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Abstract: Solid pancreatic lesions (SPLs) encompass a variety of benign and malignant diseases and ac-
curate diagnosis is crucial for guiding appropriate treatment decisions. Endoscopic ultrasonography-
guided fine-needle aspiration/biopsy (EUS-FNA/B) serves as a front-line diagnostic tool for pancre-
atic mass lesions and is widely used in clinical practice. Artificial intelligence (AI) is a mathematical
technique that automates the learning and recognition of data patterns. Its strong self-learning
ability and unbiased nature have led to its gradual adoption in the medical field. In this paper, we
describe the fundamentals of AI and provide a summary of reports on AI in EUS-FNA/B to help
endoscopists understand and realize its potential in improving pathological diagnosis and guiding
targeted EUS-FNA/B. However, AI models have limitations and shortages that need to be addressed
before clinical use. Furthermore, as most AI studies are retrospective, large-scale prospective clinical
trials are necessary to evaluate their clinical usefulness accurately. Although AI in EUS-FNA/B is
still in its infancy, the constant input of clinical data and the advancements in computer technology
are expected to make computer-aided diagnosis and treatment more feasible.

Keywords: artificial intelligence; solid pancreatic lesions; computer-aided diagnosis; endoscopic
ultrasound-guided fine-needle aspiration; endoscopic ultrasound-guided fine-needle biopsy

1. Introduction

Solid pancreatic lesions (SPLs) comprise a variety of both benign and malignant
diseases, including pancreatic ductal adenocarcinoma (PDAC), pancreatic neuroendocrine
tumors (PNET), focal pancreatitis, pancreatic tuberculosis, and pancreatic metastasis [1].
Accurate diagnosis plays a crucial role in guiding appropriate treatment decisions. The
clinical presentation of solid pancreatic lesions is highly variable and primarily depends
on the histological pattern, location, and size of the lesion. Typically, a pancreatic head
tumor results in reduced exocrine function or biliary duct obstruction, both of which
result in jaundice [2]. In contrast, a mass in the pancreas’ body and tail is frequently
asymptomatic [3]. PDAC is one of the most frequent types of pancreatic lesions and the
fifth leading cause of cancer death worldwide, with an overall 5-year survival rate of
less than 5% [4]. Only around 10% of patients qualify for potentially curative surgery
at diagnosis, and survival gains have been negligible, with patients commonly suffering
from illness recurrence [5]. Suppose the SPL is a PNET, particularly a functional one. In
that case, its symptoms are related to its hormone-producing capabilities, such as insulin,
gastrin, vasoactive intestinal peptide, glucagon, somatostatin, and serotonin, which make
it easier to identify [6]. Therapeutic choices are mostly reliant on the capacity to identify
or rule out malignancy because the clinical course and prognosis of pancreatic masses
vary. Therefore, establishing an optimal treatment strategy depends heavily on the correct
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diagnosis. Endoscopic ultrasound (EUS) is a well-established tool for evaluating pancreatic
lesions. EUS offers high spatial resolution observation of the pancreas due to its proximity;
the sensitivity of pancreatic cancer identification has reached 94% [7,8]. Endoscopists can
also perform a fine-needle aspiration/biopsy (FNA/B) of tumors under EUS guidance to
obtain cytological and histological diagnoses. Additionally, contrast-enhanced harmonic
EUS (CH-EUS) and EUS elastography provide complementary information to conventional
EUS in diagnosing pancreatic lesions, leading to more accurate diagnoses [8]. The use
of contrast agents in EUS can provide valuable information on the microvasculature and
perfusion within organs of interest and hypoenhancing masses have been proven to be
indicators of malignant tumors [9]. According to a range of studies previously reported,
CH-EUS shows a sensitivity range of 80% to 96% and a specificity range of 64% to 100% for
SPLs, particularly in differentiating PDACs from other pancreatic masses [10]. Utilizing
CH-EUS as an adjunct to assist EUS-FNA demonstrates higher diagnostic sensitivity in the
assessment of pancreatic masses compared to standard EUS-FNA (CH-EUS-FNA, 84.6%;
EUS-FNA, 75.3%) [11]. As for EUS elastography, it serves as a valuable complement to
tissue sampling, which is used to guide fine-needle punctures and aid in determining
further clinical treatment plans [12]. Elastography has been reported to demonstrate
an extremely high sensitivity (ranging from 92% to 98%) in the detection of malignant
pancreatic tumors [13]. Specifically, it has an exceptionally high negative predictive value
for diagnosing PDAC in small pancreatic lesions [14].

EUS-FNA has been considered a safe and accurate procedure for diagnosing pan-
creatic lesions since the study reported by Vilmann et al. in 1992 [15]. According to the
guidelines provided by the European Society of Gastrointestinal Endoscopy (ESGE) and
the National Comprehensive Cancer Network (NCCN), SPL patients without a defini-
tive diagnosis need to undergo EUS-FNA for pathological diagnosis [16,17]. Further-
more, EUS-FNA is recommended for pathological diagnosis before neoadjuvant therapy
is administered and for patients with locally advanced, unresectable pancreatic cancer or
metastatic disease [17]. FNA’s reported sensitivity and specificity for PC were 85–92% and
96–98%, respectively [18,19]. Compared to EUS-FNA, EUS-FNB can collect a larger amount
of tissue and preserve the associated architecture of the surrounding tissue, which aids in
the definitive diagnosis of suspicious pancreatic lesions. Recent studies have found that
EUS-FNB has better diagnostic accuracy than EUS-FNA for suspicious pancreatic lesions
and requires fewer needle passes, leading to a shorter time to diagnosis [20,21]. However,
these findings do not standardize the used needle sizes and locations of the lesions. After
settling on a 22G needle size, the diagnostic accuracy of FNB has not been proven to be
significantly better than FNA [22]. While a network meta-analysis suggests that Franseen
and fork-tip needles may offer superior performance in the tissue sampling of pancreatic
masses, the confidence level in these estimates remains low [23]. Therefore, EUS-FNA/B
serves as a first-line minimally invasive diagnostic tool for pancreatic mass lesions and is
widely used in clinical practice, especially when the diagnosis or staging of the disease is
unclear or when neoadjuvant therapy is planned.

In the past decade, an increasing number of medical centers have been performing
EUS-FNA/B to improve diagnostic accuracy for pancreatic masses. EUS-FNA/B is a
multistep procedure and its accuracy is influenced by various uncertain factors, including
rapid on-site evaluation (ROSE) with cytopathologist involvement [24]. ROSE is a technique
where experienced cytopathologists assess the quality of aspirate or biopsy samples on-site
through the rapid creation of smears and staining methods. ROSE, in EUS-guided tissue
acquisition, is used to assess sample adequacy and the nature of lesions in real-time, which
can enhance diagnostic accuracy, reduce needle passes, and decrease the proportion of
inadequate samples [25,26]. However, not all EUS centers have cytopathologist staffing
available and, even when they are present, the ability, experience, and attentiveness of the
cytopathologists are critical to accurate lesion recognition. Thus, there is a pressing need
for new technologies to address objective recognition and image processing issues to assist
in disease diagnosis.
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Artificial intelligence (AI) has recently been slowly adopted in the medical field due
to its strong self-learning ability and unbiased nature. Though the use of AI for SPLs is
constrained and still developing in comparison to other fields, EUS-FNA/B has shown
promising potential [27–29]. In this paper, we provide a comprehensive review to elucidate
the progress and current prospects of EUS-FNA/B with AI for the diagnosis and differential
diagnosis of SPLs.

2. Definitions of Artificial Intelligence, Machine Learning, and Deep Learning

Several publications have discussed AI, machine learning (ML), and deep learning
(DL); yet, confusion around the terminology still exists. These terms are highly pertinent
and cannot be used interchangeably (Figure 1). As a result, we aim to explain these concepts
to the clinical audience in an accessible manner that avoids technical jargon.
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AI is the ability of digital computers or computer-controlled robots to interpret in-
formation or perform tasks commonly associated with human intelligence [30]. It can be
classified into three categories: artificial narrow intelligence (ANI, also known as weak AI),
artificial general intelligence (AGI, also known as strong AI), and artificial superintelligence
(ASI) [31]. ANI is goal-oriented and utilized to perform particular or limited tasks. Almost
all AI systems, including medical AI systems, belong to the ANI category [32]. In contrast,
AGI remains a theoretical concept that has not yet been achieved. An AGI system would
consist of thousands of ANI systems and possess human-level cognitive function, allowing
it to solve problems without human intervention [33]. Furthermore, ASI holds the potential
to surpass human civilization and is the ultimate goal of AI creation [34]. However, it is
unlikely to become a reality within the foreseeable future.

ML is a branch of AI that involves the use of algorithms to extract features from
available data in order to make accurate predictions [35]. The demand for biomedical
images and automatic analysis has led to significant advances in ML over the past decade,
with a wide range of techniques, such as support vector machines (SVMs), random forests
(RFs), decision trees, logistic regression analysis, and neural networks being employed [36].
DL is a neural network architecture that has evolved from ML and is characterized by a
large number of interconnected elements that can automatically extract features from data,
akin to the functioning of the human brain [36]. Convolutional neural networks (CNNs)
are a common DL method primarily used to handle data with a grid-like topology, such as
images (2D grid of pixels) or videos (3D grid of pixels). Initially, the CNN model is trained
using a large collection of labeled images. Composed of multiple convolutional layers,
activation functions, and pooling layers, the CNN automatically extracts features from the
data [37]. Once trained, it can quickly and efficiently analyze new input images. CNNs have
shown exceptional performance in analyzing and classifying medical images. In specific
tasks, such as the detection of skin cancer or the identification of PDAC, CNNs trained on
annotated datasets have been shown to exceed the accuracy of human experts [38–41].
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3. Use of Artificial Intelligence in EUS-FNA/B

As computational power continues to increase and clinical demand grows, there have
been significant advances in the utilization of AI to interpret complex images, particularly
in EUS-FNA/B. In the field of pancreatic EUS-FNA/B, AI is predominantly used to aid in
pathological diagnosis and is used less frequently in real-time puncture site guidance. The
following sections will delve into the topics mentioned above in greater detail.

3.1. AI and Digital Pathology

Pathological images are a crucial form of biomedical imagery used for clinical patho-
logical diagnoses, offering intuitive and valuable insights. Microscopic examination of
these images is considered the gold standard for accurately determining the nature and
presence of diseases during the diagnostic process [42]. Historically, the analysis of pancre-
atic specimens obtained via FNA or FNB has been the domain of professional pathologists.
However, achieving precise pathological diagnoses and classifications is time- and labor-
intensive, requiring pathologists to identify cellular and tissue characteristics and patterns
indicative of pathological changes. Although training and standard guidelines can facil-
itate the harmonization of analytical processes, the subjectivity of pathological analysis
and differences in visual perception, data integration, and judgment among independent
observers inherently limit its reliability [43]. As a result, even pathologists with equivalent
training may encounter diagnostic inconsistencies and discrepancies in opinion.

Digital pathology (DP) is the process of digitizing pathology information, including its
acquisition, management, sharing, and interpretation, in a digital environment [44]. This
technology enables the transformation of glass slides into digital ones that can be viewed on
a computer monitor, offering two main benefits: improved efficiency and productivity and
the integration of computer-aided diagnostic techniques [45]. With DP, team annotation
of slides is possible, providing pathologists with greater flexibility in work schedules
and remote access to pathology data. This technology also facilitates faster consultation
telepathology turnaround times; delivers immediate access to previously archived digital
slides; and streamlines data retrieval, matching, and organization [46]. Moreover, digital
pathology algorithms enable the automatic quantification and analysis of pathology data,
providing greater consistency and diagnostic accuracy than light microscopy and glass
slides [47]. Given these advantages, DP is seeing increasing use for diagnostic, educational,
and research purposes and is on the verge of becoming a mainstream option for routine
diagnostics [48].

The potential for AI development in supporting pathology diagnosis, particularly in
image analysis and disease detection, is significant. When applied to DP, AI algorithms
can enhance the accuracy and reproducibility of morphological variables that pathologists
traditionally assess. These algorithms can mine image features from DP slides, including
visible morphology and spatial features, such as nuclear and gland size, shape, and tissue
architecture. Furthermore, AI can extract features that pathologists may not recognize, such
as intensity, texture, and spectral features [49]. These complex features can then be utilized
to train models and perform specific segmentation, diagnostic, or prognostic tasks.

Feature extraction in AI involves two general approaches: supervised learning and
unsupervised learning [50]. In supervised learning, features are identified based on the
regions of interest (ROIs) annotated by pathologists in the images. These identified ROIs
can be linked to specific, measurable attributes in the image and have some degree of
explainability. Conversely, unsupervised learning uses algorithms to recognize patterns and
similarities in image properties among training exemplars. These patterns may coincide
with existing morphological classifiers; but, in some cases, they may be unknown to
pathologists. To ensure the reliable diagnosis performance of AI algorithms in the medical
field, it is crucial to evaluate their diagnostic reliability rigorously. Interpretability methods,
such as Grad-CAM and AGF-Visualization, generate visual explanations for corresponding
class labels, increasing the transparency of AI algorithms and enabling human scrutiny
to detect undesirable AI behavior (Figure 2) [51,52]. The combination of AI and DP can
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determine each case’s objective measurement criteria and metrics, renewing pathologists’
interest in AI evaluation. This technology has already been authorized for clinical practice
use in some geographical areas [53].
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3.2. AI in Assisting with Pathological Diagnosis

Recent domestic and international studies demonstrate that AI’s diagnostic accuracy
for DP images is comparable to that of senior pathologists, providing faster, more accurate,
efficient, and collaborative pathological diagnoses [39,54,55]. AI can be particularly valu-
able in supporting clinical pathological diagnoses when pathologists are unavailable. As
early as 1998, AI was reported to assist in diagnosing DP slides, marking a starting point
in the pursuit of computer-aided early diagnosis of PC [56]. Currently, limited research
integrating AI with pancreatic pathological diagnoses focuses on extracting nuclear features
related to DNA content and chromatin distribution from ERCP cytological specimens and
surgically resected histological specimens [57–59]. For instance, Song et al. developed and
assessed an SVM model for automatically diagnosing and grading PDAC based on the
morphologic features found on histology slides, achieving an accuracy of 94.38% in binary
classification between PDAC and normal tissues [60]. This outcome suggests a tremendous
potential for this model as a valuable supplement for the morphological evaluation of tumor
biological characteristics. However, there remains a significant gap in the integration of
AI-assisted diagnosis of DP images through specimens obtained via EUS-guided sampling.

Table 1 summarizes published studies that have used artificial intelligence to analyze
DP images of EUS-FNA/B data, particularly those of SPLs. In 2017, Momeni-Boroujeni
et al. reported the use of a multilayer perceptron neural network (MNN) in classifying
pancreatic specimens obtained using EUS-FNA as benign or malignant, which was the
first study available for cytological analysis using FNA/FNB samples [61]. The process
involved using a K-means clustering algorithm to segment cell cluster pictures collected
from FNA and extracting their morphological features. The MNN was then trained using
differences in significant morphological features between malignant and benign images,
such as contour, perimeter, and area. The MNN was successfully tested with a 100% accu-
racy rate in discriminating between benign and malignant pancreatic cytology while 77%
accuracy was achieved for the atypical dataset. Additionally, a few original research papers
and draft conference abstracts on the pathological classification of solid pancreatic masses
were published. These papers used a small sample of cytopathological slides obtained
through EUS-FNA, which had a limited diagnostic performance in single-center valida-
tion (accuracy range: 80–94%) [54,55,62]. Hyperspectral imaging (HSI) is a new optical
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diagnostic technology that combines spectroscopy. It measures the interaction between
tissues and light through an HSI camera, capturing spectral features that conventional
imaging modalities cannot obtain [63]. In this way, HSI can provide more diagnostic
information for identification and differentiation. Qin et al. developed a CNN model
combined with HSI technology, which used informative spectral features to distinguish
benign and malignant pancreatic cytology [64]. By comparing the AI model’s diagnostic
performance regarding the HSI images to conventional RGB images, one thing that can
be learned is that the spectral information makes the CNN model easier to use to identify
PDAC cells in cytological slides (HSI accuracy, 88.05%; RGB accuracy, 82.47%). Finally, the
HSI-based model has been proven to have good generalization ability (internal test dataset:
accuracy, 92.04%; external test dataset: accuracy, 92.27%). In 2022, Zhang et al. conducted
a prospective, retrospective study using a novel deep CNN (DCNN) system to segment
stained cell clusters and identify PC in a ROSE during EUS-FNA [39]. This study is the
first known and the largest one to establish a deep learning system for identifying PDAC
in a ROSE, including 6667 images from 194 cases and achieving an accuracy of 94.4% on
the internal testing dataset. Additionally, the DCNN system demonstrated outstanding
generalization ability on external testing datasets, with an accuracy of 91.2–95.8%. More-
over, its accuracy was comparable to cytopathologists and exhibited high sensitivity and
negative predictive value (NPV). These results suggest that deploying the DCNN system
in clinical settings to produce a ROSE may increase the diagnostic yield of EUS-FNA. In the
same year, Lin et al. reported on a ROSE-AI model that substitutes manual ROSE during
EUS-FNA [65]. It performed well in detecting cancer cells, presenting an 83.4% accuracy
rate in the internal validation dataset and a similar result in the external validation dataset
(88.7%). The ROSE-AI model’s implementation can speed up slide evaluation and shorten
endoscopists’ wait times. Although AI has achieved promising results in ROSE, prospective
validation studies are necessary to provide high-level evidence in actual clinical practice.
We believe that future AI strategies will alleviate the problem of insufficient pathological
resources and aid endoscopists in performing ROSE, thereby improving the accuracy of
pancreatic disease diagnoses.

Table 1. Application of AI in EUS-FNA/B for the pathological diagnosis of solid pancreatic lesions.

Year/Journal Author Ref. Purpose Data Source Sample Size Algorithm Diagnostic
Performance

2017/
Cancer

Cytopathology

Momeni-
Boroujeni et al. [61]

Distinguish benign
and malignant

pancreatic cytology
EUS-FNA

277 images
from 75

pancreatic
FNA cases

MNN

For benign and
malignant
categories:

Accuracy 100%
For atypical cases:

Accuracy 77%

2018/
Gastrointestinal

Endoscopy
Hashimoto et al. [62] PDAC

identification EUS-FNA 450 images CNN Accuracy 80%

2019/
Endoscopic
Ultrasound

Kong et al. [66] PC detection EUS-FNA 142 cases DIA

Accuracy (83%) is
comparable to
conventional

cytology (78%)

2020/
Gastroenterology Hashimoto et al. [54]

Distinguish benign
and malignant in

ROSE
EUS-FNA

Retrospectively
collected:

1440 cytology
specimens;

Retrospective
validated:

400 cytology
specimens

CNN

Accuracy (93–94%)
is comparable to an
onsite pathologist

(98–99%)
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Table 1. Cont.

Year/Journal Author Ref. Purpose Data Source Sample Size Algorithm Diagnostic
Performance

2021/
Gastroenterology Thosani et al. [67]

Interpretation for
adequacy and

identification of
SPLs in ROSE

EUS-FNA

400 cases for
training and

77 images
for validation

ML

For onsite
adequacy testing:
Accuracy 87.25%;

For
cytopathological

diagnosis:
Accuracy 81.8%

2021/
Gastrointestinal

Endoscopy
Patel et al. [55]

Comparison of AI
and subspecialty

physicians for
identification

of SPLs

EUS-FNA 77 images ML

Accuracy (87%) is
on par or superior
compared to most

physicians (36–96%)

2021/
Scientific
Reports

Naito et al. [68] PDAC detection
in WSIs EUS-FNB 532 WSIs CNN Accuracy 94.17%,

AUC 0.9836

2022/
Diagnostics

(Basel)
Yamada et al. [69]

Distinguish PDAC
and benign

pancreatic cytology
EUS-FNA/B 246 specimens DL Accuracy 74%

2022/
Diagnostics

(Basel)
Ishikawa et al. [70]

Evaluation of
diagnosable

EUS-FNB specimen
in MOSE

EUS-FNB
271 specimens

from 159
patients

CNN

Accuracy (84.4%) is
comparable to
endoscopists
(82.1–83.2%)

2022/
EBioMedicine Zhang et al. [39] Identification of

PDAC in ROSE EUS-FNA 6667 images
from 194 cases DCNN

Accuracy (94.4%)
with AUC 0.958, is

comparable to
cytopathologists

(91.7%)

2022/
Journal of Gas-
troenterology

and
Hepatology

Lin et al. [65]

Detection of cancer
cells with

pancreatic or other
celiac lesions

in ROSE

EUS-FNA 1160 images
from 51 cases CNN

For internal
validation dataset:

Accuracy 83.4%
For external

validation dataset:
Accuracy 88.7%

2023/
Cancer

Medicine
Qin et al. [64]

Distinguish benign
and malignant

masses via
pancreatic cytology

EUS-FNA 1913 images
from 72 cases CNN

For internal
test dataset:

Accuracy 92.04%
For external
test dataset:

Accuracy 92.27%

Abbreviations: PDAC, pancreatic ductal adenocarcinoma; MNN, multilayer perceptron neural network; ML,
machine learning; DL, deep learning; WSI, whole slide image; AUC, area under the ROC curves; DCNN, deep
convolutional neural network.

The development of FNB needles has made it possible to collect bigger tissue samples
with fewer needle passes. With the introduction of EUS-FNB, several researchers contend
that ROSE may no longer be required to minimize the number of needle passes [71,72].
In 2021, Naito et al. developed a CNN model for evaluating PDAC in EUS-FNB whole
slide images (WSI), achieving a high ROC-AUC of 0.984 and an accuracy of 94.17% [68].
This model can assist in obtaining accurate histopathological diagnoses while avoiding
interference from high blood, inflammatory, and digestive tract cell levels. However,
a global survey of ROSE indicates that only 50% of Asian endoscopy centers meet the
qualification standards for this technique [73]. In such cases, researchers suggest that a
more fair and replicable evaluation method should be developed. Macroscopic on-site
evaluation (MOSE) refers to the visual assessment of samples obtained during EUS-FNA/B
and can serve as an alternative to ROSE [74]. Ordinarily, tumor tissues are white or flesh-
colored while blood clots are red. During the period of MOSE, endoscopists transfer the
puncture samples onto a glass slide and make a preliminary separation to observe the length
of the white tissue samples, thereby assessing the adequacy of the aspiration or biopsy. This
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step provides an important basis for ensuring diagnostic accuracy. Nonetheless, evaluating
specimen adequacy currently relies on the endoscopist’s subjective judgment, which largely
depends on their level of experience. As such, it is crucial to develop more objective and
reproducible evaluation methods for MOSE. However, in 2022, Ishikawa et al. reported
on a contrastive learning-based CNN model that has achieved a comparable accuracy
rate (84.4%) to endoscopists in evaluating the diagnosability of EUS-FNB specimens in
MOSE [70]. This suggests that in the future, novel AI-based evaluation methods will replace
MOSE, resulting in significant time savings and increased productivity.

3.3. AI in Guiding Targeted EUS-FNA/B

Although AI has made significant strides in pathological diagnosis, few reports have
investigated its potential in lesion recognition and localization during EUS-FNA/B. CH-
EUS is a cutting-edge technology that uses microbubble contrast agents to visualize mi-
crovessels and parenchymal perfusion, resulting in better characterization of pancreatic
lesions detected by EUS [75]. Compared to conventional EUS, CH-EUS enhances the ob-
servation of pancreatic tumors and assists in identifying various pathological areas within
pancreatic lesions. Combining CH-EUS with EUS-FNA notably captures subtle lesions
that are not distinguishable from conventional EUS, thereby avoiding the sampling of
necrotic areas and reducing the need for additional needle passes [76,77]. In a retrospective
study comparing diagnostic accuracy and sampling adequacy between CH-EUS-FNA and
conventional EUS-FNA groups, biopsy specimens were more frequently obtained in the
CH-EUS-FNA group (96.6%) than in the EUS-FNA group (86.7%), with no significant
difference in diagnostic accuracy [78]. Additionally, TIC has been used to achieve objective
quantitative analyses of SPLs during CH-EUS, which includes variables such as maximum
intensity gain, echo intensity reduction rate, and time to peak, enabling SPL classification
based on enhancement patterns [79–81]. In 2023, Tang et al. developed an innovative
auxiliary diagnosis system (CH-EUS MASTER) that uses AI models to guide targeted EUS-
FNA/B procedures, which is the first time this technology has been utilized in this way [82].
By employing DCNN and RF algorithms, CH-EUS MASTER has achieved three crucial
functions, including real-time pancreatic mass capture and segmentation under CH-EUS,
identification of benign and malignant pancreatic masses according to TIC characteristics,
and identifying and providing guidance for the target area of EUS-FNA. Endoscopists can
perform further puncture procedures based on the ROIs predicted by CH-EUS MASTER
with a remarkable accuracy rate of 93.8%, a sensitivity rate of 90.9%, and a specificity rate
of 100%. Significantly, CH-EUS MASTER-guided EUS-FNA can improve the first-pass
diagnostic yield (80.0% vs. 33.3%) compared to traditional EUS-FNA. Therefore, AI has
the potential to assist in the pathological diagnosis of EUS-FNA/B and play a crucial role
in guiding puncture sites, allowing inexperienced endoscopists to shorten their learning
cycles. Although AI use in guiding targeted EUS-FNA/B is a relatively new field, future
research in this area could produce innovative advancements.

4. The Limitations and Shortages of Artificial Intelligence in EUS-FNA/B

Although AI models are still in their infancy, they have already proven to be quite
useful in organizing patient treatment procedures and assisting with medical decision
making. However, many challenges remain to be addressed, particularly in terms of
achieving an accurate diagnosis of specimens in EUS-FNA/B. Like any diagnostic tool,
AI-assisted diagnostic models have their own set of limitations and shortcomings that need
to be overcome before they can be considered reliable diagnostic methods for SPLs.

Building confidence in AI-assisted diagnostic models as a valuable tool in modern
medicine requires addressing one of the most significant limitations, known as the “opaque-
ness” of AI, where the reasoning and recognition of the computer are not visible, leading to
the “black box problem” [83]. This phenomenon can result in misdiagnosis without a clear
understanding of why a particular decision was made, creating a fatal flaw in evidence-
driven medicine. One potential solution to this issue is using inherently interpretable
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models that allow visualization of the regions recognized by AI as being important [84].
Another suggestion is conducting meticulous quality assessments before implementing AI
models in the clinic to prevent physicians from relying solely on AI models to evaluate clin-
ical outcomes [85]. This raises intricate regulatory and ethical considerations. AI systems
designed for medical applications must be subjected to rigorous scrutiny and long-term
validation to secure official certification.

Another major concern is the need for more standardization of the input data used
to train AI models [86]. Establishing uniform data collection, processing, storage, repro-
duction, and analysis protocols is essential to ensure consistency. Without standardized
data, the same AI model could produce vastly different outcomes for the same patients,
reinforcing bias and leading to poor prognoses, which may reduce the popularity of AI
technology. Additionally, an AI model trained in a specific environment may not perform
equally well in different environments or on different devices. For instance, a deep learning
CNN that is trained to accurately classify pancreatic biopsies stained with hematoxylin
and eosin (H&E) may perform poorly or not at all on pancreatic biopsies prepared and
stained with Papanicolaou (PAP). Other factors that can affect standardization settings
include staining quality interference. Creating pathological smears requires experienced
cytotechnologists to ensure that smears are uniform in thickness, well concentrated, and
easily distributed, facilitating observation. Moreover, during staining, operators should
ensure that the cells are fully coated with dye solutions to avoid blurry staining results.
Untimely drying after staining can also lead to uneven staining, thus affecting image quality.
Although it will be laborious and expensive to create uniform protocols for input data, they
are necessary to improve the generalization of AI models.

Other factors that limit the development of AI in the field of EUS-FNA/B include the
inability to fully utilize image information and the higher costs of image annotation. In
particular, the algorithm’s operation relies on the graphics processing unit (GPU); but, the
current storage capacity of GPUs is limited, making it challenging to fully utilize all the
information in whole slide images (WSIs) or other image formats, which can result in the
loss of some useful information [87,88]. Additionally, supervised learning is a common
approach for most CNNs used in deep learning, which requires pathologists to accurately
label ROIs in the images, adding to the cost [89]. Furthermore, AI analysis relies on high-
quality training datasets, which require a substantial number of training images and can be
time-consuming to prepare [90].

Regarding the application of AI in guiding puncture sites during EUS-FNA/B, several
limitations and shortcomings need to be considered beyond the previously discussed data
standardization issue. One critical limitation is that AI is challenging for dynamic image
recognition [91]. EUS images are susceptible to external elements that can cause image jitter
and displacement, such as a patient’s breathing and heartbeat. AI models must perform
real-time corrections and registrations of EUS images to compensate for these discrepancies.

Currently, there is a growing desire to use artificial intelligence as an alternative to
tissue sampling, thereby eliminating the need for and adverse events associated with the
procedure. As such, there is increasing interest in using AI-assisted EUS for the diagnosis
of pancreatic lesions, mainly due to its relatively low cost and minimal invasiveness.
Although an increasing body of research supports the superiority of AI-assisted EUS
in diagnostic accuracy compared to traditional human interpretation, most clinicians
remain cautious about its widespread application in clinical practice [86]. However, with
ongoing improvements in AI algorithms and the quality of EUS images, AI-assisted EUS
models have the potential to replace traditional EUS-FNA/B as the gold standard for
diagnosing SPLs.

Despite the progress made by AI in the field of digestive endoscopy, its application
in actual clinical practice has been limited by insufficient medical data and the need for
high accuracy. Figure 3 provides an overview of the limitations linked to AI in EUS-
FNA/B. To accelerate the utilization of AI for clinical diagnosis and treatment, it is essential
to conduct prospective and multicenter research studies encompassing a wide range of
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medical images for AI model processing and analysis [92]. Such an approach would ensure
the representativeness of the collected data and enhance the recognition of diagnostic
results in the medical community.
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