operation; M, mastectomy; PM, partial mastectomy; ILC, invasive lobular
carcinoma; IDC, invasive ductal carcinoma; IPC, invasive papillary carcinoma; TC, tubular carcinoma; DCIS,
ductal carcinoma in situ.

Pre-Operative Radiological Report

The average size of the breast malignancies was about 18.3 mm on both ultrasound
and mammography (see Table 2). All breast density categories were represented with
the most common breast density being B. For multifocal malignancies, the largest tumour
diameter was used in the size calculations.
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Table 2. Summary of the pre-operative radiological imaging features of all participants (N = 23).

Breast Density, BI-RADS 5th Edi (n, %)

A 6 (26.1)
B 7 (30.4)
C 6 (26.1)
D 4 (17.4)

Ultrasound tumour size (mm)
Minimum 10
Maximum 60

Mean * 18.3

Mammography tumour size (mm)
Minimum 10
Maximum 50

Mean * 18.6
* The mean is based on 22 participants due to one tumour being non-measurable in respective imaging modality.

3.2. DRS Data

In total, 1035 EW-DRS spectra were obtained from 23 female patients: 505 from malig-
nant tissue and 530 from adjacent healthy tissue (see Table 3). To enhance visual compari-
son, the means and standard deviations (±1 SD) of DRS for each tissue type were plotted
against wavelength (see Figure 3). An overlapping wavelength region (930 to 1030 nm) of
the two spectrometers was used to merge the two spectra into one continuous spectrum
ranging from 450 to 1550 nm.

Table 3. Number of measurement sites and generated optical measurements.

Tissue Number of Measurement Sites
(n = 207)

Number of Optical Measurements
(n = 1035)

Malignant 101 505
Healthy 106 530
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Figure 3. Diffuse reflectance spectra for all measurements from malignant (orange) and adjacent healthy
(purple) breast tissue. Solid lines depict the mean intensities, and grey shaded areas represent ± 1 SD.
A thin line showing healthy (purple) and malignant (orange) breast tissue has been added into the
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3.3. Machine Learning Outcome

Based on the wavelength range of 450–900 nm, the first two principal components,
together, accounted for 83% of the total explained variance in the optical spectrum. When
utilising the extended-wavelength range of 450–1550 nm, the corresponding figure was 80%.
Whatever wavelength range used, almost all the spectral variation in the entire dataset was
captured by the first two principal components. The linear discrimination analysis (LDA)
and support vector machine (SVM) discrimination algorithms were used to categorise the
samples based on only two principal components (see Figure 4). The score charts for the
two first principal components show a clear discrimination between healthy and malignant
breast tissue in the extended-wavelength range.
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Figure 4. Score plots of two diagnostic parameters (first and second principal components) based on
LDA (left) and SVM (right), respectively. LDA, linear discriminant analysis; SVM, support vector
machine. The sensitivity (SE), specificity (SP), classification rate (CR), and Matthew’s correlation
coefficient (MCC) values obtained using the LDA and SVM algorithms are listed in Table 4. A
direct comparison can be made between the standard wavelength range of 450–900 nm and the
extended-wavelength range of 450–1550 nm, with the latter showing improved values. The ROC
curves and their respective AUCs are shown in Figure 5.

Table 4. Summary of the machine learning outcome. The LDA and SVM diagnostic algorithms
are represented at two wavelength ranges, the standard range between 450 and 900 nm and the
extended-wavelength range between 450 and 1550 nm.

Diagnostic Algorithm Wavelength Ranges SE SP CR MCC
Nm (%)

LDA
450–900 33 70 52 3

450–1550 92 90 91 82

SVM
450–900 40 71 56 11
450–1550 94 91 92 85

LDA, linear discriminant analysis; SVM, support vector machine; SE, sensitivity; SP, specificity; CR, classification
rate; MCC, Matthew’s correlation coefficient.
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4. Discussion

The first objective of this ex vivo study was to evaluate whether EW-DRS can be
used to distinguish between healthy and malignant breast tissue in an ex vivo setting.
The results suggest that both tissue types have distinctive optical signatures. Malignant
breast tissue displays increased absorption at a wavelength range of 950–1100 nm and
decreased absorption at 680–950 nm and 1250–1550 nm, relative to adjacent healthy tissue.
These wavelength ranges represent the absorption of essential breast tissue chromophores,
such as haemoglobin (around 600 nm), water, lipids, and collagen (wavelengths around
1200–1400 nm) [14,24]. Thus, the EW range plays a vital role in characterising malignant
and healthy breast tissue, and our results are consistent with previous DRS studies [5,10,13].
The multivariate approach does not, however, quantify the concentration of endogenous
chromophores, making it an interesting topic for future studies.

An optical difference between malignant and healthy breast tissue is found in the
NIR/SWIR wavelength range, as mentioned above. In contrast, malignant and healthy liver
tissue demonstrates an optical difference in the VIS wavelength range (i.e., morphological
differences are seen with the naked eye) [16]. This, in turn, can explain why breast surgeons
face challenges when attempting to visually recognise tumour tissue at the surgical margin.
It also highlights the crucial role of specimen mammography in detecting surgical margins.

Despite inter-patient variability, such as varying breast densities and different types
of histopathological malignancies, a difference in the spectral signatures between malig-
nant and healthy breast tissue is obtained. EW-DRS can detect a breast malignancy in
mammographically dense breast tissue, which is a known radiological challenge. EW-DRS
can detect common breast cancer types, such as invasive ductal carcinomas, as well as
rarer forms, such as lobular and papillary carcinomas, with the former being a radiological
challenge due to its mammographic features being similar to those of glandular tissue.
Thus, DRS could play a complementary role in defining tumour borders and foci. This
should be addressed in future studies with larger sample sizes.

The second objective of this study was to evaluate the role of an extended-wavelength
(450–1550 nm), as opposed to the “standard” VIS-NIR optical wavelength range (450–900 nm),
using a multivariate statical algorithm for data processing. The use of EW-DRS increases
sensitivity from 33 to 92%, specificity from 70 to 90% and MCC from 3 to 82% using LDA,
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as well as from 40 to 94%, 71 to 91%, and 11 to 85% when using SVM, respectively. Similar
results are observed for the receiver operating curves, as the AUC value is increased from
0.55 to 0.97 using LDA and from 0.57 to 0.97 using SVM when the extended-wavelength
range is included. Previous studies of malignant and healthy breast tissue have reported
sensitivities and specificities of about 90% and 88%, respectively [7]. The slightly improved
results could be explained by the use of a multivariate and machine learning approach
to data processing, as opposed to complex mathematical models. By using the extended-
wavelength range and only two principal components, we managed to obtain relevant
information, with a total of 80% variance being represented. This simplification is important
for future clinical applications that require real-time processing.

Ex vivo studies like ours have limitations because tissue perfusion is eliminated after
surgical resection. It has, however, been suggested that the difference in spectral signatures
is not significantly different in ex vivo versus in vivo settings [9,10]. In other words, our
ex vivo results may be applicable to future studies in which the breast is investigated
pre-operatively (in vivo) by using other optical modalities with a greater depth penetration
than DRS (e.g., PAI). Another potential limitation was that it was not possible to precisely
correlate the final histopathological tumour borders with the placement of the DRS probe.
However, guidance using the specimen mammography, as well as with the macroscopic
contrast between the two tissue types being apparent, should have minimised incorrect
measurements. Furthermore, our limited study sample included peri- and postmenopausal
patients. However, all breast-density patterns were represented, and we have no reason
to believe that the results would be different in pre-menopausal patients, because optical
methods, in general, have shown that malignancy detection remains constant irrespective
of breast density [25,26]. It should be noted that benign tumours were not included. The
main reason for this choice was that these tumours are placed in a formaldehyde solution
for fixation in the operating theatre as per clinical routine. This, in turn, alters their chemical
and physical properties, making them unsuitable for inclusion in this study. Finally, the
EW-DRS used in our study had a depth penetration of a few millimetres, depending on the
wavelength [27]. This limits in vivo use during breast surgery, as the tumour itself is kept
intact, surrounded by healthy tissue, upon resection. This DRS technique may be a more
suitable real-time tool for pathologists to use in defining tumour borders or foci directly on
tissue slices.

The results of this study will serve as an optical reference bank for future optical
studies of breast tissue. It proves that EW-DRS can differentiate between malignant and
healthy breast tissue.

5. Conclusions

We have shown that it is possible to distinguish malignant from healthy breast tissue
using EW-DRS. Our results further suggest that it is possible to construct simple algorithms
using only two principal components and standard machine learning discrimination al-
gorithms such as LDA and SVM, thereby improving the diagnostic performance of the
DRS technique.
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