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Abstract: Immunotherapy has greatly improved the outcomes of patients with metastatic melanoma.
However, it has also led to new patterns of response and progression, creating an unmet need for better
biomarkers to identify patients likely to achieve a lasting clinical benefit or experience immune-related
adverse events. In this study, we performed a focused literature survey covering the application of
artificial intelligence (AI; in the form of radiomics, machine learning, and deep learning) to patients
diagnosed with melanoma and treated with immunotherapy, reviewing 12 studies relevant to the
topic published up to early 2022. The most commonly investigated imaging modality was CT imaging
in isolation (n = 9, 75.0%), while patient cohorts were most frequently recruited retrospectively and
from single institutions (n = 7, 58.3%). Most studies concerned the development of AI tools to assist
in prognostication (n = 5, 41.7%) or the prediction of treatment response (n = 6, 50.0%). Validation
methods were disparate, with two studies (16.7%) performing no validation and equal numbers
using cross-validation (n = 3, 25%), a validation set (n = 3, 25%), or a test set (n = 3, 25%). Only one
study used both validation and test sets (n = 1, 8.3%). Overall, promising results have been observed
for the application of AI to immunotherapy-treated melanoma. Further improvement and eventual
integration into clinical practice may be achieved through the implementation of rigorous validation
using heterogeneous, prospective patient cohorts.

Keywords: melanoma; immunotherapy; immune checkpoint inhibitor; radiomics; artificial intelligence;
immunoPET; medical imaging; oncology

1. Introduction

Melanoma is among the most commonly diagnosed cancers in the United States
and is a significant driver of cancer-related deaths worldwide [1]. While early-stage,
non-progressive melanoma has a favorable prognosis with good 5-year survival rates
after surgical resection (up to 98.4%), there is a precipitous drop-off in survival for more
advanced stages (63.6% and 22.5% for regional and metastatic disease, respectively) [2,3].
This dichotomy of outcomes has prompted efforts toward the earlier detection of melanoma,
while it is still surgically resectable, and improved treatment response monitoring after
the diagnosis of any stage disease. Research on the combination of immunotherapy and
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artificial intelligence (AI) seeks to address these problems. The former offers an innovative
therapeutic strategy for malignant melanoma management, and the latter provides an
updated means for both the a priori prediction of treatment responders and the accurate
evaluation of efficacy after treatment initiation. In this review, we provide background
information on immunotherapy and AI before elaborating on the present landscape of their
combination in patients with malignant melanoma. We then highlight some significant
recent advances and possible future directions for investigation.

2. Development of Immunotherapy

In recent years, the introduction of immunotherapy into clinical practice has dramati-
cally improved treatment outcomes for various malignancies, including lung, head and
neck, bladder, and gastrointestinal cancers as well as melanoma and various lymphomas.
Immunotherapy is designed to weaponize a patient’s own immune system against cancer,
and it was first introduced in the form of a CTLA-4 inhibitor, ipilimumab, indicated for
metastatic and unresectable melanoma [4]. Over the decade since its introduction, several
additional agents have been developed as standalone, adjuvant, or rescue therapies, includ-
ing monoclonal antibodies targeting a wide range of immune-related receptors and ligands,
as well as oncolytic viruses and immunocytokines [5–9]. These treatments target various
biological mechanisms; for example, certain tumors have an evolved ability to “shut down”
the native immune response via the binding of host T-cell programmed cell death protein 1
(PD-1), cytotoxic T-lymphocyte associated protein 4 (CTLA-4), or lymphocyte activation
gene 3 (LAG-3) receptors. Interactions at these receptors temper immune cell activity, and
while this serves a natural purpose of preventing overactivity and auto-immunity in a
healthy individual, exploitation by tumor cells facilitates escape from immune surveillance.
Immune checkpoint inhibitors make up a class of immunotherapy that specifically targets
these receptors, preventing the binding of tumor cells and, in effect, releasing the “brakes”
of a patient’s immune system. Oncolytic viruses, on the other hand, use an engineered
viral platform (e.g., adenovirus, herpes simplex virus, and poxvirus, among others) to
specifically infect cancer cells, leading to their eventual deaths and creating targetable
antigens in the process, thus helping a patient build tumor-specific immunity [10,11]. In
addition, there is remarkable flexibility in viral genome editing, which can be used to
express immune-system-activating factors (e.g., cytokines) from within a tumor, ultimately
recruiting host immune cells to the site of malignancy.

3. New Patterns of Response and Progression with Immunotherapy

The novelty of immunotherapy, when paired with individual tumor heterogeneity,
precipitates many response patterns that are not accurately characterized by conventional
size-based imaging criteria, such as the Response Evaluation Criteria in Solid Tumors
(RECIST). Among these is pseudoprogression, in which there is a transient increase in
tumor size before an eventual response, potentially correlating with either a lag time before
immune system activation or local inflammation caused by host immune invasion [5,12].
This is particularly interesting in relation to melanoma, in which one study demonstrated
an eventual diagnosis of pseudoprogression in 17.9% of patients allowed to continue
treatment after the initial worsening of the disease [13]. Additionally, “mixed” responses
indicate tumors with discordant responses to treatment (i.e., some lesions may grow while
others shrink), corresponding to the heterogeneous nature of individual tumors and a
priori immune cell infiltration [14]. There are no specific baseline phenotypes that signal
impending atypical responses, yet these responses are critical to identify as soon as they
arise; inaccurate response classification may lead to the early termination of treatment
if traditional size-based imaging criteria are being followed strictly. Another interesting
response pattern involves the abscopal effect, in which the treatment of a single target
lesion (via local application of medication or radiation treatment) leads to a decrease in
the size of distant tumors within the same patient. This phenomenon is thought to arise
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from the release of tumor antigens from the primary lesion upon treatment, subsequently
activating a patient’s immune system against similar tumors elsewhere in the body.

Perhaps more important still is the possibility for hyperprogression of disease as
a result of immunotherapy. This rare response pattern consists of rapid, large-volume
tumor growth and dissemination after the initiation of treatment due to a yet unknown
mechanism. Identifying hyperprogression at the earliest possible moment is critical, though
it is a feat that has been difficult to accomplish and has historically resulted in poor patient
outcomes [15].

4. Melanoma Response to Immunotherapy

An dramatic improvement in survival has been observed in cases of advanced melanoma
following the introduction of immunotherapy. In 2019, Larkin et al. reported a five-year
overall survival (OS) rate of 52% for patients treated with nivolumab and ipilimumab [16].
These rates were calculated based on patients in the CheckMate 067 trial, and when the
same patients were analyzed six and a half years later, the OS remained high at 49% [17]. A
comparison of these figures to a 2011 report by Garbe et al., in which 5-year OS was less
than 10% for patients with advanced melanoma, highlights the impact that immunotherapy
has had in this field [18].

Melanoma’s particular susceptibility to immunotherapy is most likely due to its high
immunogenicity, meaning that the cancer itself is distinctly immune-provoking and vulner-
able to breakdown by a patient’s innate defenses [19]. This is evident due to the prevalence
of melanoma in immune-compromised patients, the occurrence of disseminated disease
with an absent primary lesion indicating spontaneous regression, and the documented
high tumor mutational burden of many melanomas [20]. Additionally, both primary and
metastatic melanoma lesions have been found to permit rapid reactive lymphocyte infil-
tration, indicating that they are somewhat less likely to cordon themselves off in defense
against the host immune system. Despite these immunogenic factors, melanoma remains
highly lethal due to its ability to evolve and disseminate quickly in the face of selective
environmental pressures. In this scenario, immunotherapy is particularly effective, as the
host immune system is already functioning properly; however, it is not strong enough
to offset the disease’s evasive tactics. By amplifying the immune response—activating
immune cells already within a tumor, providing additional antigens for further tumor
recognition, or overexpressing inflammatory cytokines to recruit additional defenders—the
balance is tipped towards regression and remission.

However, though immunotherapy has demonstrated impressive efficacy in improving
OS, it is estimated that 40% to 65% of patients demonstrate minimal or no response at the
beginning of treatment, which has been termed primary resistance [21]. The mechanism
of treatment resistance is not currently known but is theorized to result from insufficient
antigen presentation, host T-cell activation, or immune infiltration of tumor microenviron-
ments. Early identification of these patients, allowing for a switch to other therapeutic
strategies, is key to improving overall outcomes.

5. Immune-Related Adverse Events

Immune-related adverse events (irAEs) are side effects specific to immunotherapy
that result from treatment-induced inflammation resulting in collateral damage to non-
malignant patient tissue [22]. It can be difficult to both identify irAEs outright and differ-
entiate them from progression due to the similarity of imaging features between errant
inflammation of host tissues and intended immune cell activation against a tumor. However,
this task remains crucial because of the potential for intolerable morbidity that may delay
or disrupt treatment courses. Effects can appear in any organ system, with severity ranging
from mild (requiring treatment with corticosteroids) to life-threatening, depending on the
specific drug, dosing regimen, and individual patient characteristics such as preexisting
autoimmune disease, hereditary genetic polymorphisms, or even smoking status, among
others [23–25]. The CheckMate 067 trial found that 36% of metastatic melanoma patients
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receiving combination therapy of nivolumab plus ipilimumab experienced serious irAEs,
primarily localizing in the skin (pruritis, rash, and vitiligo), gastrointestinal tract (diarrhea
and colitis), liver (transaminitis and hepatitis), and thyroid (hypo-/hyperthyroidism and
thyroiditis), with an even further increased incidence in the 4-year follow up report [26].
Other studies have suggested that, overall, up to 92% of patients experience some type
of irAE, regardless of the treatment regimen employed [12]. Vitiligo is one of the most
commonly encountered irAE observed in the treatment of melanoma and is interestingly as-
sociated with better OS, likely due to its indication of strong host immune system activation
and the relatively low morbidity of the effect [27]. Generally, however, irAEs pose a risk to
patient safety, with higher risks observed in combination drug regimens (e.g., nivolumab
and ipilimumab together), and must be actively monitored throughout treatment [28].

6. Intratumoral Immunotherapy

To potentially mitigate systemic inflammatory effects, several groups are currently
investigating locally administered intratumoral immunotherapy [29]. This strategy spares
patients from the irAEs of whole-body immunotherapy and takes advantage of the abscopal
effect described vide supra. Better avoidance of irAEs could allow for the greater deploy-
ment of combination therapies, including the recently published relatlimab–nivolumab
combination, which has been shown to provide greater progression-free survival than
monotherapy, as well as a separate technique involving the concomitant application of
intratumoral oncolytic peptides and viruses with immune checkpoint inhibitors [30–33].
However, the assessment and prediction of responses to intratumoral treatment have yet to
be widely investigated and may require additional tools for accurate evaluation.

7. AI and Radiomics: Concept

Predicting and tracking the labile effects of immunotherapy is an area of active research,
driven in large part by advances in medical imaging. While computed tomography (CT),
positron emission tomography (PET), and magnetic resonance imaging (MRI) are already
widely employed for tumor characterization, staging, and response assessment, these
methods must be augmented to approach the novel responses described above.

A potential method for the improvement of imaging-based monitoring is the imple-
mentation of AI, in the form of radiomics and deep learning, that allows for the extraction
and analysis of imaging features not typically interpretable by radiologists [34]. At a high
level, the process is relatively simple: imaging features are created by describing standard-
ized relationships between pixels or voxels (the three-dimensional equivalent of a pixel)
and their individual intensities within a medical image. These features are subsequently
combined in multiple regression models used for the classification or prediction of specific
clinical endpoints and are stress-tested on external datasets in order to define model per-
formance and generalizability. The central theory is that an amalgamation of radiomics
features with certain assigned weights creates a tumor “imaging phenotype”. This phe-
notype can either be correlated with outcome (e.g., overall/progression-free survival or
durable clinical benefit) or, given enough data, used by clinicians for decision making
regarding a particular course of treatment. For example, a certain imaging phenotype may
be associated with higher tumor PD-L1 expression, thus indicating a cancer that is more
susceptible to anti-PD-L1 monoclonal antibody therapy. Additionally, the phenotype may
indicate a tumor with a high level of infiltrating CD4 lymphocytes, implying that immune
activation via immunotherapy would be beneficial given that the host immune system has
not yet been “locked out” of the malignant space. These immune-rich presentations have
been associated with better outcomes, while an “immune-desert” phenotype, describing
a paucity of host immune infiltration, indicates a low potential for response [35]. There
is also an “excluded” phenotype, in which cancer cells secrete factors (e.g., TGF-β) that
invoke stromal and extracellular matrix proliferation around a tumor, effectively creating a
physical barrier against host immune cells [36].
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Under the broader umbrella of AI, radiomics involves the hand selection of individual
imaging features based on previously defined associations with biological phenomena
(e.g., heterogeneity of tumors on imaging could relay information about vascularization,
inflammation, or necrosis within a tumor). On the other hand, deep learning requires much
larger datasets and involves the autonomous selection of features that an algorithm, or
convolutional neural network (CNN), determines to be most predictive of an outcome.
While the latter may utilize a more intangible and, therefore, less accessible method of
model generation, it harbors potential to describe relationships and imaging patterns that
may be missed, even by subject matter experts.

While AI approaches aim to address the problems associated with qualitative imaging
analysis, many challenges must first be overcome before widespread clinical application.
Briefly, the development of accurate predictive models relies on large, high-quality datasets
that can be used for training and validation. These datasets, as will be discussed vide
infra, should be diverse and spread across institutions to generate the most heterogeneous
and broadly representative patient sample possible. In recruiting large cohorts, another
challenge arises regarding the standardization of imaging techniques between patients
and institutions such that images can be more easily collated and reliably used without
interference from variable acquisition processes. Lastly, while predictive models built using
various techniques, analytical methods, and features create broad variability in what is
available for use in the field, there exists an ongoing issue of reproducibility. Moving
forward, there is a need to more thoroughly define methods and best practices to allow for
better comparison of studies.

8. AI and Radiomics: Current Landscape in Relation to Melanoma Imaging

A recent review surveyed studies published up to early 2022 that applied AI and
radiomics to patients treated with immunotherapy [37]. Articles were included if they
involved the application of immunotherapy to patients with cancer (or in murine models
of human cancers) and if they employed AI (including radiomics) in combination with PET,
CT, or MRI imaging. Of the 87 articles in the final analysis, 12 (13.7%) included patients
with melanoma, making it the second-most represented primary disease behind non-small
cell lung cancer [38–49].

A summary of these studies is displayed in Figure 1. Three of the twelve studies (25%)
included melanoma patients in mixed-cancer investigations, and the median [interquartile
range] melanoma-specific cohort size was 56 [39]. Most patients were evaluated retrospec-
tively (n = 11, 91.7%), from either single (n = 7, 59.3%) or multiple (n = 5, 41.7%) institutions,
and the most commonly studied imaging modalities were CT (n = 9, 75%), PET/CT (n = 2,
16.7%), or PET alone (n = 1, 8.3%). While MRI was used in 14 out of the 87 overall papers
(16.1%), it was not employed in studies with melanoma patients.
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Figure 1. Summary of data extracted from the 12 relevant studies identified in an early 2022 review
of the field. (A) primary imaging modality employed (PET indicates 18F-FDG-PET imaging); (B) data
collection strategy classified by two variables: time course (retrospective or prospective) and center
involvement in patient recruitment (single or multiple institutions); (C) primary predictive aim of
the AI model built in the study, e.g., prognosis (measures of overall or progression-free survival and
durable clinical benefit), treatment response (predictions of clinical endpoints as defined by RECIST
1.1 or similar criteria), classification (description of immune environment, namely, tumoral infiltration
of CD8+ T-cells); (D) validation method used to test the reported AI model.

9. AI in Radiomics: Predictive Aims

In the 2022 review, AI-based predictive models were built for several different primary
tasks within the sphere of immunotherapy-treated melanoma. Primarily, investigators
sought to predict treatment response (n = 6, 50%), utilizing RECIST 1.1 or similar criteria
to define primary disease endpoints. Almost an equal number of studies (n = 5, 41.7%)
used AI to make predictions on measures of prognosis, including overall or progression-
free survival (the interval between treatment initiation and the first evidence of clinical
or radiological disease progression) as well as durable clinical benefit (progression-free
survival past a certain time point). The last study (n = 1, 8.3%) involved using AI to
describe host CD8+ T-cell infiltration of malignant lesions. Interestingly, no melanoma
studies explored tumor phenotyping, such as predicting PD-L1 expression or describing
microsatellite instability.

10. AI and Radiomics: Technical Limitations in the Current Literature

The generalizability of a predictive model depends significantly on how it is validated.
In an idealized framework for model development, investigators employ a base cohort of
patients for initial training and “tuning” (optimization of parameters and feature weights).
Validation is then conducted using two types of datasets, which we have defined as
follows: (1) a validation set (consisting of patients set apart from the original cohort and
kept “unseen” by the model until the testing phase, essentially serving as an extension
of the training data with similar patient demographics) and (2) a test set (a cohort that is
completely independent from the training/validation sets, using patients from a separate
institution or database other than the original dataset). Test sets allow for higher quality
evaluation than validation sets alone, and prospective test sets provide the most rigorous
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method for model testing. In the 2022 review, an equal number of studies utilized cross-
validation (n = 3, 25%), a weak form of validation that only utilizes recycled data from the
training set, as either validation (n = 3, 25%) or test (n = 3, 25%) sets. Two studies did not
validate their models at all, and an additional model was stress-tested with both validation
and test sets. No studies used prospective, external testing cohorts.

The performances of the AI models were reported in the form of an AUC or C-index in
seven studies (58.3%). Of these, four (33.3%) articles reported a model’s performance after
its application to a test set, providing the most generalizable and “real-world” evaluation
of accuracy. The mean performance in this group was 0.719, with the highest (0.857)
observed in a small study of 50 total patients (16 in the test set) that predicted response
to treatment [39]. Although this figure denotes high predictive accuracy, the very small
sample size introduces doubt as to this model’s applicability. The mean performance listed
above is also inflated, as two studies had model AUCs of 0.63 for treatment prediction, a
value only slightly above random chance. Of the studies that did not use test tests, two
reported performances on validation sets, with a mean of 0.835, and one study reported an
AUC of 0.87 on a training set.

Aside from describing methods of validation, studies can be more precisely evaluated
for their quality, methodological rigor, and impact on the field by using standardized
scoring forms. The radiomics quality score (RQS), originally defined by Lambin et al., is a
16-component system that assigns point values to specific study characteristics such as data
collection methods (prospective vs. retrospective), whether or not measures are undertaken
to avoid overfitting, study validation methods, description of imaging protocols, and incor-
poration of biological correlates, among many others [50]. The maximum possible score is
36, and higher scores indicate more generalizable and impactful projects in AI/radiomics.
Out of the 12 melanoma studies reviewed, the median [interquartile range] RQS was 12 [4],
with the highest score (20) assigned to a large prospective study based on clinical trial
data [45].

11. New Advances and Future Directions

The introduction of immunotherapy has transformed patient outcomes in oncology.
Still, to provide more personalized care and reduce the risk of adverse events, novel
biomarkers, including those present in medical imaging, must be developed further.
Though AI and radiomics represent promising tools that may help investigators better un-
derstand individual patient response patterns, other significant efforts that have potential
to impact the field must be recognized. We briefly describe a number of examples below.

11.1. CT-Based Sarcopenia Measurement

Sarcopenia measurement based on CT imaging is emerging as a promising biomarker
for immunotherapy patient classification and monitoring. Evidence of sarcopenia at the
time of diagnosis is associated with poor patient outcomes, such as decreased OS and higher
complication rates, regardless of the cancer type or treatment regimen employed [23,51].
In non-small cell lung cancer (NSCLC), sarcopenia has been significantly associated with
worse prognosis, disease control rate, and overall response rate [52]. In patients with
advanced melanoma treated with immunotherapy, a recent meta-analysis concluded that
sarcopenia was slightly associated with decreased PFS and OS and was not associated with
drug toxicity [53]. However, this study was limited by its inclusion of only six relevant
papers, comprising a total of 719 patients. Taking into consideration that CT imaging is
already part of standard-of-care staging and routine surveillance for patients with advanced
melanoma, it may prove cost-effective to quantify sarcopenia at different points in the
treatment process, providing clinicians with an additional biomarker of response [54].
However, more research must be performed on large, prospective, multicenter cohorts
before definitive implementation can be carried out.
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11.2. Adaptation of Existing Imaging Techniques

Contrast-enhanced MRI, even without the extraction and analysis of radiomics fea-
tures, has allowed radiologists to not only discriminate pseudoprogression from true
progression, but also predict adverse events for immunotherapy-treated patients with
brain metastases due to advanced melanoma [55]. Building on this, a number of recent
studies showed that low absolute values for peak standard radiotracer uptake, metabolic
tumor volume, and tumor lesion glycolysis in 18F-FDG PET imaging were associated with
favorable treatment responses [56]. Higher values, indicating a tumor that is more metabol-
ically active, are associated with tumor proliferation and overall aggressiveness. Similarly,
increases in measures of glucose utilization, including baseline tumor metabolic burden as
well as bone marrow and spleen metabolism, were directly correlated with worse overall
outcomes [57].

11.3. Quantification of Inter-Lesion Heterogeneity

There is growing interest in the assessment of intra-patient inter-lesion tumor het-
erogeneity, a topic that is particularly relevant in the context of the dissociated responses
observed with immunotherapy. A validated radiomics signature analyzing CD8+ T-cell
infiltration was shown to help researchers evaluate inter-lesion heterogeneity and predict
lesion response for patients with advanced melanoma treated with anti-PD-1 immunother-
apy [58]. Such an approach may allow for the identification of non-responding lesions that
require additional, localized treatment above and beyond systemic regimens [59].

11.4. Optical Coherence Tomography

As suspicious skin lesions are typically identified visually and initially screened
using the classic “ABCDE” criteria (Asymmetry, Border irregularity, Color variation,
Diameter > 6 mm, and Evolution), external imaging is an understandable approach for im-
proving melanoma evaluation. Optical coherence tomography (OCT) is one such technique,
in which infrared broadband light is used to investigate and describe the architecture of
superficial skin layers in real time. Because light is differentially scattered by varying cell
types (including those in normal, benign, and malignant tissue), this method represents a
way to non-invasively “biopsy” a lesion, thus helping to guide clinical decision making [60].
While OCT alone was found to have poor specificity for the discrimination of benign and
malignant nevi, a radiomics signature developed from OCT images was shown to have a
sensitivity of 98% and a specificity of 97% [61].

11.5. ImmunoPET Imaging

The above advances notwithstanding, melanoma has historically been difficult to
visualize due to superficial and mucosal invasion as well as micrometastases that elude
macroscopic imaging techniques. ImmunoPET, in which receptor-specific monoclonal
antibodies are conjugated with PET-avid radiotracers, is an emerging technology that
could help seek out these previously hidden malignant extensions, bringing increased
resolution to direct imaging by more precisely relaying the characteristics of tumor biology.
Though only a few studies have been published thus far, this concept aims to directly
quantify immune checkpoint inhibitor receptor expression without invasive testing [23,62].
In melanoma, a number of potential targets have been identified using murine models,
including the tsMHC-II receptor (targeted by an antimouse MHC-II antibody) which
typically allows tumors to evade host immune defenses [63]. In similar experimental
models, tumor PD-L1 expression has been quantified using 89Zirconium-labeled antibody
fragments [64]. The accurate quantification of tumor receptor expression can be correlated
with treatment response and overall prognosis, allowing for a more refined selection of
potential responders at baseline. Further still, we envision a future in which the radiomics
and AI techniques described previously are used to quantify radiotracer uptake seen in
immunoPET imaging, allowing for the discovery of previously unseen patterns in tracer
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distribution and enhancement. This theoretical combination of techniques is illustrated in
Figure 2.
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Figure 2. A simplified and high-level workflow example describing how radiomics and AI, selective
immunoPET radiotracers, and the full utilization of current imaging technology (e.g., extracting and
analyzing sarcopenia measurements, employing markers of MRI contrast enhancement, or using
indicators of 18F-FDG-PET metabolism) could be used to create biomarkers for clinical guidance
in immunotherapy-treated melanoma patients. These techniques would first be used to precisely
describe a specific patient’s imaging signature. The information generated from subtle imaging
biomarkers of disease could then be used to make a priori predictions about prognosis, treatment
response, immune-related adverse events, and tumor phenotype in order to help clinicians decide on
the best course of treatment.

12. Conclusions

The abrupt decline in survival observed in patients diagnosed with metastatic over
localized melanoma has galvanized recent research in early detection, novel therapeutics,
and treatment response monitoring. Immunotherapy and AI have been leveraged together
with medical imaging to approach this problem, though only a few relevant studies have
thus far been published. Non-AI-based imaging biomarkers are also actively being investi-
gated, while existing technology is being improved with the development of tumor-specific
radiotracers. Irrespective of the approach employed, within the ever-evolving landscape
of immunotherapy-treated melanoma, it will be critical to identify accurate and reliable
non-invasive, imaging-based indicators for a priori patient selection and treatment response
evaluation. There is significant promise to augment the potential of immunotherapy and,
with the possible future incorporation of both clinical and genomics-based characteristics,
create a holistic yet rigorously quantitative measure of classifying patients in order to guide
precision therapeutics.
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