0

@v% diagnostics

Article

Resting-State Functional Connectivity Difference in
Alzheimer’s Disease and Mild Cognitive Impairment Using
Threshold-Free Cluster Enhancement

Ramesh Kumar Lama and Goo-Rak Kwon *

check for
updates

Citation: Lama, R.K.; Kwon, G.-R.
Resting-State Functional
Connectivity Difference in
Alzheimer’s Disease and Mild
Cognitive Impairment Using
Threshold-Free Cluster Enhancement.
Diagnostics 2023, 13, 3074. https://
doi.org/10.3390/diagnostics13193074

Academic Editors: Roohallah
Alizadehsani, Sadiq Hussain and

Mohamad Roshanzamir

Received: 8 July 2023
Revised: 17 September 2023
Accepted: 22 September 2023
Published: 28 September 2023

Copyright: © 2023 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

Department of Information and Communication Engineering, Chosun University, 309 Pilmundaero,
Gwangju 61452, Republic of Korea; rklama@chosun.kr
* Correspondence: grkwon@chosun.ac.kr; Tel.: +82-62-230-7707

Abstract: The disruption of functional connectivity is one of the early events that occurs in the
brains of Alzheimer’s disease (AD) patients. This paper reports a study on the clustering structure
of functional connectivity in eight important brain networks in healthy, AD, and prodromal stage
subjects. We used the threshold-free cluster enhancement (TFCE) method to explore the connectivity
from resting-state functional MR images (rs-fMRIs). We conducted the study on a total of 32 AD,
32 HC, and 31 MCI subjects. We modeled the brain as a graph-based network to study these
impairments, and pairwise Pearson’s correlation-based functional connectivity was used to construct
the brain network. The study found that connections in the sensory motor network (SMN), dorsal
attention network (DAN), salience network (SAN), default mode network (DMN), and cerebral
network were severely affected in AD and MCI. The disruption in these networks may serve as
potential biomarkers for distinguishing AD and MCI from HC. The study suggests that alterations
in functional connectivity in these networks may contribute to cognitive deficits observed in AD
and MCI. Additionally, a negative correlation was observed between the global clinical dementia
rating (CDR) score and the Z-score of functional connectivity within identified clusters in AD subjects.
These findings provide compelling evidence suggesting that the neurodegenerative disruption of
functional magnetic resonance imaging (fMRI) connectivity is extensively distributed across multiple
networks in individuals diagnosed with AD.

Keywords: Alzheimer’s disease; default mode network; large-scale brain network; functional
connectivity; threshold-free cluster enhancement

1. Introduction

Alzheimer’s disease (AD) is the primary cause of dementia, commonly affecting
people over 65 years old [1,2]. The accumulation of amyloid-f3 and tau neurofibrillary
tangles in the brain is a crucial factor in the death of neurons and the breakdown of neural
pathways [3-5]. This degenerative process is marked by short-term memory loss, cognitive
dysfunction, language impairments, and difficulty with executive functions. Studies
of degeneration phenomena in the brain are often conducted using large-scale network
models [6]. These studies have shown that decreases in brain volume and alterations in
connectivity are prevalent in both AD and mild cognitive impairment (MCI) subjects. A
range of biomarkers are employed to evaluate the progression of Alzheimer’s disease. These
biomarkers are measurable indicators of various biological processes and are utilized to
diagnose and monitor this neurodegenerative disorder [6]. Different imaging models, such
as magnetoencephalography, electroencephalography, and functional magnetic resonance
imaging (fMRI), are used to study the connectivity patterns in AD and MClI brains [7]. These
studies have found that the disruption of functional connectivity is a significant feature
of AD and MCI. Additionally, studies have shown that networks that are active during
the passive or resting state of the brain are disrupted. These networks include the default
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mode network (DMN), central executive network (CEN), and salience network (SN) [8-10].
Although changes are often seen in the DMN, SN, and CEN across the spectrum of AD and
MU, resting-state functional magnetic resonance imaging (rs-fMRI) results have shown
that individuals with aging or MCI also exhibit functional connectivity alterations in these
large-scale networks. Recent studies have demonstrated that these are not only visible in
the DMN but also in salience, motor, sensory motor, dorsal attention, auditory, and visual
networks. Agosta used resting-state functional magnetic resonance imaging (rs-fMRI) to
explore connectivity patterns in the brains of Alzheimer’s disease (AD) patients, amnestic
mild cognitive impairment (aMCI) patients, and healthy controls [11,12]. The study found
that AD patients had decreased connectivity in the default mode network (DMN) and
enhanced connectivity in frontal networks compared to controls and aMCI patients. The
only abnormality found in aMCI patients was a reduction in precuneus connectivity in
the DMN. The changes in connectivity were only partly related to gray matter atrophy. In
AD patients, increased connectivity in the executive network was associated with better
frontal-executive and language neuropsychological scores. These results suggest that AD is
associated with alterations in large-scale functional brain networks beyond the DMN, and
changes in connectivity may be an attempt to maintain cognitive efficiency. Additionally, a
change in the medial parietal rs-fMRI signal seems to be present in the early phase of AD.
Aoki et al. [13] conducted a study using EEG resting-state networks to examine changes
in the DMN in individuals with AD and mild cognitive impairment due to AD (ADMCI).
The study employed eLORETA-ICA [13], a method for evaluating the activities of five
EEG resting-state networks, in a cohort of 90 drug-free AD patients, 11 drug-free subjects
with MCI, and 147 healthy control subjects. The results revealed a significant decrease
in activities within the memory network and occipital alpha activity in the AD/ADMCI
group. Linear regression analysis was used to account for confounding factors, and the
age-corrected EEG-RSN activities showed correlations with cognitive function test scores in
the AD/ADMCI group. Specifically, reduced activity in the memory network was strongly
associated with lower cognitive scores on the MMSE and ADAS-J cog tests, particularly
in orientation, registration, repetition, word recognition, and ideational praxis. These
findings suggest that specific EEG resting-state networks are selectively affected by AD,
and the decline in network activity contributes to the manifestation of AD symptoms. The
study also highlights the usefulness of eLORETA-ICA as a non-invasive tool for assessing
EEG-functional network activities, providing insights into the complex neurophysiological
mechanisms underlying AD.

Additionally, fMRI has been used to investigate the functional connectivity of dif-
ferent subregions of the amygdala AD patients compared to healthy controls [14]. Three
subregions of the amygdala were defined based on probabilistic cytoarchitectonic atlases,
and their whole-brain resting-state functional connectivity was mapped. The study found
disrupted connectivity patterns in the lateral basal nucleus of the amygdala in AD patients
compared to controls, which predicted disconnection with various brain regions. These
findings suggest that different subregions of the amygdala may have distinct connectivity
patterns and contribute differently to cognitive deficits in AD. Furthermore, a study using
fMRI investigated the functional connectivity of the DMN in patients with AD compared
to healthy controls using independent component analysis (ICA) and Bayesian network
(BN) techniques [15]. The study found decreased resting-state functional connectivity in
the DMN of AD patients compared to HC, which was consistent with previous studies. The
study also revealed altered effective connectivity in AD, including lost connections from
the left hippocampus to the left inferior parietal cortex, left inferior temporal cortex, medial
prefrontal cortex, and posterior cingulate cortex, as well as changes in connection directions
between certain regions. These findings suggest that altered effective connectivity in AD
may serve as a potential biomarker and reveal more characteristics of the disease. A recent
study found that exercise training can improve within- and between-network connectiv-
ity in older individuals with intact cognition and MCI due to Alzheimer’s disease [16].
Another study used a computational brain network model to link neuronal hyperactiv-
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ity to large-scale oscillatory slowing in early-stage Alzheimer’s disease [17]. A machine
learning study found altered large-scale dynamic connectivity patterns in AD and MCI
patients [18]. Additionally, a triple-network dynamic connection study demonstrated that
AD is associated with the abnormal organization and functioning of large-scale brain net-
works [19]. Therefore, we included other networks in our investigation of brain connectivity
disruptions. Most studies use threshold-based statistical methods to generate edgewise
significance values, defining an a priori clustering threshold. Network-based statistics
(NBS) [20,21] operate by thresholding the network connections and identifying connected
components or subnetworks that exhibit significant differences in connectivity. In contrast,
the threshold-free cluster enhancement method (TFCE) [22,23] generates edgewise signifi-
cance values without the need for an a priori definition of a hard edge-defining threshold.
Consequently, TFCE offers a more insightful view into the altered cluster structure of brain
connectivity. In this study, we employed TFCE to identify the significant differences in
connectivity patterns between groups.

We hypothesize that individuals with AD and MCI exhibit disrupted functional
connectivity within key brain networks, including the SMN, DAN, SAN, and DMN. This
disruption, characterized by reduced interregional correlations and connectivity patterns,
may serve as a potential biomarker for distinguishing AD and MCI from healthy controls.
The hypothesis further posits that the observed impairments within the DMN, a network
associated with episodic memory processing and cognitive rest, contribute significantly
to the cognitive deficits observed in AD and MCI individuals. To test this hypothesis,
we divided the whole brain into 164 different anatomical regions of interest (ROIs) and
used eight important large-scale networks comprising only 32 ROIs. Figure 1 shows the
schematic of the data analysis pipeline of the proposed study. TFCE is used to identify the
abnormal subnetworks between two subject groups: AD versus HC and HC versus MCL
ANOVA is performed to identified clusters between all three groups AD, HC, and MCL

Subject group1 Subject group2

fMRI I ' ' I fMRI

Pre-processing

Brain network

\?‘ Abnormal
r sub-network

v v v

Cluster1 Cluster2 Cluster-n

ANOVA

Figure 1. Diagram illustrating the sequence of data analysis steps.

| ANOVA | | ANOVA |
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2. Materials and Methods

This article was prepared using data obtained from the Alzheimer’s Disease Neu-
roimaging Initiative database (ADNI) (http://adni.loni.usc.edu/) [24]. Launched in 2003
under the leadership of principal investigator Michael W. Weiner, MD, ADNI is a public—
private partnership. Its main objective has been to determine if the combination of serial
magnetic resonance imaging (MRI), positron emission tomography (PET), other biological
markers, and clinical and neuropsychological assessments can effectively measure the
progression of MCI and early AD. The imaging scanning protocol utilized in this study
remains consistent with the protocol described in our previously published article [25]. The
subjects for this study were selected according to the criteria outlined in Table 1.

Table 1. Subject demographic status.

Number of Subjects HC (n =31) MCI (n = 31) AD (n = 33)
Age (years) 73954 745 £5.0 727 £7.0
Global CDR 0.04 £0.13 05+0.18 0.95 £0.30

MMSE 28.9 = 1.65 27.5£2.02 20.87 £ 3.6

2.1. Subjects

Ninety-five subjects were selected from the ADNI database. We selected the subjects
according to the availability of both structural MRI (sMRI) and fMRI imaging data. sMRI
is a T1-weighted sequence that provides high-resolution anatomical images of the brain.
Subjects with the following demographic status were selected in our study out of all the
available data in the ADNI database. The HC group consists of 31 subjects with 14 males
and 17 females, the MCI group consists of 17 females and 14 males, and the AD group
consists of 15 males and 18 females.

2.2. Data Preprocessing

We processed the fMRI and sMRI images using the CONN toolbox [26], which uses a
default pipeline for preprocessing. This pipeline includes the realignment and unwrapping
of functional data, slice timing correction, outlier identification, direct segmentation and
normalization, and functional smoothing. To realign the functional data, the CONN toolbox
uses SPM12 realign [27] and unwrap procedures [26], with b-spline interpolation used to
co-register and resample all scans to a reference image. To correct temporal misalignment
between different slices of functional data, the slice timing correction (STC) procedure
of SPM is used [28]. In addition, to identify outlier scans, the Artefact Detection Tools
(ART) toolbox (https:/ /www.nitrc.org/projects/artifact_detect/) is used in CONN. The
ART toolbox identifies outlier scans based on the observed global bold signals and amount
of subject motion in the scanner. Outlier scans were identified as global bold signals
exceeding five standard deviations from the global mean or with frame-wise displacement
above 0.9 mm.

The next step involved normalizing the functional and anatomical data into the
standard MNI space. This was carried out by segmenting the functional and anatomical
data into gray matter, white matter, and cerebrospinal fluid (CSF) classes using the SPM12
unified segmentation method [29]. Outlier detection was performed after normalization
and segmentation. The difference image of the mean BOLD signal was used as a reference
image for the functional data, while the T1-weighted volume was used as a reference image
for the structural data [29,30]. In order to enhance the signal-to-noise ratio and reduce
residual variability in functional and gray anatomy data across subjects, a resampling
technique was employed. Both the functional and anatomical data were resampled to
a bounding box measuring 180 x 216 x 180 mm, with voxel sizes of 2 mm isotropic
for functional data and 1 mm for anatomical data. This resampling was accomplished
using fourth-order spline interpolation. Subsequently, the functional data underwent
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smoothing via spatial convolution with an 8 mm full width at half maximum (FWHM)
Gaussian kernel.2.3.

2.3. Brain Connectivity Estimation

In the CONN toolbox, a seed-based resting-state functional connectivity (FC) analysis
was undertaken using a total of 164 regions of interest (ROIs). The initial step, known
as the first-level analysis, assessed individual subjects by examining the connectivity
between each of the 164 seeds and other brain voxels, utilizing Pearson’s correlation
coefficient for this purpose. Following this, a group-level or second-level analysis contrasted
conditions. After the individual analyses, ROI analyses employed either F-statistics or
Wilks lambda statistics. To ensure the correlation values were suitable for parametric
statistical testing at the group level, Fisher’s transformation was applied. Of the 164 ROIs
used, 132 were sourced from the FSL Harvard-Oxford atlas, which includes both cortical
and subcortical regions, and cerebellar areas derived from the AAL atlas. The remaining
32 ROIs represented various networks such as the DMN, sensorimotor, visual, salience,
dorsal attention, frontoparietal, language, and cerebellar networks. In the analysis, these
ROlIs, covering both the resting-state networks and the atlas regions, were combined to
differentiate functional connectivity pairs.

The functional connectivity among different ROIs was estimated on the basis of tem-
poral correlations of BOLD signals in these regions. Initially, we extracted the BOLD time
series from 164 regions. Among these regions, only 32 ROIs were selected to construct 8 im-
portant large-scale networks: default mode (4 ROIs), sensorimotor (3 ROIs), visual (4 ROlIs),
salience/cingulo-opercular (7 ROIs), dorsal attention (4 ROIs), frontoparietal /central exec-
utive (4 ROIs), language (4 ROIs), and cerebellar (2 ROIs). Consistent with previous studies,
Pearson’s correlation was estimated among the pairs of regions and expressed in terms of
an ROI-to-ROI correlation matrix.

fRi(t)Rj(t)

(J R2(t)dt [ R3(t)dt)!/2 1)

rlij) =

where R is the BOLD time series within each ROI (for simplicity, all-time series are consid-
ered to be centered at zero mean), ¥ is a matrix of correlation coefficients. We estimated the
RRC symmetric matrix of Fisher-transformed correlation coefficients as

Z(i, j) = tanh 1 (r(i, j)) (2)

3. Statistical Analysis

We used threshold-free cluster enhancement (TFCE) of the CONN toolbox to identify
the differences in the brain networks between AD and HC and between MCI and HC.

Threshold-Free Cluster Enhancement (TFCE)

NBS is a parameter-free statistical tool used to identify group differences when the
distribution is known. The first step of NBS is to estimate the connectivity matrix r, which
is of size N x N. Each element of this matrix, (i, j), represents the edge value between
two regions of interest (ROIs) i and j. After estimating the connectivity matrix, the second
step of NBS is to apply a threshold on the edge values (i, j) to define a cluster. Next,
the thresholded connections are grouped for each subject belonging to the defined group.
Finally, a permutation test is performed on these edge values, repeating the process for n
different combinations. We count the number of test statistics whose value is greater than
the initial test statistics, and the p-value is calculated by estimating the ratio of this number
to the total number of test statistics. In contrast, TFCE performs an enhancement operation
for each edge value 7(j, j) instead of a thresholding operation. We start with an ROI-to-ROI
connectivity matrix, which is derived from a General Linear Model analysis. ROlIs are
sorted automatically using a hierarchical clustering procedure, which considers anatomical
proximity or functional similarity metrics. Instead of using a fixed height threshold as in
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NBS, TFCE computes a TFCE score map [20,30]. The TFCE score map combines the strength
of the statistical effect for each connection with the extent of neighboring connections that
show similar effects. o

TECE(,j) = | hh<_l Q e(h)ERHdn 3

=

where e(h) represents the extension of neighboring connections and & represents the height
of the fractional edge value. E and H are extension and height enhancement parameters,
respectively. This helps capture both local and distributed effects. The expected distribution
of TECE values under the null hypothesis is estimated using permutation iterations of the
original data using 1000 iterations. For each cluster in the original analysis, a peak-level
Family-Wise Error (FWE)-corrected p-value is computed. This indicates the likelihood
under the null hypothesis of observing at least one or more connections with the given
TFCE scores over the entire ROI-to-ROI connectivity matrix. For the peak-level analysis,
local peaks in the TFCE score map are compared to the null hypothesis distribution of
local-peak TFCE values. This estimation provides p-values for each peak, representing the
likelihood under the null hypothesis of observing a peak with similar or larger scores by
chance. In small sample sizes, the correction for multiple comparisons becomes increasingly
important as the number of comparisons rises. However, with such sizes, the application
of correction methods might be overly conservative, increasing the risk of false negatives.
Therefore, we chose to use uncorrected p-values, although corrected p-values were available
in the CONN toolbox. The cluster-level p-uncorrected value (SPC mass/intensity) was
utilized to quantify the extent and intensity of the identified clusters, offering insights into
the strength of the functional connectivity patterns. We focus on identifying the cluster of
interests that indicates aberrant functional connectivity between AD and HC, along with
HC and MCI. Once these clusters are identified, we conduct group-wise comparisons using
analysis of variance (ANOVA) among AD, HC, and MCI, with a p-value of 0.05.

4. Results

The group difference statistics of the clusters containing the connectivity of ROIs are
presented in Tables 2 and 3, and graphically in Figure 2. The identified clusters in each group
difference demonstrated how disruptions in connectivity occur in AD and MCI subjects. In
the AD versus HC test, cluster 1 revealed that the majority of disruptions occurred in the
SMN, DAN, language, SAN and frontoparietal networks. This cluster includes the primary
motor cortex, primary somatosensory cortex, and supplementary motor area contained in
SMN, the intraparietal sulcus and superior parietal lobule contained in DAN, the anterior
insula and anterior cingulate cortex contained in SAN, and the dorsolateral prefrontal
cortex and posterior parietal cortex in frontoparietal networks. Cluster 2 includes the same
anatomical regions as cluster 1 except for regions included in the frontoparietal networks.
It is primarily composed of the dorsolateral prefrontal cortex and the posterior parietal
cortex, including the intraparietal sulcus. Cluster 3 consists of the medial prefrontal cortex,
posterior cingulate cortex, inferior parietal lobule, and lateral temporal cortex included
in DMN and other anatomical regions included in SMN and DAN. In the connectome
ring visualization, the connections between brain regions are color-coded based on their T-
values, ranging from —3.02 indicating a decrease in connectivity in the first group compared
to the second to +3.02 indicating an increase as shown in Figure 2a.

Similarly, in MCI vs. HC, cluster 1 showed disruptions in the cerebellar, visual, DAN,
DMN, and SMN networks. This cluster includes the occipital lobe, including the primary
visual cortex and higher-order visual areas contained in the visual network, and the
cerebellar network is anchored in the dorsolateral prefrontal cortex (DLPFC) and posterior
parietal cortex (PPC). Cluster 2 showed disruptions in the cerebellar network, and SMN,
SAN, and DMN. In this group comparison, the T-values range from —3.19 to +3.19 as
shown in Figure 2b.
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Table 2. Statistical analysis of connectivity differences in AD and HC using TFCE.
Cluster 1 Statistic
SensoriMotor.Lateral (R) Language.IFG (L) p-uncorrected = 0.022849
SensoriMotor.Superior Language.pSTG (L) Mass = 105.17
DorsalAttention.FEF (R) FrontoParietal. LPFC (L)
SensoriMotor.Lateral (R) FrontoParietal. LPFC (L)
Language.IFG (L) SensoriMotor.Superior
DorsalAttention.FEF (R) Language.pSTG (L)
Dorsal Attention.FEF (R) Language.IFG (L)
SensoriMotor.Superior FrontoParietal. PPC (L)
Salience.Alnsula (L) SensoriMotor.Superior
FrontoParietal. LPFC (L) SensoriMotor.Superior
Salience.SMG (L) Dorsal Attention.FEF (L)
SensoriMotor.Lateral (R) Language.pSTG (L)
SensoriMotor.Lateral (R) FrontoParietal. PPC (L)
Salience.SMG (L) SensoriMotor.Superior
Cluster 2 Statistic
SensoriMotor.Lateral (R) Salience.Alnsula (R) p-uncorrected = 0.03837
Dorsal Attention.FEF (R) Salience.SMG (R) Mass =74.73
Salience.SMG (R) SensoriMotor.Lateral (R)
SensoriMotor.Lateral (R) Salience.RPFC (R)
Dorsal Attention.FEF (R) Salience.Alnsula (R)
Salience.SMG (R) SensoriMotor.Superior
Salience.ACC SensoriMotor.Lateral (R)
Salience.RPFC (R) SensoriMotor.Superior
SensoriMotor.Lateral (R) Dorsal Attention.IPS (R)
Dorsal Attention.FEF (R) Salience.RPFC (R)
DorsalAttention.IPS (L) SensoriMotor.Lateral (L)
DorsalAttention.IPS (R) SensoriMotor.Superior
Cluster 3 Statistic
SensoriMotor.Lateral (L) DefaultMode PCC p-uncorrected = 0.04207
DefaultMode.LP (L) SensoriMotor.Superior Mass = 70.06
SensoriMotor.Lateral (L) DefaultMode.LP (L)
SensoriMotor.Lateral (R) DefaultMode.LP (L)
SensoriMotor.Lateral (R) DefaultMode.PCC

Additionally, performing the ANOVA test, we found significant disruptions in all

clusters in each pair of groups. The tests were conducted using t-tests between each pair of
groups. Figure 3 shows the mean Z-score difference of the clusters between subject groups.
COI1, COI2, and COI3 represent the cluster from group difference between AD and HC.
Similarly, COI4 and COI5 represent the group difference between HC and MCI. p-values of
all tests are less than 0.005, which signifies that the clusters between groups are significantly
different, which is generally correct.
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Table 3. Statistical analysis of connectivity differences in MCI and HC using TFCE.

Cluster 1 Statistic
Cerebellar.Posterior Dorsal Attention.IPS (L) p-uncorrected = 0.016848
Visual.Occipital DorsalAttention.IPS (R) Mass = 160.07
Visual.Occipital DorsalAttention.IPS (L)
DorsalAttention.FEF (L) DefaultMode.PCC
SensoriMotor.Lateral (R) DefaultMode MPFC
Cerebellar.Anterior DorsalAttention.IPS (L)
Cerebellar.Posterior DorsalAttention.IPS (R)
DefaultMode. MPFC DorsalAttention.FEF (L)
DefaultMode.LP (L) DorsalAttention.FEF (R)
Cerebellar.Anterion DorsalAttention.IPS (R)
DefaultMode.LP (R) Visual.Lateral (R)
Visual.Medial Dorsal Attention.IPS (R)
Dorsal Attention.FEF (R) DefaultMode MPEC
Visual.Lateral (R) DefaultMode MPFC
DorsalAttention.FEF (R) DefaultMode.PCC
Visual.Lateral (R) DefaultMode . PCC
DefaultMode. MPFC SensoriMotor.Lateral (L)
DefaultMode.LP (R) DorsalAttention.FEF (L)
DefaultMode.LP (R) DorsalAttention.IPS (R)
DorsalAttention.IPS (L) DefaultMode.PCC
DefaultMode.LP (R) DorsalAttention.IPS (L)
Dorsal Attention.IPS (R) DefaultMode . PCC
DefaultMode MPFC SensoriMotor.Superior
Visual.Occipital DorsalAttention.FEF (L)
Visual.Lateral (L) DefaultMode.PCC
Cluster 2 Statistic
SensoriMotor.Lateral (L) DefaultMode.PCC p-uncorrected = 0.047229
Cerebellar.Anterior Salience.SMG (R) Mass = 77.93
SensoriMotor.Lateral (L) DefaultMode.LP (L)
Salience.SMG (L) DefaultMode.PCC
SensoriMotor.Lateral (R) DefaultMode.PCC
Cerebellar.Anterior Salience.Alnsula (R)
SensoriMotor.Lateral (R) DefaultMode.LP (L)
Cerebellar.Posterior Salience.Alnsula (R)
Cerebellar.Posterior SensoriMotor.Lateral (R)
Cerebellar.Posterior Salience.SMG (L)
Salience.SMG (R) DefaultMode.PCC

Acronyms: MPFC: medial prefrontal cortex, LP: lateral posterior, IPS: intraparietal sulcus, PCC: posterior cingulate
cortex, FEF: frontal eye field, SMG: supramarginal gyrus, pSTG: posterior superior temporal gyrus, IFG: inferior
frontal gyrus, LPFC: lateral prefrontal cortex, PPC: posterior parietal cortex, RPFC: rostral prefrontal cortex.
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Figure 2. Group differences represented as connectome rings: (a) HC versus AD, (b) HC versus MCIL
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Additionally, we examined the correlations between the mean Z-scores of identified
clusters from various networks and the global clinical dementia rating (CDR). Following
best practice, we report only those results with significant correlations (p < 0.05) and an
R value exceeding 0.35 (equivalent to R? > 0.12), including associated R? and p-values as
shown in Figures 4 and 5. For AD subjects, Cluster 2, encompassing the sensorimotor
(SMN), dorsal attention (DAN), and salience networks, showed a significant negative
correlation with CDR (R = —0.08, p < 0.05). Cluster 3, consisting of the default mode
network (DMN), sensorimotor (SMN) network, and dorsal attention (DAN) network,
displayed a significant positive correlation with CDR (R = 0.05, p < 0.05). Clusters 1, 4,
and 5 did not achieve the required significance threshold and thus are not detailed here.
For MCI subjects, Cluster 4 exhibited a significant positive correlation with CDR (R = 0.18,
p <0.05). Clusters 2, 3, and 5 displayed significant negative correlations with CDR, with R
values of —0.13, —0.15, and —0.20, respectively (all p < 0.05). Though Cluster 1 did not reach
the p < 0.05 significance threshold, it showed a positive correlation with CDR (R = 0.08).
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Figure 4. Cont.
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5. Discussion

The major finding of this study is the identification of clusters of disrupted networks
without using a statistical hard threshold. These networks consist of different ROIs that
have the potential to serve as biomarkers for distinguishing AD and MCI from HC. Several
studies have previously been conducted using different statistical methods to identify
group differences. Consistent with these studies, we found that connections in the sensory
motor network (SMN), dorsal attention network (DAN), salience network (SAN), and
cerebral network were severely affected [31]. The sensory motor network includes the
motor cortex and supplementary motor area. Similarly, consistent with previous studies,
we discovered disruption in the default mode network (DMN) [32]. The DMN is a widely
recognized large-scale brain network that encompasses various high-level cognitive regions,
including the medial prefrontal cortex (mPFC), posterior cingulate cortex (PCC), and
parietal regions (PTL). The DMN is commonly referred to as the “task negative” network,
as its constituent regions exhibit robustly correlated activity during periods of rest and are
typically deactivated during cognitive tasks that require goal-directed mental effort. The
DMN is involved in episodic memory processing [33]. The findings of this study support
the notion that the DMN is commonly disrupted in AD and MCIL.

The sensorimotor network is associated with tasks such as converting stimulus to
neuronal impulses that move throughout the brain network. The sensing process involves
other networks, such as the auditory subnetwork, visual system network, salience network,
dorsal attention, and DMN. As demonstrated by previous studies, this work also found
disruption in connectivity in the sensory motor network in AD and MCI. Tables 2 and 3
detail the reduced connectivity between the sensory motor network and other networks.
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The SAN plays a crucial role in continuously monitoring the external environment and
making strategic decisions regarding the response of other brain networks to incoming
information and stimuli. The SAN is responsible for regulating the transition between
internal and external processing within the two primary control networks of the brain: the
DMN and CEN. The SAN connectivity pattern has been reported to successfully predict
different dementia types, such that decreased connectivity in the SAN correlated with
behavioral variant frontotemporal dementia, whereas increased connectivity was observed
in AD [34]. The current study found that the connections between the SAN and the SMN,
DAN, and DMN networks are disrupted. The DAN is involved in human attention, which
is perhaps the highest-level cognitive process [35]. With the disruption in DAN, a network
associated with attention, there may be difficulty in focusing on goal-driven attention
orientation processes. The current study identified alterations in the functional connectivity
of DAN with DMN, SAN, and SMN in AD and MCI.

Additionally, the result of performing an ANOVA on three different clusters of three
groups (AD, HC, and MCI) and obtaining a p-value of less than 0.005 indicates that there is
strong evidence of a significant difference between at least one of the groups in each of the
three clusters analyzed. This suggests that the groups differ significantly in at least one of
the clusters, and this difference is not likely to be due to chance alone. However, without
further analysis, it is difficult to determine which groups are responsible for the significant
differences observed. It is important to consider the effect size and sample size of the
study when interpreting the results. Post hoc tests can be conducted to determine which
groups differ significantly from each other in each of the clusters, and this can provide
more detailed information about the nature of the differences observed.

The main contribution of this work is the development and application of a novel
method for identifying clusters of disrupted networks in AD and MCI without relying
on a statistical hard threshold. This method allows for the characterization of specific
ROIs within different brain networks that have the potential to serve as biomarkers for
distinguishing AD and MCI from HC. We further assessed the correlations between the
mean Z-scores of identified clusters from these networks and the global CDR. For AD
subjects, correlations showed significant findings for clusters related to the SMN, DAN,
and SAN, as well as the DMN. For MCI subjects, significant correlations spanned across
multiple clusters with varying positive and negative associations with CDR.

The study highlights several key findings:

Disrupted Network Clusters: The study identifies disrupted network clusters encom-
passing different brain networks, including the SMN, DAN, SAN and cerebral network.
These findings provide insights into the specific regions and connections that are severely
affected in AD and MCL

Default Mode Network (DMN) Disruption: The study reinforces previous research
by confirming disruption in the DMN, a well-known large-scale brain network associated
with high-level cognitive functions. This disruption has implications for episodic memory
processing and cognitive deficits observed in AD and MCIL.

Biomarker Potential: The identified disrupted network clusters, particularly within
the DMN and other associated networks, hold the potential to serve as biomarkers for
distinguishing AD and MCI from healthy controls. This suggests the feasibility of utilizing
specific brain network disruptions as diagnostic markers for neurodegenerative diseases.

Support for Existing Theories: By corroborating findings from previous studies that
have implicated the SMN, DAN, SAN, and DMN in AD and MCI, the study strength-
ens existing theoretical frameworks that link these networks to cognitive decline and
neurodegeneration.

Limitations: The study’s primary limitation is its small sample size. The dataset used
for analysis includes only 33 AD, 31 MCI, and 31 HC subjects from the ADNI2 cohort. This
limited sample size may not be representative of the broader population and could lead to
issues with generalizability. While the integration of both structural sMRI and fMRI data is
beneficial for better registration and alignment, this approach resulted in a reduction in the
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number of available samples for analysis. The study’s findings might have been influenced
by the availability of both modalities within the ADNI2 cohort. While the study introduces
a novel method for identifying disrupted networks without a statistical hard threshold,
the details about this method and its potential limitations are not fully described. The lack
of a statistical threshold might raise questions about the reliability and reproducibility of
the results. The study appears to have a cross-sectional design, which limits the ability to
establish causal relationships between disrupted networks and AD or MCI. Longitudinal
studies are needed to better understand the progression of these disruptions over time.
While the study suggests that the identified disrupted networks could serve as potential
biomarkers for distinguishing AD and MCI from healthy controls, further validation is
necessary. Validation studies should involve larger and more diverse samples and employ
rigorous statistical methods to assess the diagnostic accuracy of these biomarkers.

Future Work: Longitudinal Studies: Conducting longitudinal studies that follow
participants over time could provide insights into the temporal dynamics of disrupted
networks in AD and MCI. This would help determine whether these disruptions are causal
factors or consequences of the disease progression. Replicating the study with larger and
more diverse cohorts would enhance the generalizability of the findings and strengthen the
validity of the identified disrupted networks as potential biomarkers. Further development
and refinement of the novel method for identifying disrupted networks without a statistical
hard threshold are warranted. Comparative analyses with existing statistical approaches
could help establish the reliability and validity of this method. Given the potential benefits
of integrating both structural and functional imaging data, future studies could explore
advanced techniques for multimodal data integration, which might improve the accuracy
and robustness of identified biomarkers. To establish causal relationships between dis-
rupted networks and AD/MCI, experimental designs such as causal inference methods or
interventions targeting these networks could be considered. Future research could focus
on translating the identified disrupted networks into clinical practice. Developing tools
or algorithms that utilize these biomarkers for early diagnosis, disease monitoring, or
treatment evaluation could have significant clinical implications. Leveraging advanced
machine learning and artificial intelligence techniques could aid in the identification and
validation of biomarkers from complex brain imaging data.

Clinical Usage:

Early Diagnosis and Prognosis: The identified disrupted network clusters, particularly
within the DMN and other associated networks, could potentially serve as biomarkers for
early diagnosis and prognosis of AD and MCI. Clinicians could use these biomarkers to
identify individuals at risk of developing AD or track the progression of cognitive decline.

Treatment Monitoring: The disrupted network clusters could be employed to monitor
the effects of therapeutic interventions for AD and MCI. Changes in these biomarkers over
time could help assess the efficacy of treatments and guide treatment adjustments.

Personalized Treatment Approaches: By identifying specific disrupted networks in
individual patients, clinicians could tailor treatment strategies to target the affected brain
regions, potentially leading to more personalized and effective interventions.

Clinical Trials: The identified biomarkers could be valuable in clinical trial design
by aiding in patient selection, monitoring treatment effects, and assessing the impact of
interventions on the disrupted networks.

Disease Subtyping: The distinct patterns of disrupted networks in different subtypes
of AD or MCI could contribute to more precise disease subtyping, leading to improved
diagnostic accuracy and tailored therapeutic approaches.

Computational Applicability:

Machine Learning and Artificial Intelligence: The methodological innovation of identify-
ing disrupted network clusters without a statistical hard threshold could be integrated into
machine learning and artificial intelligence algorithms. These algorithms could enhance the
automated detection and classification of AD and MCI based on brain network disruptions.
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Predictive Models: The identified disrupted network clusters could be incorporated into
predictive models that utilize multimodal imaging data to forecast an individual’s risk of
developing AD or MCI, providing insights for early intervention and disease management.

Data-Driven Biomarker Development: The computational approach could facilitate
the discovery of new imaging-based biomarkers beyond the ones identified in this study.
By leveraging large datasets and advanced analytical techniques, researchers could uncover
additional network disruptions associated with AD and MCI.

Data Integration: The integration of structural MRI (sMRI) and functional MRI (fMRI)
data, as demonstrated in this study, could become a standard approach in neuroimaging
research, leading to improved spatial localization and more accurate identification of
disrupted brain networks

6. Conclusions

This study utilized a threshold-free network-based statistics approach to identify
clusters of disrupted networks in AD and MCI patients compared to healthy controls. The
identified networks, including the sensory motor network, default mode network, and
salience network have the potential to serve as biomarkers for distinguishing AD and MCI
from HC. The study underscores the crucial role of these networks in cognitive function
and their disruption in neurodegenerative conditions. The findings of this study support
previous research showing disruptions in these networks and highlight the importance of
studying network-level changes in neurodegenerative diseases. The identification of these
disrupted networks could lead to a better understanding of the underlying pathophysiology
of AD and MCI, as well as the development of novel therapeutic targets. Overall, this
study provides valuable insights into the functional connectivity changes that occur in
AD and MCI and underscores the importance of investigating network-level alterations in
neurodegenerative diseases.
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