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Abstract: Objective: This study aims to evaluate the feasibility of visualizing nasal cartilage using
deep-learning-based reconstruction (DLR) fast spin-echo (FSE) imaging in comparison to three-
dimensional fast spoiled gradient-echo (3D FSPGR) images. Materials and Methods: This retro-
spective study included 190 set images of 38 participants, including axial T1- and T2-weighted FSE
images using DLR (T1WIDL and T2WIDL, belong to FSEDL) and without using DLR (T1WIO and
T2WIO, belong to FSEO) and 3D FSPGR images. Subjective evaluation (overall image quality, noise,
contrast, artifacts, and identification of anatomical structures) was independently conducted by two
radiologists. Objective evaluation including signal-to-noise ratio (SNR) and contrast-to-noise ratio
(CNR) was conducted using manual region-of-interest (ROI)-based analysis. Coefficient of variation
(CV) and Bland–Altman plots were used to demonstrate the intra-rater repeatability of measurements
for cartilage thickness on five different images. Results: Both qualitative and quantitative results
confirmed superior FSEDL to 3D FSPGR images (both p < 0.05), improving the diagnosis confidence
of the observers. Lower lateral cartilage (LLC), upper lateral cartilage (ULC), and septal cartilage (SP)
were relatively well delineated on the T2WIDL, while 3D FSPGR showed poorly on the septal cartilage.
For the repeatability of cartilage thickness measurements, T2WIDL showed the highest intra-observer
(%CV = 8.7% for SP, 9.5% for ULC, and 9.7% for LLC) agreements. In addition, the acquisition
time for T1WIDL and T2WIDL was respectively reduced by 14.2% to 29% compared to 3D FSPGR
(both p < 0.05). Conclusions: Two-dimensional equivalent-thin-slice T1- and T2-weighted images
using DLR showed better image quality and shorter scan time than 3D FSPGR and conventional
construction images in nasal cartilages. The anatomical details were preserved without losing clinical
performance on diagnosis and prognosis, especially for pre-rhinoplasty planning.

Keywords: nasal cartilage; rhinoplasty; deep learning; magnetic resonance imaging

1. Introduction

The nose encompasses seven primary anatomical components, including the paired
nasal bones, upper lateral cartilages (ULC), lower lateral cartilages (LLC), and the sep-
tum [1,2]. Surgical reconstruction or nasal implantation is the first choice for defects and
deformities of nasal cartilage caused by trauma and diseases [3,4]. The nasal septum carti-
lage (SP) is the main component of the nasal septum. Aesthetic and functional improvement
for severe septal deformities and “crippled” septal plates often necessitates a septoplasty
procedure for proper reshaping [5]. Additionally, nasal deformities secondary to cleft lip
and palate, such as disproportionate nostril size, can be treated with secondary correction
by excision, replication, or augmentation of the LLC [6]. Careful removal of partial ULC
can effectively reduce the width of the lateral nasal tip in patients who have wide middle
and lower thirds of the nose [7]. Preoperative planning demands delineated nasal cartilage
morphology and anatomy. Contrast-enhanced high-resolution micro-CT provides more
than 10-time resolution of MRI cartilage images (36.8 µm for micro-CT and 450 µm for
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MRI), but it is limited to ex vivo studies [8]. Applying CT images to identify the anatomical
relations of the dorsal septum and the anterior cranial prevents individuals from possible
complications [9]. However, CT lacks sufficient contrast and information of soft tissues
and also has ionizing radiation, leading to controversial issues about its utility [8,10,11].
To combine CT and MR images could reduce the average operation time by 20 min via
establishing a patient-tailored three-dimensional (3D) nose model before rhinoplasty to
assist pre-surgical planning [12].

MRI is the most effective tool for the display of soft tissues including cartilages,
particularly nasal cartilage [13–15]. However, there is only one clinical MRI study in
application of the spoiled-gradient-echo-based sequence without fat saturation with spatial
resolution of 0.9 mm × 0.9 mm × 1 mm and acquisition time of approximately 5 min in
nasal cartilage [15], and the protocol has been subsequently used in clinics [12,16]. There
have been few MRI studies of the improvement of image quality for nasal cartilage despite
its importance in diagnostic value and pre-surgery planning [12]. In contrast, numerous
convolutional neural network (CNN) and neural network (NN) architectures have been
utilized to improve image quality, target labeling, and tissue segmentation. For example,
an application of deep convolution neural networks (DCNNs) removes banding artifacts
on brain and knee MR images to obtain higher SNR and consistent signal changes [17].
DCNNs in combination with residual learning and multi-channel strategy on brain MR
images showed well-robust denoising performance [18]. DCNNs with up to 11-fold under-
sampling could remove artifacts and maintain fine anatomy on two-dimensional cardiac
magnetic resonance (MR) images. In other words, deep learning networks can efficiently
and accurately segment, position, and label lesions such as colon [19], brain [20], liver [21],
and anatomical structures (e.g., proximal femur [22] and vestibule [23]). Thus, it plays an
important role in assisting clinical diagnosis and treatment selection.

Thin-slice spin-echo (SE) magnetic resonance imaging has the potential in pre-surgery
planning for patients with unilateral cleft lip–nose–palate (UCLP) and can monitor the
morphological changes of implants for post-surgical and secondary correction [14,24].
Although a 3D MRI sequence has the advantages of high signal-to-noise (SNR) and less
partial volume effect, long scan time may introduce motion artifacts that greatly reduce
the image quality of the nasal cartilage. Two-dimensional thin-slice images usually have
a lower SNR, but they might achieve a balance between SNR and acquisition time using
deep-learning-based reconstruction (DLR). An inline optimized CNN algorithm in the MR
scanner is a data-driven end-to-end method to remove noise and Gibb’s artifact in the
process of image reconstruction and can further retain and purify structure details without
extra time for reconstruction and even with shorter acquisition time [25,26].

In this study, we aimed to investigate the clinical value of DLR-based high-resolution
and short-acquisition-time fast spin-echo (FSE) sequences in the display of the morpho-
logical nasal cartilage using three-dimensional fast spoiled gradient echo (3D FSPGR) as
reference.

2. Materials and Methods
2.1. Patients

This retrospective single-center study was approved by our institutional review board
(No. WDRY2022-K274). Our study was conducted in accordance with the Declaration of
Helsinki and its amendments. From June to November 2022, patients at the age of 18 years
and older attending our hospital had clinical indications for maxillofacial MRI but no
metal implants or contraindications for MRI. Informed consent was waived because of the
retrospective nature of the study. Patients who had nasal trauma or tumors or incomplete
MRI data were also excluded. The flowchart of patients’ enrollment and exclusion is shown
in Figure 1.
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Figure 1. Flowchart of patient enrollment and exclusions.

2.2. MRI Acquisition

All axial T1- and T2-FSE images and 3D FSPGR images were acquired on a single 3.0-T
MRI system (SIGNA™ Architect, GE-Healthcare, Milwaukee, WI, USA) with a 19-channel
combined head-neck coil. Two-dimensional T1- and T2-weighted images using both
conventional (labeled as T1WIo and T1WIo, respectively, and belong to FSEo) and deep-
learning-based reconstruction algorithm (labeled as T1WIDL and T1WIDL, respectively, and
belong to FSEDL). The commercial name of DLR is AIR™ Recon DL (GE Healthcare) [27].
The deeply optimized CNN algorithm was embedded in the MR image reconstruction
pipeline to directly input original k-space data and output DLR-based images with less noise
and truncation artifacts to achieve shorter scan time and higher image quality. This inline
post-processing DLR performs two functions within the MR image reconstruction pipeline:
ringing reduction and SNR elevation [27,28]. MRI sequences and imaging parameters are
shown in Table 1.

Table 1. MRI sequences and imaging parameters.

T1WIO/T1WIDL T2WIO/T2WIDL 3D FSPGR

TR (ms) 497 3203 7.8
TE (ms) 14.3 62.1 2.5

Thickness (mm) 2 2 2
FOV (mm × mm) 14 × 14 14 × 14 14 × 14

Recon DL Strength Off/High Off/High /
Matrix 480 × 480 416 × 416 320 × 320

Acquisition time
(min:s) 5:02 4:05 5:45

Note. Recon DL Strength allows users to select a deep-learning-based reconstruction strength on demand; “Off”
means that only the original image is generated; “High” represents the highest SNR improvement for deep-
learning-based reconstruction. TR = repetition time, TE = echo time, FOV = field of view. T1WIO = original
T1-weighted FSE images, T1WIDL = deep learning–reconstructed T1-weighted FSE images, T2WIO = original
T1-weighted FSE images, T2WIDL = deep learning–reconstructed T2-weighted FSE images, 3D FSPGR = three-
dimensional fast spoiled gradient-recalled images.

2.3. Evaluation of Images
2.3.1. Qualitative Image Analysis

All 190 sets of images in DICOM format from 38 participants were transferred to
an advanced workstation (GE Healthcare), and patient information was anonymized.
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Two radiologists (Reader 1 and Reader 2 with 1 and 7 years of experience in imaging
diagnosis, respectively) were blinded to image information and independently reviewed
and assessed subjective quality of these five series. Qualitative image quality (including
noise, contrast, artifacts, and overall image quality) was evaluated using a five-point Likert
scale (1 = unacceptable, hindering diagnosis; 2 = poor; 3 = moderate; 4 = good; 5 = excellent).
Identification of anatomical structures (including the septal cartilage =SP, upper lateral
cartilage = ULC, and lower lateral cartilage = LLC) was also assessed using another five-
point Likert scale (5, clearly identified; 4, there is image quality distortion, but does not
hinder the identification of anatomical structures; 3, slightly hindering the identification of
anatomical structures; 2, severe image distortion, hindering the identification of anatomical
structures; 1, unable to identify anatomical structures).

2.3.2. Quantitative Image Analysis

Each sequence was anonymized in order to avoid bias. To quantify SNR and contrast-
to-noise ratio (CNR), three circle regions of interest (ROI) with a minimum area of 1 cm2

were respectively placed on the lower lateral cartilage, proximal superficial fat, and back-
ground on five sets of images by Reader 2 in avoidance of cavities and regions with obvious
artifacts or abnormal signal areas, and then, the measurements were repeated 3 times and
average to one to be reported. The signal intensity of each ROI was used to compute SNR
and CNR with the following formulas:

SNR = SIcartilage/SDbackground

CNR = |SIcartilage − SI superficial fat|/SDbackground

where SI represents mean signal intensity, while SD represents signal intensity standard
deviation.

2.4. Thickness of Nasal Cartilage

The thickness of the lower lateral, upper lateral, and septal part of cartilage was
manually measured at the anterior and inferior portion of SP, the medial crus of LLC, and
midpoint of ULC [2,29] on five series of image sets in 3D Slicer software [30]. Measurements
were repeated three times to validate consistency of measurements.

2.5. Statistical Analysis

The ordered categorical variables are reported in median and interquartile ranges
(IQRs), while the continuous variables are reported in mean and standard deviation (SD).
Inter-modality comparisons of image quality were performed using the paired t-test or
Wilcoxon signed-rank test between DLR and original MR images. To assess the repeatability
of cartilage thickness measurements across various protocols, we calculated the mean, SD,
and percent coefficient of variation (%CV). Additionally, Bland–Altman plots were utilized
to determine the mean difference and 95% limits of agreement (LOA) for cartilage thickness
measurements (in millimeters). The inter-rater agreement of image quality indexes was
evaluated by kappa statistics (κ < 0.21: poor, κ = 0.21–0.40: fair, κ = 0.41–0.60: moderate,
κ = 0.61–0.80: good, and κ = 0.81–1.00: excellent). p < 0.05 was considered as a statistically
significant difference. All statistical analyses were performed using SPSS Statistics version
26.0 (IBM).

3. Results
3.1. Patient Characteristics

A total of 38 patients (10 men and 28 women, mean age = 25.5 ± 2.3) with complete MRI
datasets were included after excluding 9 for nasal trauma or tumors and 4 for incomplete
MRI data among 51 volunteers. Characteristics of the study patients and indications for
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maxillofacial MRI are shown in Table 2. Figure 2 illustrates the MR images of a patient who
underwent augmentation rhinoplasty with autogenous ear cartilage graft after one year.

Table 2. Characteristics of Patients and Indications for Maxillofacial MRI.

Characteristic

Age (y) 25 ± 2
Median age 26

Gender (Male/Female) 10/28

Indication for Maxillofacial MRI Number of subjects

Pre-rhinoplasty 24
Post-rhinoplasty 3

UCLP 2
Deviated septum 9

Note. Except age shown in mean ± deviation standard, and other characteristics data were shown in numbers of
participants. UCLP = unilateral cleft lip–nose–palate.
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tively). 

3.3. Qualitative Analysis 

Figure 2. A low-signal-intensity graft (gray dashed arrows) on (A) sagittal T2WIDL image (DLR
T2-weighted FSE images), (B) axial T2WIDL image, (C) axial 3D FSPGR image (three-dimensional
fast spoiled gradient-recalled images), (D) T2WIO (original T2-weighted FSE images), and (D) axial
T1WIDL (deep learning–reconstructed T1-weighted FSE images) image of a 26-year-old female who
underwent an MR examination one year after receiving augmentation rhinoplasty with autogenous
ear cartilage. T2WIDL shows a clearer boundary between the graft and the tissue. DLR = deep-
learning-based reconstruction, SP = septal cartilage (yellow dashed arrow), ULC = upper lateral
cartilage (blue dashed arrow).

3.2. Scan Time

The mean scan times for T1WIDL, T2WIDL, and 3D FSPGR are 302 ± 28 s, 245 ± 18 s,
and 345 ± 23 s, respectively. The mean scan times for T1WIDL and T2WIDL were respec-
tively reduced by 14.2% and 29% compared to 3D FSPGR (p = 0.0376 and 0.0014 < 0.05,
respectively).

3.3. Qualitative Analysis

The results showed a significant difference of qualitative characteristics (noise, contrast,
and artifacts) between FSEDL (including T1WIDL and T2WIDL) and FSEO (including T1WIO
and T2WIO), as well as between FSEDL and 3D FSPGR (Both p < 0.001). Figure 3 illustrates
different slices of image sets for one pre-rhinoplasty 25-year-old female patient. FSEDL
images showed less noise and artifacts, as well as better contrast (p < 0.001), compared
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to FSEo and 3D FSPGR. The overall image quality between T1WIDL and T2WIDL showed
no significant difference (p = 0.655). Identification of anatomical structures on FSEDL was
significantly better than on FSEO and 3D FSPGR (all p < 0.001). Anatomy display of LLC
and SP was optimal on T2WIDL followed by T1WIDL and 3D FSPGR, while no significantly
different display of ULC were observed for T1WIDL and 3D FSPGR (p > 0.05). Inter-rater
agreement of qualitative assessment was fair to excellent (all κ > 0.61, Table 3). The mean
scores of image quality for all series of two raters are presented in Figure 4.
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Figure 3. (A1,A2) T2WIDL (DLR T2-weighted FSE images), (B1,B2) T1WIDL (DLR T1-weighted
FSE images), (C1,C2) 3D FSPGR (three-dimensional fast spoiled gradient-recalled images), (D1,D2)
T2WIO (original T2-weighted FSE images), and (E1,E2) T1WIO (original T1-weighted FSE images) in
axial view of a 25-year-old female nasal cartilage. The overall image quality and contrast of FSEDL

images showed better than any other image sets because of less noise. T2WIDL showed the best
anatomical structure of nasal cartilage for higher contrast. No significantly different display of ULC
between T1WIDL and 3D FSPGR was observed (p > 0.05) while 3D FSPGR showed relatively poor
image quality of SP. DLR = deep-learning-based reconstruction, SP = septal cartilage (yellow dashed
arrow), LLC = lower lateral cartilage (green dashed arrow) and ULC = upper lateral cartilage (blue
dashed arrow).

Table 3. Inter-rater agreement of different image sets.

Reader 1 vs. Reader 2
T1WIO T1WIDL T2WIO T2WIDL 3D FSPGR

κ κ κ κ κ

overall image quality 0.7 0.8 0.8 0.8 0.8
noise 0.8 0.7 0.7 0.8 0.7
contrast 0.9 0.8 0.8 0.7 0.7
artifact 0.8 0.8 0.9 0.8 0.6
septal cartilage 0.8 0.6 0.9 0.7 0.7
upper lateral cartilage 0.7 0.7 0.9 0.8 0.7
lower lateral cartilage 0.7 0.6 0.6 0.7 0.6

Note. The inter-rater agreement of image quality indices was evaluated by kappa statistics, κ = Kappa val-
ues, 0.00–0.20, 0.21–0.40, 0.41–0.60, 0.61–0.80, and 0.81–1.00 indicated poor, fair, moderate, good, and excellent
agreement, respectively. T1WIO = original T1-weighted FSE images, T1WIDL = deep learning–reconstructed
T1-weighted FSE images, T2WIO = original T1-weighted FSE images, T2WIDL = deep learning–reconstructed
T2-weighted FSE images, 3D FSPGR = three-dimensional fast spoiled gradient-recalled images.
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FSE images, T1WIDL = deep learning–reconstructed T1-weighted FSE images, T2WIO = original T1-
weighted FSE images, T2WIDL = deep learning–reconstructed T2-weighted FSE images, 3D FSPGR 
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Figure 4. Qualitative assessment including (A) overall IQ, (B) noise, (C) contrast, (D) artifacts, and
ability to discriminate anatomical structures such as (E) SP, (F) LLC, (G) UCL of T1WIO, T1WIDL,
T2WIO, T2WIDL, and 3D FSPGR images for a total of 38 patients by two radiologists were displayed
in median and the first and third one-fourth quartile in the box plots. T1WIO = original T1-weighted
FSE images, T1WIDL = deep learning–reconstructed T1-weighted FSE images, T2WIO = original
T1-weighted FSE images, T2WIDL = deep learning–reconstructed T2-weighted FSE images, 3D
FSPGR = three-dimensional fast spoiled gradient-recalled images. Overall IQ = overall image quality,
SP = septal cartilage, ULC = upper lateral cartilage and LLC = lower lateral cartilage.

3.4. Quantitative Image Analysis

Axial FSE quantitative analysis showed significantly higher SNR and CNR on FSEDL
(including T1WIDL and T2WIDL) images compared to FSEO (including T1WIO and T2WIO)
and 3D FSPGR images (all p < 0.001). As shown in Table 4, T2WIDL showed the highest
mean SNR and CNR among any other image sets (all p < 0.05).

Table 4. Qualitative image analysis.

SNR CNR

3D FSPGR 64.99 ± 24.25 5.80 ± 4.56
T1WIDL 55.23 ± 20.06 9.91 ± 9.45

vs. T1WIO (p value) <0.001 <0.001
vs. 3D FSPGR (p value) 0.082 0.213

T2WIDL 79.01 ± 25.72 20.66 ± 12.94
vs. T1WIO (p value) <0.001 <0.001
vs. 3D FSPGR (p value) 0.005 <0.001

T1WIO 14.18 ± 5.82 2.69 ± 2.05
vs. 3D FSPGR (p value) <0.001 0.011

T2WIO 18.54 ± 2.81 3.86 ± 2.32
vs. 3D FSPGR (p value) <0.001 0.101

Note. The results of quantitative analysis (including SNR and CNR) measured on T1WI, T2WI, and 3D FSPGR
images were compared between deep-learning-based reconstruction images and conventional reconstruction
images, deep-learning-based reconstruction images and 3D FSPGR images, and conventional reconstruction
images and 3D FSPGR images.T1WIO = original T1-weighted FSE images, T1WIDL = deep learning–reconstructed
T1-weighted FSE images, T2WIO = original T1-weighted FSE images, T2WIDL = deep learning–reconstructed T2-
weighted FSE images, 3D FSPGR = three-dimensional fast spoiled gradient-recalled images. SNR = signal-to-noise
ratio, CNR = contrast to-noise ratio.

3.5. Thickness of Nasal Cartilage

The mean thicknesses (mm) of SP, LLC, and ULC measured on 3D FSPGR (1.65 ± 0.29,
0.77 ± 0.13, and 0.81 ± 0.11, respectively) were smaller than T2WIDL (1.81 ± 0.10,
0.95 ± 0.07 mm, and 0.93 ± 0.08 mm, respectively), and the difference was statistically
significant. In addition, 3D FSPGR showed a greater percent coefficient of variation (%CV).
Three corresponding %CV values of cartilages in order showed more consistent thickness
measurements on T2WIDL (5.3%, 7.1%, and 8.4%) and T1WIDL (8.7%, 9.5%, and 9.7%) than
3D FSPGR images (17.7%, 17.1%, and 13.5%) in Table 5. The Bland–Altman plots present
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the consistency of cartilaginous thickness between any two image sets (T2WIDL, T1WIDL,
and 3D FSPGR) in Figure 5.
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Figure 5. (A–I) Bland–Altman analyses of the differences between the thicknesses of cartilage mea-
sured on T1WIDL, T2WIDL, and 3D FSPGR. The upper and lower dashed black lines are limits
of agreement and the full black lines are mean differences between images. T1WIO = original T1-
weighted FSE images, T1WIDL = deep learning–reconstructed T1-weighted FSE images, T2WIO = orig-
inal T1-weighted FSE images, T2WIDL = deep learning–reconstructed T2-weighted FSE images, 3D
FSPGR = three-dimensional fast spoiled gradient-recalled images. SP = septal cartilage, ULP = upper
lateral cartilage and LLC = lower lateral cartilage.

Table 5. Thickness of nasal cartilage measured on different images.

SP LLC ULC

Mean ± SD %CV Mean ± SD %CV Mean ± SD %CV

3D FSPGR 1.63 ± 0.29 17.70% 0.77 ± 0.13 17.10% 0.81 ± 0.11 13.50%
T1WIDL 1.67 ± 0.15 8.70% 0.73 ± 0.07 9.50% 0.76 ± 0.07 9.70%

vs. T1WIO (p value) 0.007 0.653 <0.001
vs. 3D FSPGR (p value) 0.428 0.109 0.02

T2WIDL 1.81 ± 0.10 5.30% 0.95 ± 0.07 7.10% 0.93 ± 0.08 8.40%
vs. T1WIO (p value) <0.001 0.917 0.979
vs. 3D FSPGR (p value) <0.001 <0.001 <0.001

T1WIO 1.56 ± 0.18 11.50% 0.72 ± 0.11 15.40% 0.67 ± 0.09 13.80%
vs. 3D FSPGR (p value) 0.201 0.094 <0.001

T2WIO 1.70 ± 0.16 9.10% 0.95 ± 0.13 13.50% 0.93 ± 0.10 10.80%
vs. 3D FSPGR (p value) 0.169 <0.001 <0.001

Note. The result of the thickness measured on the axial T1WI, T2WI, and 3D FSPGR images were compared
between deep-learning-based reconstruction images and conventional reconstruction images, deep-learning-based
reconstruction images and 3D FSPGR images, and conventional reconstruction images and 3D FSPGR images.
T1WIO = original T1-weighted FSE images, T1WIDL= deep learning–reconstructed T1-weighted FSE images,
T2WIO = original T1-weighted FSE images, T2WIDL = deep learning–reconstructed T2-weighted FSE images,
3D FSPGR= three-dimensional fast spoiled gradient-recalled images. SD = standard deviation; %CV = percent
coefficient of variation (SD/mean). SP = septal cartilage, ULC = upper lateral cartilage and LLC = lower lateral
cartilage. Significant p values are expressed in bold.
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4. Discussion

Two-dimensional equivalent-thin-slice nasal cartilage T1- and T2-weighted MR images
using DL algorithm revealed better pre-surgery morphological structures and higher
image quality than 3D FSPGR and conventional reconstruction images. Additionally, 2D
imaging had shorter scan time compared to 3D acquisition in this study. Diagnosis and
prognosis performed equivalently and even better for no loss of structure details—especially
providing more anatomical information of pre-rhinoplasty planning on T2WIDL.

Surgical reconstruction or implantation of the nasal cartilage are required when trauma
or diseases cause defects and deformities of nasal cartilage; moreover, autologous septal
cartilage is also accepted as the standard nasal grafting material [31]. An advanced imaging
method is mandatory to assess the preoperative anatomy of a patient when counseling a
doctor for operating planning [10,32]. Three-dimensional facial bone computed tomogra-
phy has been used to analyze the development of the nasal septum and measurement of the
harvestable septal cartilage [33]. However, biases such as the overlapping between septal
cartilage and alar cartilage, the overlapping of keystone areas, and anatomical variations all
make the use of CT for rhinoplasty operations limited. MRI could be an alternative tool for
this purpose, but there is no standard or routine MRI protocol for nasal cartilage. Addition-
ally, long scan time brings involuntary and respiratory motion artifacts, degrades image
quality and largely hinders the clinical applications of nasal cartilage MRI. Conventionally,
both T1WI and T2WI were often used in clinics to reveal the edge of cartilage, abnormalities
in cartilages, and surrounding tissues [24,32]. Intricacies and constraints of alar cartilage
in living individuals demand shorter MR scan time, for long times bring blurred images
caused by involuntary movements of the nostrils and fail in assessing cartilage thickness,
surface area, and volume compared to scans on a cadaver [15]. In addition, the presence of
stripe motion artifacts on the FSE images is mostly ascribed to unavoidable movements
such as respiration [28]. Therefore, imaging acceleration is an essential key factor to mini-
mize motion-induced image deterioration. The total acquisition time of the DLR images
in our study was reduced by 26.6% compared to the 3D FSPGR, and FSEDL even showed
improved image quality, similar to other FSEDL applications in anatomical districts [25,26]
(e.g., spine) with up to 70% reduction in total acquisition time and no different frequency
of major findings, overall image quality, or diagnostic confidence.

Rhinoplasty, such as preservation rhinoplasty (PR), demands the precise stripping
of nasal cartilage from soft tissues. Protection of nasal cartilage needs attention for the
maintenance of the keystone area and dorsal aesthetic lines [34]. Pre-surgical imaging
is helpful in delineating anatomical information (e.g., position of nasal cartilage and sur-
rounding soft tissues). In our study, DLR 2D sequences showed improved image quality
such as sharpness and contrast. Surprisingly, T2WIDL instead of T1WIDL showed the best
image quality, especially contrast for ULC and surrounding tissues on pre-surgical FSEDL
and anatomical details, compared to 3D FSPGR (p < 0.001). In addition to the utility of
autogenous septal cartilage grafts and the septoplasty procedure, common techniques
used in previous studies for nasal tip modification involved reshaping the lower lateral
cartilage [6]. In fact, an increasing number of rhinoplasty surgeons have reported the
usefulness of the upper lateral cartilage modification [7,35]. However, aggressive resection
of the ULC without accurate preoperative evaluation carries risks of internal nasal valve
disruption, along with prodigious resection of the LLC, which greatly affects the function
of the external nasal valve [35]. T2WIDL imaging provides an optimal pre-surgical imaging
method for surgeons to estimate the cut area when ULC is preserved as much as possible
to maintain the anatomical and functional relationship between the ULC and the septum.

Consistent with a previous study reported by Visscher et al. [15], T1WIO showed the
worst image quality compared to 3D FSPGR (p < 0.001). Conventionally, 3D sequences
possess better spatial resolution and lower partial volume effect than 2D sequences and
are more sensitive to inhomogeneities of the main magnetic field, and faster signal decay
during readout might cause obvious blurring when a long echo train length is used [36]. In
our study, the volume difference (0.01 mm3) between an isotropic resolution of 3D FSPGR
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(0.043 mm3) and conventional reconstruction 2D FSE (0.033 mm3) resulted in a drop of SNR
and CNR to 18.7% and 72%, respectively, presumably deteriorating the detectability of
anatomical details and lesions. SNR, resolution, and scan time (triangle balance) dominate
the resultant MR image contrast [37,38]. However, DLR 2D FSE-based sequences broke the
concept of triangle balance and outperformed original images in terms of both quantitative
and qualitative evaluation. In accordance to a deep-learning-based denoising application
of thin-slice high-resolution 2D fat-suppressed proton density-weighted image (FS-PDWI)
for the knee joint presenting more useful multiple planar reformation (MPR) than 3D
FS-PDWI [39], T1WIDL and T2WIDL showed better image quality than 3D SFPGR T1WI
in our study. This newly commercial inline deep learning reconstruction algorithm that
we used in this study has been also utilized to improve image quality and diagnostic
performance on the heart [40,41], prostate [42], central nervous system, [43] and peripheral
nerve [44] via elevating signal-to-noise ratio (SNR) and contrast to-noise ratio (CNR), as
well as removing Gibb’s artifacts [41,45]. It has great advantages of removing so-called
non-useful information (e.g., noise) before image reconstruction via a 10,000-kernal CNN
model that employs no bias terms and rectified linear unit (ReLU) activations to identify 4.4
million features on directly received image data immediately after scanning on a computer
equipped with a tensor processing unit (TPU).

In our study, coefficient of variation and Bland–Altman plots were used to compare
the repeatability of five different images. The intra-observer agreements for cartilage
thickness measurements were significantly improved and benefited from the better contrast
of images compared to FSEO images. Poorly sketching blurry cartilage edges on FSEO
and 3D FSPGR led to underestimated thicknesses of cartilages and relatively low intra-
observer agreements of objective assessments on nasal cartilages. In contrast, FSEDL was
interchangeable with standard FSEO and 3D FSPGR for equal or less than 10% CV of
thickness measurements and the almost perfect intra-observer agreements, contributing at
least an equivalent diagnosis efficacy (e.g., no loss of small pathologic findings, particularly
in low-SNR regions or artifacts [46]). For clinical practices, it would reduce intra-rater
biases for follow-ups.

Our study had several limitations. First, the small sample size (n = 38) and monocentric
design might limit our findings to generalization. Second, this is a single MRI scanner and
single hospital study. The diagnostic efficacy of this technology should be also evaluated
on 1.5-T and 3.0-T MRIs. Finally, further applications in routine clinical practices, like
post-surgical monitoring, should be explored. All the above would be included in the sub-
sequent studies for encouraging preliminary clinical results of the DL-based reconstruction
technique in nasal cartilage MRI in this present study.

In conclusion, deep-learning-based reconstruction FSE nasal MR imaging, especially
for upper lateral cartilage, improved image quality, reduced scan time up to 29%, possessed
better diagnostic performance, and maximized image information retention.
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