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Abstract: The early detection and classification of lung cancer is crucial for improving a patient’s
outcome. However, the traditional classification methods are based on single machine learning
models. Hence, this is limited by the availability and quality of data at the centralized computing
server. In this paper, we propose an ensemble Federated Learning-based approach for multi-order
lung cancer classification. This approach combines multiple machine learning models trained on
different datasets allowing for improvising accuracy and generalization. Moreover, the Federated
Learning approach enables the use of distributed data while ensuring data privacy and security. We
evaluate the approach on a Kaggle cancer dataset and compare the results with traditional machine
learning models. The results demonstrate an accuracy of 89.63% with lung cancer classification.

Keywords: lung cancer classification; diagnostics; federated learning models; thresholding;
optimization; decentralized computation

1. Introduction

Lung cancer diagnosis and treatment utilizing computational approaches present
multifaceted challenges at the intersection of medicine, data science, and technology. The
etiology of lung cancers primarily involves somatic mutations arising from DNA rese-
quencing events, induced by a myriad of factors, including environmental exposure and
genetic predisposition. The detection of lung cancer at its early stages is hindered by
the lack of distinct symptoms, often leading to delayed diagnosis and poor prognosis.
Quantitative analysis by the World Health Organization (WHO) reveals a staggering global
incidence of approximately 2.21 million reported cases of lung cancer annually, necessitat-
ing advanced research and innovative technological solutions to combat this prevalent and
life-threatening disease. In the realm of computational methodologies, machine learning
models have emerged as pivotal tools for addressing lung cancer challenges. These models
are trained on diverse datasets, encompassing genomic profiles, radiological images (such
as computed tomography scans), histopathological slides, and clinical records. Leveraging
supervised and unsupervised learning paradigms, machine learning algorithms can dis-
cern complex patterns and features within these heterogeneous datasets, enabling early
diagnosis, tumor subtyping, and survival prediction.
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The successful amalgamation of computational methodologies with medical practices
necessitates careful handling of medical terminologies and the implementation of stan-
dardized data representation schemas. Collaborative efforts among medical professionals,
computational scientists, and domain experts are vital for constructing informative feature
sets, minimizing data biases, and generating robust predictive models. State-of-the-art
techniques like deep learning have exhibited exceptional capabilities in feature extraction
and representation learning, empowering them to identify intricate biomarkers and genetic
signatures, which were previously challenging to detect using traditional statistical meth-
ods. However, model interpretability remains a critical concern, as black-box models can
hinder the medical community’s understanding of decisions made by these algorithms.

Translating computational results into clinical applications demands an adherence to
rigorous validation and reproducibility standards. Cross-validation techniques, external
validation cohorts, and robust statistical analyses are crucial to ensure model generalizabil-
ity and clinical utility. Furthermore, establishing transparent reporting practices enhances
the credibility and adoption of computational findings in the medical domain. Beyond
diagnostic applications, computational approaches play a pivotal role in treatment moni-
toring and precision medicine. Predictive models can aid in drug sensitivity prediction,
guiding oncologists to select personalized treatment regimens and optimize therapeutic in-
terventions. Additionally, real-time monitoring systems can continuously assess treatment
responses, enabling adaptive therapy and minimizing adverse effects.

Ethical considerations are imperative in the integration of technology into health-
care. Privacy preservation and secure data-sharing mechanisms are critical to safeguard
patient data. Furthermore, continuous human oversight and the active involvement of
medical professionals are essential to prevent overreliance on automated systems and
ensure a patient-centered approach to care. The computational approaches, particularly
machine learning models, hold tremendous promise in revolutionizing lung cancer diagno-
sis and treatment. By capitalizing on multidimensional data and leveraging cutting-edge
algorithms, computational methodologies have the potential to usher in a new era of
precision oncology, ultimately improving patient outcomes and transforming lung cancer
management. However, a concerted effort among diverse stakeholders, rigorous validation,
and ethical considerations are indispensable to unlock the full potential of computational
technologies in combating lung cancer effectively.

1.1. Problem Statement and Research Motivation

The primary challenge inherent in this approach revolves around the notion of cen-
tralized processing. Existing machine learning models primarily rely on server-based
computation and centralized data storage. Consequently, this leads to the accumulation
of substantial amounts of data on the servers, resulting in anomalies during computation
and training. The data processing and computation processes adhere to the functional
requirements of a client-server architecture, meaning that decision-making heavily relies
on local computational techniques and processes. Therefore, it becomes imperative to
transition machine learning and computational models towards a decentralized server
infrastructure to enable faster and broader training using diverse datasets. In a conven-
tional peer-to-peer connected server setup, data collection, processing, and computation
are confined to dedicated servers, thereby limiting access for extensive decision support.
Moreover, when multiple servers are added to the baseline centralization or computation,
the decision-making capabilities decrease, leading to a computational load overhead.

In this paper, we explore a Federated Learning (FL) approach for decision-making and
the classification of lung cancer. We define and tailor FL models within a decentralized
topology to facilitate faster and more secure computations. Additionally, we reframe this
approach from a medical perspective. The decentralization of medical data aims to enhance
processing and decision-making capabilities on a larger scale.



Diagnostics 2023, 13, 3053 3 of 14

1.2. Objective and Contributions

This paper introduces a distributed federated network architecture for customizing
local neural networks (NN) in Federated Learning (FL) models, with a focus on collec-
tive decision-making and storage in lung cancer datasets. The system ensures reliable
computation and classification of lung cancer cases into normal, benign, and malignant
categories. This classification relies on well-defined training and testing within a structured
computational environment. This paper starts with an introduction outlining the rationale
for the proposed approach in the context of FL and medical applications. A comprehensive
literature review follows, summarizing recent developments in Federated Learning for
medical data analysis, particularly lung cancer datasets.

The methodology section details the distributed federated cloud server’s technical
aspects, including data streaming and processing mechanisms. It provides mathematical
representations of customizing local NN models for lung cancer classification, likely em-
ploying optimization techniques such as federated averaging and differential privacy to
ensure efficient training while preserving data privacy. This section also discusses data
preprocessing, feature extraction, and model optimization within the distributed federated
network. It may explore the convergence properties of federated optimization algorithms
and the impact of network communication costs on system performance.

The major challenge of this approach is the concept of centralized processing. The
approach of existing machine learning models is based on server computation and cen-
tralized data storage. This causes the overall servers to accumulate a large sum of data,
causing anomalies in computation and training. The process of data processing and com-
putation is typically based on the functional requirements of client server architecture and
hence the aspect of decision-making is dependent on local computational techniques and
processes. Hence, the machine learning cum computational models need to be shifted
towards decentralized servers for a faster and wide range of training datasets. In the typical
peer-to-peer connected server, the process of data collection, processing, and computation
is bound to a dedicated server and hence provides limited and restricted access for wider
decision support. The process is then made complex on adding multiple servers at baseline
centralization or computation. The decision-making capabilities decrease and cause a
load overhead for computations. In this paper, a Federated Learning (FL)-based approach
is discussed for decision-making and classification of lung cancer. The FL models are
defined and customized under a decentralized topology for faster and secure computations,
whereas the approach is redefined in a medical perspective. The aspect of medical data
under decentralization is to provide larger processing and decision-making capabilities.

This paper introduces a distributed federated network architecture aimed at threshold-
ing and customizing local neural networks (NN) within the context of Federated Learning
(FL) models. The main objective is to support collective decision-making and storage in the
context of lung cancer datasets. The system ensures reliable computation and comparison of
lung cancer cases, classifying them into normal, benign, and malignant categories. This clas-
sification process heavily relies on the training and testing of classifiers within a well-defined
computational environment. This paper’s structure begins with an in-depth introduction,
laying out the rationale for the proposed approach and its significance in the domain of FL
and medical applications. A comprehensive literature review follows, highlighting the latest
developments and findings related to Federated Learning models in the context of medical
data analysis and diagnosis, particularly focusing on lung cancer datasets.

The methodology section delves into the technical intricacies of the distributed fed-
erated cloud server, elucidating the data streaming and processing mechanisms. This
section provides a mathematical representation of how the customization and fine-tuning
of local NN models are accomplished for lung cancer classification. Advanced optimization
algorithms, such as federated averaging and differential privacy techniques, are likely
employed to ensure efficient model training while preserving data privacy and security in
the federated environment. The core mathematical representations offer detailed insights
into the data preprocessing, feature extraction, and model optimization procedures within
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the distributed federated network. Special attention may be given to federated optimization
algorithms’ convergence properties and the impact of network communication costs on the
overall system performance.

In the results and discussion section, empirical findings are presented, showcasing the
system’s performance on lung cancer datasets. The evaluation metrics employed might
include accuracy, precision, recall, F1 score, and receiver operating characteristic (ROC)
curves. In-depth analysis and comparison of the proposed approach against existing
methodologies could further strengthen this paper’s technical content. The conclusion
summarizes the key technical contributions of this paper, emphasizing the achieved ad-
vancements in lung cancer classification using the distributed federated network. The
authors discuss the strengths and limitations of the proposed approach and suggest poten-
tial future research directions, such as refining the federated optimization algorithms or
exploring different local NN architecture for improved performance. Overall, this paper
contributes to the technical domain of FL in medical applications, particularly in the context
of lung cancer diagnosis and classification. The integration of distributed computing,
Federated Learning, and advanced mathematical representations demonstrates a rigorous
and innovative approach to address the challenges posed by large-scale medical datasets
while preserving data privacy and enabling collective decision support.

2. Related Work

Lung cancer is widely concerning for technical researchers to provide solutions, as
early detection and categorization is minimal. From the technological front, solutions have
been initialized from X-ray image processing and have evolved over time to Artificial
Intelligence (AI). Various studies and observations for combating lung cancer detection,
classification, and diagnosis have been recorded and published in the last decade. In [1,2],
a systematic approach of a deep learning model is proposed on multiple data types such
as X-rays, computed tomography (CT), and magnetic image resonance (MRI) images.
The study focuses on how deep learning approaches can be implemented for lung cancer
diagnosis and evaluation. Further, the approach toward lung cancer is based on the medical
prospects in categorizing it as small cell lung carcinoma (SCLC) or non-small cell lung
carcinoma (NSCLC) [3], to provide a wider perspective on occurrence and decision-making
challenges. The study [3] concludes with a remark that neural networking algorithms are a
much more reliable source of evaluation among researchers.

2.1. Initial Models

Machine learning models play vital role in understanding the behavioral approach
of classifying and detecting lung cancers, with [4,5] proposing various models and tech-
niques for optimizing lung cancer classification and decision-making. The studies have
further provided a reliable understanding of the purpose and need for upgrading tech-
nological approaches in solving challenging issues such as carcinoma classification on
normalized datasets. An advanced machine learning-based approach for lung cancer [6]
is proposed for customization of improved images ranges and data types. The studies
have included computer-aided design engineering (CADE) models for analyzing and vali-
dating datasets [7,8], to assure a reliable decision-making support. The computer-aided
image systems and techniques provide a scalable environment for multi-objective dataset
consideration and changes as per the technological development.

The lung cancer detection and prediction results and experience are shared and en-
hanced under a telemedicine ecosystem with an interdependency of electronic health
records (EHR). The framework of Internet of Medical Things (IoMT) [9] has further pro-
vided an extended support for larger data sharing and decision-making. The terminology of
Federated Learning (FL) provides greater prospects of shared information-based decision-
making in a reliable manner. The federated models are reported by [10–12] in various
medical data analysis and computations. The overall process of a Federated Learning
model is to provide a distributed environment and a local- or client-based computation
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with reference to streamlining data operations. The architectural model and standard
operation is proposed in [13]. The way forward for a Federated Learning model is to
provide a threshold operation for customizing the information and data communication
protocols via a remote server management tool.

2.2. Advanced Models

Deep learning (DL) models are used for the classification of lung cancer [14,15], with
the classification based on the feature extraction of the lung cancer, while the techniques
involved in the computation, such as the Histogram of Oriented Gradients (HoG), wavelet
transformer-based features, and local binary patterns, are a few of the dominating ap-
proaches. Non-small cell-based lung cancer classification [16] is another prominent classi-
fication approach included in the domain of classifications followed by biomarkers [17].
The CT-based [18] classification under trivial approaches and the historiographic repre-
sentations are included for reliable decision-making and support ecosystem development.
This support system can be derived from contempory studies related to the classification
process, as [19] with the extraction of patterns from the wave file and annotating them into
depression and [20] with CT images classification-based on a fuzzy system.

Positron emission tomography (PET) and CT images are further considered for pro-
cessing in a single environment to improve decision-making support, as in [21]. Ref. [22]
provides a detailed survey and different types of lung cancer with respect to the imaging.
The survey further assures that the dependency is improved from one systems operation
and dataset to an independent computing unit. Approaches such as machine learning [23]
and classification [24] provide justifiable decision-making capabilities on the lung cancer
computation. These approaches further customize and process the behavioral model of
computations algorithms [25,26]. The basic image computation and processing approach
was defined and maintained on summarizing computational techniques, and hence the
interdependency on decision-making was an unavoidable situation. The approach of trivial
processing under centralized servers was replaced by distributed servers, with Federated
Learning leading the domain. The Federated Learning (FL) models are based on the policies
and standards of operation [27], with other architecture such as [28–30] under a decen-
tralized server’s configuration. The approach benefits the operations and customization
possibilities of processing lung cancer [31–33].

The studies in this survey discuss the application of various techniques, including
machine learning and classification, for making informed decisions in lung cancer analysis.
These techniques are tailored and refined to match the behavior of computation algorithms.
Initially, simple image computation methods were used, but as the need for effective
decision-making grew, more sophisticated approaches were adopted. The traditional
method of processing data on centralized servers was replaced by using distributed servers
with Federated Learning. This approach, known as Federated Learning (FL), relies on
established operational policies and standards. It contrasts with other architecture like de-
centralized server configurations. FL offers advantages in the processing and customization
of lung cancer-related operation.

3. Methodology

The proposed methodology aims to establish a sustainable solution for tailoring data
connectivity and transmission between different medical servers. This is achieved by lever-
aging available research and consultant data. The architecture of the proposed system is
illustrated in Figure 1. At the core of the system, there are indexing servers which serve as
foundational and highly reliable components of the system’s functioning. These indexing
servers are denoted as (M). They are accompanied by a series of clusters of indexing servers
originating from various sources and geographical locations. This collective assembly of
server clusters forms the fundamental basis for implementing a Federated Learning ap-
proach. The centralized server (SX) acts as an aggregation point responsible for overseeing
and coordinating the services provided by edge devices connected to the indexing servers
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(Mi). Typically, the indexing server (SX) is linked with a distributed networking threshold
unit. This unit operates as an intermediate layer for various operations and assumes the
role of a central decision-making and training package.

Figure 1. Architectural diagram of proposed technique.

This entire process is facilitated by several key steps. Data calibration is carried out to
ensure that the data being used are accurate and suitable for analysis. A process known as
feature-set mapping is applied to correlate different data features appropriately. Moreover,
a local neural network (NN) model is developed for each indexing server. This model is
used to process the data effectively within each respective indexing server. The proposed
methodology introduces a sustainable solution for customizing data connectivity and trans-
mission among medical servers. This involves a complex but well-defined architecture where
indexing servers play a pivotal role. The central server and distributed networking threshold
unit contribute to the orchestration of services, while data calibration, feature-set mapping,
and local neural network model development enhance the overall data processing procedure.

3.1. Dataset and Alignment Process

The dataset of non-small cell lung cancer (S0819) [31] is retrieved from the Cancer
Image Archive (CIA) under multi-order cum multifunctionality cancer. The process of
extracting a cancer (lungs) dataset from a larger repository is based on the feature-set
mapping and alignment of the nearest-alike attribute on the grouping feature. Consider
the dataset (D) from CIA as the universal dataset and the fetched/selected dataset (DC)
from the multi-order coordination as (DC ⊆ D) at a given instance. Consider (DC ⇒ D) at
a generalized representation, whereas the process design is aligned to feature set (F) as
(F ⇒ DC ⇒ D) on the extraction. Typically, the orientation of information from one dataset
pattern to another is related as (∀F ⇒ ∀Fi/i ∈ n⇒ n→ ∞). The orientation resultant is
computed, as shown in Equation (1).

DC = lim
n→∞

(→
F
)

.
δ(DC)

δt
(1)

The limitation on the dataset (DC) is aligned with the features vector to assure reliable
interaction and extraction of the dataset from (D) at a given instance (t). The extrac-
tion is further supported by the (∆T) matrix for saturating the threshold in the dataset
alignment process.
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3.2. Multisource Indexing and Distributed Computation

The dataset (DC) is extracted and trained on localized servers (SX) for creating a
multisource and multi-origin alignment. The processing of each server (Si) is dependent on
routing servers (SR) such that, ‖logSi ⇒ S‖ in a generic representation. The coordination
alignment is shown in Figure 2. The hierarchy of each server (SR ⇒ SR1, SR2, SR3 . . . SRn)
with (∀SRi ⇒ SX), with (SX) as the centralized server for distributed computing and
(S1, S2, S3 . . . Sn), are in-line servers under coordination of (SR)i as

(
∀Si ⊆ SRi

)
and (Si ∈ SX) on the operational setup. The server’s hierarchy assures the calibration
and filtration of server-to-server interaction, and hence an ensemble Federated Learning
model is generated. Typically, the process of data coordination and collection is from one
centralized server to another, hence causing fractional losses. The proposed system is
further structured and contributes complex-free computations.

Figure 2. Hierarchical approach for server layering and consolidation.

The multisource Indexing and DNT is shown in Algorithm 1.

Algorithm 1 Multisource Indexing and DNT

Input: (DC) datasets on (SX) server alignment extracted and calibrated via IP address.
Output: Process mapping and feature thresholding.
Steps:

1. Fetching the hierarchy of servers (SR ⇒ SR1, SR2, SR3 . . . . . SRn) such that, (∀Si ⊆ SRi ) and
(Si ∈ SX);

2. while(Si)

Computing a distributed server (Si) such that,
(

Si, Sj ∈ (SR)i

)
and while;

3. ∴ SX =

 ∞

∏
(i,j)∈k

(
δ(Si)⊕δ(Sj)

δ(SR)k

) computation on server operations and independencies;

4. Compute feature (F) such that,
(
∀FX ⇒∑(SX ∪ SR)

)
5. Perform validation (V) on extracted datasets (DC) to attain (F) features;
6. Generation of validation matrix (R).

3.3. Distributed Network Thresholding (DNT) and Feature-Set Mapping

The process of the distributed network setup is to assure the monitoring of data losses
and information breaches when computed in a distributed system. Typically, the server
(SR)i is responsible of each independent feature and hence the process of Distributed
Network Thresholding (DNT) is introduced. The threshold acquires the value from the
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distributed server (Si) and is aligned with routing servers (SR)i, such that a common
feature set is labeled from the (SR)i as

(
Si, Sj ∈ (SR)i

)
at a given instance of time, as shown

in Equation (2).

SX =


(

δ(Si)

δt
⊕

δ
(
Sj
)

δt

)
(i,j)

 ∪
{

lim
n→∞

(
n

∑
k=1

(SR)k

)}
(2)

∴ SX =

{
∞

∏
i,j

(
δ(Si)⊕ δ

(
Sj
)

δt

)}
∪
{

lim
n→∞

(
n

∑
k=1

(SR)k

)}
(3)

∴ SX =

 ∞

∏
(i,j)∈k

(
δ(Si)⊕ δ

(
Sj
)

δ(SR)k

) (4)

According to Equations (3) and (4), the representation vector of multiple feature-set
extraction from (D) is future evaluated and represented. Since the feature-set coordination
is a reliable entity, the grouping factor is aligned with the contributing factors. Hence, the
generalized representation of (SX) can be represented as Equation (5).

(i.e., ) SX = ∏
(i,j)∈k


∑

i
(δ(Si))⊕∑

j

(
δ
(
Sj
))
⊕ . . . .

δ(SR)k

 (5)

Thus, according to Equation (5), the representation matrix of multiple sources coordi-
nated or calibration to a single source is studied and demonstrated. The incoming servers
compute a feature (F), as shown in Equation (6).

F =
δ(SX)

δt
.‖log(SX)i‖ ∪ ‖log(FX)‖ (6)

where the feature (F), computed with (SX) servers and its hierarchy, is recomputed with
aligned threshold feature (FX), such that

(
∀FX ⇒∑(SX ∪ SR)

)
is on a multiple source

and instance. Feature-set mapping is further computed by aligning the interdependent
outcomes of multiple servers (SX) with the feature-set threshold (FX) accordingly, consid-
ering lung cancer features such as density, mass, orientation, and the weight are physical
attributes cum features and the pixel ratio, pattern of growth, intensity of pixel, growth, and
density of pattern expansion are a few of the digital computational parameters. Consider
the physical attributes as mandatory parameters for recognition and validation (Pa) and
digital parameters (Pd), such that a common fitting value on threshold is extracted.

Consider the validation (V) as a functional vector for regional computations to ac-
quire (Pa) and (Pd), respectively, then the representation is (∀V ⇒ Pa ⊕ Pd), such that the
validation matrix (R) is shown in Equation (7).

R =
∥∥logn(V)

∥∥⊕{ lim
n→∞

(
δ(V)

δt

)}
(7)

∴ R =
∥∥logn(V)

∥∥⊕{ lim
n→∞

(
∑
pa

∑
pd

(
V(pa ,pd)

))}
(8)

Thus, according to the process of (Pa) and (Pd), the contribution matrix (R) stores the
rational values of feature threshold extracted.

3.4. Federated Neural Networking Computational Model

The federated neural network computational model is defined and correlated on
the earlier prospects of vector validation (V) via recognition and validation of (Pa) and
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digital parameter (Pd). The process of the computation model extracts the contribution
matrix (R) and further computes a rational thresholding under larger segmented values.
Consider the validation matrix (RX) as (RX ⊆ R) under the considered dataset (DC). The
attribute learning of Federated Learning is shown in Figure 2. Thus, according to Figure 2,
the federated computation of the distributed cloud/server neural networks is optimized
and processed. The independent server/clouds are connected via a self-common agreed
firewall system cum configuration for indexing and data sharing. Typically, the follow-
up server computes the local neural networking model to assure attributes optimization
and minimization of computing indexes. The orientation model of the computational
local neural networking cluster from multiple clouds defines the optimized attribute
graphs. Typically, the interconnected servers are aligned time-to-time based on the source
synchronization standards and cloud service providers.

3.5. Experimental Setup and Configurations

The objectives of extracting multi-order lung cancer classification are via the feder-
ated setup of cloud/server models. The federated cloud is a distributed cloud model
of connecting remote clients via a centralized server for optimized data transfer. The
federated approach in biomedical aspects plays a vital role for electronic health records
(EHR) customization and remote accessing. The process of datasets (CT/CIA images)
are distributed via federated cloud cluster ( f c1, f c2, f c3 . . . . . .), such that (∀ f ci ⇒ F) and
the data in ( f ci) are (∃F) (i.e.,) accessible to F. The data privacy and originality is highly
preserved at federated configuration, and thus extracting the recommendation models of
EHR patterns and attributes can be achieved at a faster rate.

The experimental setup is aligned using multi-operating system-based virtual ma-
chines and kubernetics alignment of cluster management. The server (master) and remote
server (client) are aligned as per the database exchange norms for connectivity and coordi-
nation. The orientation of cancer attributes from a larger perspective are further considered
and processed as the reconfigured thresholding attribute. The dataset is extracted from
CIA liberty and further processed and cross-validated on customized data labels.

3.6. Implementation Details

The input CT lung cancer datasets are based on 50 low-dosage and pre-recorded
lung cancer cases with 1.25 mm slice thickness. The dataset is processed with 60/40
training/training ratio for accuracy detection. The setup was a defined and calibrated
platform of MATLAB 2018 with CPU i5 of 16 GB.

4. Results and Discussions

The classified datasets are further processed and customized using standard CT
datasets and compared with NN, SVM, KNN, and DNN for local neural networking
computation. The lungs’ CT datasets are classified and labeled as normal, benign, and
malignant. The normal CT defined is unconditional images with no positive Region
of Interest (RoI) features and attributes. The benign CT has a positive RoI on feature,
whereas providing no harm or radiant growth to the lung cancer contribution and the
malignant categorization is a positive and active representation of cancer growth; thus, the
training and testing model is shown in Tables 1 and 2, respectively and Table 3 depicts the
Performance matrix validation of FL model on server nodes.
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Table 1. Training and testing model for centralized server classification.

Phase
Server

Configuration
Dataset Type

Classifier

Normal Benign Malignant Total

Training

Centralized
Servers

(Cloud/Server
Model)

Normal 20 06 12 38

Benign 02 18 06 26

Malignant 06 04 22 32

Total 28 28 40 96

Testing

Centralized
Servers

(Cloud/Server
Model)

Normal 12 02 00 14

Benign 18 11 04 33

Malignant 00 12 06 18

Total 30 25 10 65

Table 2. Training and testing model for decentralized server classification (federated model).

Phase
Server

Configuration
Dataset Type

Classifier

Normal Benign Malignant Total

Training
Decentralized

Servers
(FL Model)

Normal 20 04 14 38

Benign 06 13 07 26

Malignant 09 07 26 42

Total 35 24 47 106

Testing
Decentralized

Servers
(FL Model)

Normal 16 03 00 19

Benign 12 18 04 34

Malignant 06 13 18 37

Total 19 34 22 90

Table 3. Performance matrix validation of FL model on server nodes.

Number of Participating Servers (Nodes) Accuracy (%) Sensitivity (%) Specificity (%)

5 92.67 88.63 71.62

10 92.33 81.11 88.64

20 88.61 82.18 86.38

40 87.23 87.63 86.37

80 91.03 88.28 88.84

160 91.23 88.61 89.12

Figure 3 is defined with the legend of performance matrix with respect to the partici-
pating servers used in costuming the data transmission and channeling via FL models. The
indexing servers (SX) participating nodes are incremented in a series order of doubling.
The nodes’ (servers) computational performances are estimated with accuracy, sensitivity,
and specificity. The evaluation matrix is represented in Table 4 for detailed comparison
with existing approaches and techniques. The proposed FL + NN has a demonstrative
accuracy of 89.63%, in a decentralized approach, which is comparatively higher than other
techniques, with the detail represented in Figures 4 and 5, respectively.



Diagnostics 2023, 13, 3053 11 of 14

Figure 3. Performance matrix on participating nodes of FL model.

Table 4. Comparative model of computational matrix.

Technique(s)
Centralized Decentralized

Accuracy (%) Sensitivity (%) Specificity (%) Accuracy (%) Sensitivity (%) Specificity (%)

SVM 86.31 91.62 71.66 51.58 42.3 31.66

KNN 91.61 89.67 88.62 66.72 71.62 66.11

DNN 96.32 92.11 90.72 73.11 70.32 81.68

FL + NN 94.31 91.66 88.62 89.63 81.26 80.31

Figure 4. Accuracy computation between centralized server and decentralized server organization.
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Figure 5. Comparison of specificity computation between centralized and decentralized server-based
classification of lung cancer dataset.

5. Conclusions

The proposed technique was designed and developed based on the Federated Learn-
ing model of decentralized servers used for computational decision-making lung cancer
classification. Typically, the cancer dataset is trained and tested with a trivial centralized
cloud and a setup of federated distributed cloud. This approach has successfully trained on
60:40 ratios via multi-order attributes and features. This process is attained with a thresh-
olding of dataset features from distributed computing to derive a threshold of feature-set
mapping. This approach has been successfully validated on distributed computational
local neural networks for data communication and calibration for lung cancer classification
via a federated model. The approach demonstrated on the FL-NN setup had an accuracy
of 89.63% under the federated decentralized technique. This approach can be further
developed on multidimensional medical models and electronic health records (EHR) to
provide a reliable recommendation and decision support system.
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