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Abstract: Autism spectrum disorder (ASD) is a neurodevelopmental disorder in children. Early
diagnosis and intervention can remodel the neural structure of the brain and improve quality of life
but may be inaccurate if based solely on clinical symptoms and assessment scales. Therefore, we
aimed to analyze multimodal magnetic resonance imaging (MRI) data from the existing literature
and review the abnormal changes in brain structural–functional networks, perfusion, neuronal
metabolism, and the glymphatic system in children with ASD, which could help in early diagnosis and
precise intervention. Structural MRI revealed morphological differences, abnormal developmental
trajectories, and network connectivity changes in the brain at different ages. Functional MRI revealed
disruption of functional networks, abnormal perfusion, and neurovascular decoupling associated
with core ASD symptoms. Proton magnetic resonance spectroscopy revealed abnormal changes in
the neuronal metabolites during different periods. Decreased diffusion tensor imaging signals along
the perivascular space index reflected impaired glymphatic system function in children with ASD.
Differences in age, subtype, degree of brain damage, and remodeling in children with ASD led to
heterogeneity in research results. Multimodal MRI is expected to further assist in early and accurate
clinical diagnosis of ASD through deep learning combined with genomics and artificial intelligence.

Keywords: autism spectrum disorder; early diagnosis; magnetic resonance imaging; glymphatic system

1. Introduction

Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by
impairments in social communication and interaction, with restricted repetitive stereotyped
behaviors [1]. According to data from the United States Department of Education, the risk
of developing ASD has increased by 10% to 17% annually [2]. In the United States, 1 in
36 children are diagnosed with ASD, and the prevalence is 3.8 times higher in boys than
in girls [3]; the disorder places a heavy financial and emotional burden on families and
society [4,5]. ASD is usually diagnosed at the age of 4 years, and magnetic resonance imag-
ing (MRI) can aid early detection of abnormal changes in the brain [6], including increased
brain volume, impaired integrity of white-matter fiber tracts, and abnormalities in the con-
nectivity of the brain’s structural and functional networks, tissue perfusion, and neuronal
metabolism [7–9]. With early diagnosis of ASD, scientific and effective interventions may
help remodel the neural connectivity of the brain and improve the quality of life in children
with ASD [10]. Currently, widely used MRI techniques include structural MRI (sMRI),
diffusion tensor imaging (DTI), functional MRI (fMRI), three-dimensional arterial spin
labeling (3D-ASL), and proton magnetic resonance spectroscopy (1H-MRS). This review
aimed to explore potential imaging biomarkers to assist in early clinical diagnoses and
precise interventions by analyzing the role of multimodal MRI in ASD from the existing
literature (Figure 1).
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diagnoses and precise interventions by analyzing the role of multimodal MRI in ASD from 
the existing literature (Figure 1). 

 
Figure 1. ASD patients’ brains exhibit distinct growth and developmental trajectories for various 
characteristics as age progresses [11,12]. Using structural magnetic resonance imaging (MRI), diffu-
sion tensor imaging (DTI), functional MRI (fMRI), three−dimensional arterial spin labeling 
(3D−ASL), and proton magnetic resonance spectroscopy (1H−MRS), we can identify abnormal alter-
ations in ASD patients’ brain morphology, structural−functional network, perfusion, neuronal me-
tabolism, and the glymphatic system. FA, fractional anisotropy; MD, mean diffusion; EA−CSF, ex-
tra−axial cerebrospinal fluid; CT, cortical thickness.  

  

Figure 1. ASD patients’ brains exhibit distinct growth and developmental trajectories for various
characteristics as age progresses [11,12]. Using structural magnetic resonance imaging (MRI), diffu-
sion tensor imaging (DTI), functional MRI (fMRI), three-dimensional arterial spin labeling (3D-ASL),
and proton magnetic resonance spectroscopy (1H-MRS), we can identify abnormal alterations in ASD
patients’ brain morphology, structural-functional network, perfusion, neuronal metabolism, and the
glymphatic system. FA, fractional anisotropy; MD, mean diffusion; EA-CSF, extra-axial cerebrospinal
fluid; CT, cortical thickness.

2. Materials and Methods

A literature search of relevant databases (PubMed and Web of Science) was conducted
to identify articles published between January 2010 and May 2023, using the following
keyword strategy: “autism spectrum disorder” AND (“structural MRI” OR “diffusion
tensor imaging” OR “functional MRI” OR “arterial spin labeling” OR “1H-MRS”) AND
“diagnosis” AND “children”. Data were included from children (1) who had been diag-
nosed with ASD and (2) whose brain MRI had been performed. The exclusion criteria were
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as follows: (1) review articles, letters, comments, and case reports; (2) age > 6 years; (3) no
relevant data; (4) studies using animal models; (5) genetic research (Figure 2).
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Figure 2. Flow chart of search results. ASD, autism spectrum disorder; MRI, magnetic resonance
imaging; MRS, magnetic resonance spectroscopy.

3. Research Progress of Structural MRI in ASD

In sMRI, changes in brain volume in children with ASD are shown using voxel-based
morphometry. Changes in the surface area and thickness of the cerebral cortex can be
studied using surface-based morphometry. The brain volume of children with ASD be-
gins to increase at the age of 12–24 months, rapidly increases at 2.5 years, and increases
by approximately 10% compared with the brain of typically developing (TD) children at
the age of 2–4 years; the brain volume then increases slowly during late childhood and
adolescence [6,13–15]. Excessive early brain growth may be associated with an increased
number of neurons, which in turn results in an excess of axons, dendrites, synapses, and
myelin, leading to increase in both gray- and white-matter volumes in the brain [16].
In addition, the symmetric amplification of germinal cells around the ventricles in indi-
viduals with ASD may lead to an increase in minicolumns, which could contribute to the
expansion of the cortical surface area. This increased surface area is primarily located
in the middle occipital gyrus, cuneus, and lingual gyrus areas, further promoting early
brain overgrowth [15,17,18]. Compared with TD children, the volumes of the bilateral
superior frontal gyrus, left precuneus, left inferior occipital gyrus, right angular gyrus,
bilateral superior temporal gyrus, and left inferior parietal lobule of the brain are increased
in children with ASD [6,19–21], whereas the right inferior temporal gyrus decreases in vol-
ume, thereby reflecting the atypical nature of the brain structure in children with ASD [22].
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As the angular and superior frontal gyri are located in the cognitively relevant default
mode network (DMN), their volume changes are closely associated with social and cog-
nitive deficits [15]. Children with ASD have increased hippocampal volume compared
with that of TD children [23–25]. Specifically, the left hippocampal white-matter volume
increases [26] while bilateral gray-matter volume decreases [27] or increases compared
with TD children [28]. The increase in hippocampal volume may be associated with an
increase in pyramidal neurons during the birth process [29]. Due to the involvement of the
hippocampus in the core functions of the “social brain,” changes in its volume can lead to
language and cognitive impairments [26,27]. Previous studies have shown that histopatho-
logical changes in the cerebellum, such as the reduction of granule cells, hypertrophy,
and atrophy of cerebellar nuclei can be observed in the postmortem brains of individuals
with ASD [30]. Increased cerebellar volume at 4–6 months of age in children with ASD
can predict the emergence of restricted and repetitive behaviors in early childhood [31].
Increased cerebellar volume during infancy and childhood in individuals with ASD may be
related to early brain overgrowth [30], while the decreased cerebellar volume in adolescents
and adults with ASD is positively correlated with the severity of motor restrictions [32,33].
Additionally, asymmetrical changes in brain region volumes exist in individuals with ASD,
with a decrease in volume in the left motor system and an increase in volume in the right
motor system, leading to motor abnormalities [34]. Rightward asymmetry is observed
in the planum temporale and posterior superior temporal gyrus, affecting the language
function area known as Wernicke’s area located between them, which is associated with
language impairments in individuals with ASD [35].

In addition to changes in volume, children with ASD also exhibit abnormalities in
cortical thickness. Children with ASD have significant cortical thickening in early child-
hood, accelerated thinning in late childhood and adolescence, and gradual cortical thinning
with age in adulthood. These cortical changes in the inferior frontal, inferior temporal, and
posterior cingulate gyri are the most pronounced. These changes are associated with social
cognitive deficits, verbal communication deficits, and stereotypical movements [36–43].
Normally, brain regions maintain structural and functional laterality. Cortical thickness
asymmetry of the medial frontal, orbitofrontal, inferior temporal, and cingulate gyri is re-
duced in children with ASD, reflecting disruption of lateralized neurodevelopment [44,45].
Orbitofrontal cortical abnormalities are strongly associated with self-regulation and social–
emotional–behavioral deficits in children with ASD [46]. As the cerebral cortex expands
within the limited space in the skull, it gradually increases the number of cortical folds [47].
In children with ASD, the gyrification index, which reflects the degree of cortical folding,
increases atypically in childhood and then decreases in adolescence and adulthood, primar-
ily in the frontal and parietal regions [48–50]. In children with ASD, the cortical gyrification
index is significantly higher in the bilateral temporal lobes, left isthmus cingulate, and left
frontal lobe and lower in the right precuneus compared with that in TD children, thereby
reflecting the presence of atypical rotational patterns in children with ASD [49,51–53].
Gao et al. [54] used sMRI combined with convolutional neural networks and individual
structural covariance networks for the early assessment of ASD with an accuracy of 71.8%,
sensitivity of 81.25%, and specificity of 68.75%. They also suggested that abnormalities in
the prefrontal cortex and cerebellum may be early biomarkers for the diagnosis of ASD.
In addition, sMRI not only reveals the morphological differences in brain structures at
different ages, but also further clarifies the pathophysiological alterations of the disease
by correlating them with the core symptoms of ASD. Thus, sMRI contributes to the early
diagnosis of ASD. A summary of the literature on structural MRI-based morphological
changes in the brains of individuals with ASD is provided in Table 1.



Diagnostics 2023, 13, 3027 5 of 19

Table 1. Structural magnetic resonance imaging of ASD.

Reference Age Range
(Mean) Brain Regions Main Findings in the ASD Group

Schumann et al. [6] Longitudinal,
1.5–5 (2.5) years Cerebral ↑ GMV and WMV in the cerebrum; notably in frontal, temporal,

and cingulate cortices

Hazlett et al. [15] (Longitudinal, prospective),
6–7, 12–13, 24–25 months Cortical surface area ↑ Cortical surface area (6–12 month); ↑ TBV (12–24 month)

Hazlett et al. [17] Longitudinal,
18–35 (32) month Cerebral; CT ↑ Cerebral cortical (2 and 4–5 years); ↑ surface area in temporal,

frontal, and parietal–occipital; no differences in cortical thickness

Ohta et al. [18] Longitudinal,
2.5–3.5 (3) years

Cerebral cortical grey
matter; surface area;
cortical thickness

↑ Cortical surface; no difference in cortical thickness

Guo et al. [20] 2–7 (5) years Cerebral; cerebellum ↑ GMV in fusiform face area and cerebellum/vermis

Bai et al. [21] 2–7 (5) years Cerebral ↑ GMV in right medial superior frontal gyrus and left
fusiform gyrus

Retico et al. [22] 2–7 (4.4) years Cerebral ↑ GMV in bilateral superior frontal gyrus, precuneus, superior
temporal gyrus; ↓ GMV in right inferior temporal gyrus

Li et al. [23] 6–24 months Amygdala;
hippocampus ↑ TBV in amygdala and hippocampus

Reinhardt et al. [24] 25–80 (38.2) month Hippocampus ↑ TBV in hippocampus

Shou et al. [25] 2.9–5 (4.1) years Amygdala;
hippocampus ↑ TBV in left amygdala and left hippocampus

Mengotti et al. [26] 4–14 (7) years Cerebral ↑ WMV in right inferior frontal gyrus, right fusiform gyrus, left
precentral, supplementary motor area, and left hippocampus

Pote et al. [31] 4–6 (4.8) month Cerebral ↑ TBV in cerebellar and subcortical

van Rooij et al. [37] 2–64 (15.4) years Cerebral; CT
↓ Subcortical volumes of the pallidum, putamen, amygdala, and
nucleus accumbens; ↑ CT in the frontal cortex; ↓ CT in the
temporal cortex

Zielinski et al. [39] 3–36 (16.8) years CT ↑ Thinning rate of CT in early childhood; ↓ thinning rate of CT in
later childhood, adolescence, and early adulthood

Prigge et al. [41] Longitudinal,
3.4–36 (16.4) years CT

↑ CT in right frontal and temporal poles, and left superior frontal;
↓ CT in left inferior temporal and bank of the superior temporal
sulcus, and right caudal anterior and posterior cingulate

Shiohama et al. [42] 10–35 (7.3) months CT ↑ CT in right medial orbitofrontal cortex; ↓ CT in caudal
anterior cingulate

Sussman et al. [43] 4–18 years CT ↓ CT in left orbitofrontal cortex and left posterior cingulate gyrus

Postema et al. [44] 1.8–64 years Cortical thickness
asymmetries

↓ Cortical thickness asymmetries in medial frontal, orbitofrontal,
inferior temporal, and cingulate regions

Yang et al. [49] 4–12 (8.4) years Cerebral; cortical
folding; CT; SA

↑ GI in right inferior parietal, inferior temporal, and the left
isthmus cingulate gyri; ↑ CT and TBV in right middle temporal
gyrus and the posterior superior temporal sulcus

Zoltowski et al. [53] 5–54 (15) years Cortical folding; CT;

↑ lGI in right middle frontal gyrus, right inferior temporal gyrus,
and right middle occipital; ↓ lGI in left posterior insula and right
precuneus; ↑ CT in right anterior cingulate, right planum
temporale/superior temporal gyrus

↑ Represents increase; ↓ represents decrease. ASD, autism spectrum disorder; TBV, total brain volume; GMV,
gray-matter volume; WMV, white-matter volume; CT, cortical thickness; lGI, local gyrification index; SA, surface
area.

4. Studying Brain Network Changes in Children with ASD Using DTI

Diffusion tensor imaging is a non-invasive technique for assessing the orientation and
connectivity of cerebral white-matter fiber bundles, thereby allowing for qualitative and
quantitative analyses of water-molecule diffusion characteristics within three-dimensional
spaces [51]. Commonly used parameters include fractional anisotropy (FA) and mean
diffusion (MD), which reflect microstructural changes in the white matter [55]. FA increases
in children with ASD before the age of 4 years, which may be associated with excess
prenatal neurons, leading to frontal axonal overconnectivity [56]. This excessive axonal
growth leads to signal delays and metabolic inefficiencies in connecting different regions
of the brain, thus affecting myelin development [56]. After the age of 4 years, the rate of
myelination development slows down, resulting in a decrease in the integrity of white-
matter fiber bundles throughout the brain and a gradual decline in FA [57,58]. Compared
with TD children, children with ASD show increased FA during early childhood, primarily
observed in the corpus callosum, inferior longitudinal fasciculus, inferior fronto-occipital
fasciculus, posterior cingulate cortex, and limbic lobe. A higher FA in the corpus callosum
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is associated with impaired social and communicative functions, and that in the inferior
longitudinal fasciculus and inferior fronto-occipital fasciculus is associated with difficulty
in recognizing emotions and facial expressions [11,59]. During the childhood phase in
ASD individuals, there is a decline in FA, primarily observed in the sagittal stratum,
corpus callosum, superior cerebellar peduncle, superior longitudinal fasciculus, cingulum,
and uncinate fasciculus, which are associated with motor functions, language, and social
impairments [57,58,60–65]. However, Weinstein et al. [66] found increased FA values
in the corpus callosum and superior longitudinal fasciculus in children with ASD aged
1.5–6 years old. This inconsistency in research findings may be attributable to variations in
the age range of the study samples [67]. In comparison with TD children, children with
ASD show decreased MD values in the left corpus callosum, posterior cingulate cortex,
limbic lobe, and insular cortex during early childhood, which are associated with cognitive
impairments [11]. In ASD individuals, during late childhood, adolescence, and adulthood,
the increased MD is mainly observed in the left parahippocampal gyrus, left sagittal gyrus,
left superior temporal gyrus, and left arcuate fasciculus. The atypical lateralization reflects
abnormal connectivity in the left hemisphere white matter and is associated with language
and praxis impairments [8,68–72].

Furthermore, graph theory analysis based on DTI can reflect the whole-brain connec-
tivity characteristics of individuals with ASD. Network properties include the clustering
coefficient, local efficiency, shortest path length, global efficiency, and small-worldness
coefficient. Based on DTI brain network connectivity, the node efficiency of the left pal-
lidum, right caudate nucleus, left precuneus, thalamus, and bilateral superior parietal
cortex increased in children with ASD aged 2–6 years compared with TD children [73,74].
Increased node efficiency reflects the presence of hyperconnectivity in the brain structures
of preschool-going children with ASD, which may be related to early brain overgrowth. The
nodal efficiency of the precuneus is correlated with the severity of ASD [73]. The increased
nodal efficiency primarily occurs in the left hemisphere of the brain, specifically in regions
associated with language and social communication functions. Therefore, the enhanced
network efficiency in the left hemisphere may contribute to language and social impair-
ments in children with ASD [73]. However, reduced nodal efficiency in adolescents and
adults with ASD compared with TD individuals suggests that impaired integrity of white-
matter fiber tracts may disrupt the topological properties of nodal connectivity fibers. The
regions with reduced nodal efficiency are mainly located in the left inferior frontal gyrus,
left precentral gyrus, right cingulate gyrus, right precuneus, and right amygdala, which
are associated with impaired language and social communication [75,76]. Qian et al. [76]
conducted a longitudinal study on ASD children aged 2–5 years and found that there was
an increase in four additional hubs at the age of 4–5 years compared with 2–3 years. These
additional hubs include the left anterior cingulate and paracingulate, right dorsolateral
superior frontal, right middle frontal, and angular gyri. This suggests that the brain in ASD
has a remarkable flexibility to rewrite itself [77]. Additionally, children with ASD show a
decrease in small-world attributes, indicating a disruption in the balance of information
transmission within the white-matter structural network. Shortened path lengths, increased
global efficiency, and clustering coefficients of the basal ganglia, limbic, and paralimbic
systems in children with ASD indicate brain hyperconnectivity, which in turn is associated
with repetitive stereotyped behaviors and learning and memory disorders [74]. However,
Li et al. [78] found that monozygotic twins with ASD had reduced global efficiency and
increased characteristic path lengths in brain networks, which were associated with core
symptoms, such as repetitive behaviors. The differences in findings reflect atypical brain
development in children with ASD, which is associated with age, different subtypes, brain
damage, and excessive remodeling and requires further research.

In addition, edge density (ED) can further elucidate the brain connectome by examin-
ing the potential fiber bundles between cortical nodes. Changes in connectivity around the
ventricles are associated with ASD, where ED increases during early childhood. However,
during adolescence, there is a widespread reduction in ED within white-matter fiber bun-
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dles except for the internal capsule. In adults with ASD, the regions exhibiting decreased
ED are mainly located in the posterior commissural and paraventricular white-matter
tracts [8]. Furthermore, a machine-learning method that combines the DTI brain network
and T1-weighted imaging to assess children with ASD aged 2–6 years has an accuracy,
sensitivity, and specificity of 88.8%, 93%, and 83.8%, respectively [79]. Therefore, studies
using DTI in children with ASD can not only reveal abnormal developmental trajectories
and network connectivity changes in the brain at an early stage, but, upon combination
with machine learning, are more helpful for the early diagnosis of children with ASD [80].
Table 2 summarizes the literature on brain network alterations using DTI in patients
with ASD.

Table 2. Diffusion magnetic resonance imaging of ASD.

Reference Age Range
(Mean) Brain Regions Main Findings in the ASD Group

Solso et al. [56] 12–48 (30.2) months Frontal tracts
↑ FA and volume in forceps minor, inferior frontal superior
frontal tract, uncinate, frontal projection of the superior
corticostriatal tract

Ouyang et al. [57] 2–7 (4.1) years Global main
fiber tracts ↑ FA in most major white-matter tracts (before 4 years)

Andrews et al. [58] Longitudinal,
2.5–7 years

Global main
fiber tracts

↑ FA in middle and inferior cerebellar peduncles, superior
longitudinal fasciculus, internal capsule, and splenium of the
corpus callosum (young children); ↓ FA in sagittal stratum,
cingulum, uncinate fasciculus, and internal capsule
(63.6 months)

Andrews et al. [59] 25.9–49.6
(38.8) months

Global main
fiber tracts

↑ FA in genu, body, and splenium of the corpus callosum,
inferior frontal–occipital fasciculi, inferior and superior
longitudinal fasciculi, middle and superior cerebellar peduncles,
and corticospinal tract

Xiao et al. [11] 2–3 (2.5) years Global main
fiber tracts

↑ FA in corpus callosum, posterior cingulate cortex, and limbic
lobes; ↓ MD in corpus callosum, posterior cingulate, limbic lobes,
and insular cortex

Fu et al. [62] 2–9 years Global main
fiber tracts ↓ FA and ↑ MD in bilateral fornix, uncinate fasciculus

Hanaie et al. [63] 5–14 (9.8) years Global main
fiber tracts ↓ FA in bilateral superior cerebellar peduncle

Hrdlicka et al. [64] 5–13.2 (8.0) years Global main
fiber tracts

↓ FA in left arcuate fasciculus and inferior frontal
occipital fasciculus

Lei et al. [65] 4–21 (9.3) years
Association
fibers; projection
fibers

↓ FA in association fibers (cingulum, inferior fronto–occipital
fasciculus, inferior longitudinal fasiculus, superior longitudinal
fasiculus, uncinate fasciculus), projection fibers (anterior
thalamic radiation, corticospinal tract)

Weinstein et al.
[66] 1.5–5.8 (2.9) years Global main

fiber tracts
↑ FA in genu of corpus callosum, and left superior
longitudinal fasciculus

Fingher et al. [67] 13–51 (31) months Global main
fiber tracts ↑ FA in temporal corpus callosum segment

Walker et al. [70] 2–8 (4.7) years Global main
fiber tracts ↑ MD in posterior brain regions

Qin et al. [73] 2–6 (2.9) years Topological
network

↑ Nodal efficiency in left precuneus, thalamus, and bilateral
superior parietal cortex

Li et al. [74] 3–6 (4.6) years Topological
network

↑ Nodal efficiency in left pallidum, right caudate nucleus; ↑
global efficiency and clustering coefficient; ↓ shortest path length

Qian et al. [75] 6–16 (9) years Amygdala ↓ Nodal efficiency in right amygdala

Li et al. [78] 2–9 (3.9) years Topological
network ↓ Global efficiency; ↑ shortest path length

↑ Represents increase; ↓ represents decrease. ASD, autism spectrum disorder; FA, fractional anisotropy;
MD, mean diffusion.
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5. Functional MRI–Based Functional Brain Network Alterations in ASD

Resting-state fMRI (rs-fMRI) reflects neural activity and functional changes in the
functional areas of the brain by studying the temporal correlation of blood oxygen-level-
dependent signals in different brain regions [81]. Based on rs-fMRI, abnormal functional
connectivity (FC) was found in the brains of children with ASD, most notably located in the
DMN, salience network (SN), central executive control network (ECN), ventral attention
networks (VAN), and dorsal attention networks (DAN) [82,83]. The DMN, with the rostral
anterior cingulate cortex and medial prefrontal cortex as key brain regions, is primarily
involved in intrinsic mental activities, such as recalling the past, envisioning the future,
and simulating non-occurring social interactions [84]. The SN, with the anterior cingulate
and ventrolateral prefrontal cortices as key brain regions, primarily differentiates between
internal and external stimuli to guide behavior [85], and damage to the SN may lead to im-
pairments in social–emotional functioning [86]. The ECN, with the dorsolateral prefrontal
and parietal cortices as core regions, participates in processes of attention, decision making,
working memory, and response selection [87]. The DAN, composed of the dorsolateral
prefrontal cortex, superior temporal gyrus complex, and other areas, is primarily involved
in controlling attention processes [88]. In contrast to TD, functional network hypercon-
nectivity in children with ASD, owing to early brain overgrowth and increased neural
density, is located mainly in the medial prefrontal, cingulate, and temporal poles of the
DMN, and is associated with socio-emotional disorders [89,90]. Recent studies suggest that
early and persistent abnormal connections between the temporal lobe and the cuneus and
precuneus lobes during early childhood in patients with ASD may be biomarkers of early
language and social dysfunction in children with ASD [91]. There is also hyperconnectivity
between brain networks in children with ASD, mainly between the DMN and DAN, DMN
and control networks, and visual and sensorimotor networks [92–94]. With age, adoles-
cents and adults with ASD mainly exhibit the coexistence of hypo- and hyperconnectivity
networks, reflecting uneven brain development. Hypoconnectivity is mainly existent in
the sensorimotor brain regions, and hyperconnectivity in the prefrontal and parietal cor-
tices [83,89,90,95–102]. In adolescents with ASD, DMN and right ECN hyperconnectivity,
and SN and left ECN hypoconnectivity are associated with sensory deficits and impaired
social communication [86,87,103]. In adults with ASD, hypoconnectivity between the DMN
and VAN and between the SN and medial temporal lobe networks is strongly associated
with impaired social functioning and reflects the severity of ASD [104–107]. Under normal
circumstances, there is functional segregation between the primary somatosensory and
auditory regions in children, which increases significantly with age. However, in children
with ASD, there is hyperconnectivity between subcortical and cortical sensory regions that
does not change with age. This reflects a delayed or arrested development of segregation
in these areas, which is associated with socio-cognitive impairments [108]. In addition to
the above-mentioned brain networks, researchers have found increased FC between the
cerebellum and the posterior motor and somatosensory cortices, resulting in abnormal
processing of sensory and motor functions [109].

In addition, Sha et al. [110] found reduced leftward lateralization in the fusiform,
rostral middle frontal, and medial orbitofrontal cortices of children with ASD. There was
also a decrease in rightward asymmetry of both degree centrality and global efficiency
in the superior frontal cortex, indicative of node-level degree centrality asymmetries in
children with ASD. These asymmetries are associated with executive function, working
memory, and sensorimotor impairments. Floris et al. [111] found that compared with TD
children, older children with ASD exhibited rightward lateralization in mean motor circuit
connectivity, which may contribute to gross motor deficits and atypical gait. Previous
studies have rarely explored ASD during infancy. Recent research suggests that key FC
networks, such as the DMN and DAN, can be detected in infants at birth, which will aid in
the early diagnosis of ASD [112]. Du et al. [113] combined network FC features in fMRI
with gray-matter volume in sMRI for machine learning-based assessment of ASD, with
an accuracy of 83.08%. Early diagnosis of ASD is based on fMRI deep learning, with an
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accuracy and sensitivity of 65.5% and 84%, respectively [2]. Combining fMRI with machine
learning has further improved the diagnostic performance of ASD. Table 3 summarizes the
fMRI-based literature on functional brain network damage in patients with ASD.

Table 3. Functional magnetic resonance imaging and proton magnetic resonance spectroscopy studies
of ASD.

Reference Age Range
(Mean) Brain Regions Main Findings in the ASD Group

Haghighat et al. [90]
5–10 (7.3),
11–17 (13.7),
18–39 (25.9) years

Whole brain

↑ Connectivity in cingulate cortex, anterior insula, central
opercular cortex, temporal pole, right anterior superior
temporal gyrus, planum polare, middle frontal gyrus, right
inferior frontal gyrus, cerebellum, and brainstem (children)

Xiao et al. [91] 1–4 (2.3) years Temporal cortex ↑ Connectivity in temporal–cuneus, and temporal–precuneus

McKinnon et al. [92] 11–27 months Whole brain ↑ Connectivity in DMN and control networks, DMN
and DAN

Chen et al. [93] 17–45 (30) months Whole brain ↑ Connectivity in visual and sensorimotor networks

Chen et al. [94] 3.5–7.9 (5) years Whole brain ↑ Connectivity in sensory-motor and visual brain regions; ↓
connectivity in social cognition brain regions

Yerys et al. [100] 6–17 (12.4) years Networks: VAN ↑ Connectivity in VAN and retrosplenial–temporal systems;
↓ connectivity in VAN and somatomotor-mouth systems

LLioska et al. [102] 5–58 (16) years Networks: DMN;
subcortical areas

↑ Connectivity in DMN and subcortex, ↓ connectivity in
primary sensory and attention networks

Sha et al. [110] 2–64 (15.7) years Whole brain ↓ Leftward asymmetry in rostral middle frontal, cuneus,
medial orbitofrontal, and postcentral regions

Tang et al. [114] 2–18 years Cerebral ↓ CBF in frontal lobe, hippocampus, temporal lobe, and
caudate nucleus

Ye et al. [115] 3–8 (4) years Cerebral ↓ CBF in left frontal lobe, the bilateral parietal lobes, and the
bilateral temporal lobes

Mori et al. [116] 2–14 (7.3) years Cerebral ↓ CBF in insula, superior parietal lobule, superior temporal
gyrus, and inferior frontal gyrus

Tang et al. [117] 2–3 (2.7 years) Cerebral ↓ CBF in frontal lobe, temporal lobe, hippocampus, caudate
nucleus, substantia nigra, and red nucleus

Mori et al. [118] 3–6 (4) years Amygdala and
orbito-frontal cortex ↓ NAA in left amygdala and bilateral orbito-frontal cortex

Goji et al. [119] 2–12 (5) years Anterior cingulate ↓ NAA, Cr, Cho, and mI in anterior cingulate cortex
Margari et al. [120] 1.7–14 (1.9) years Frontal lobe ↓ NAA/Cr in frontal lobe white matter
DeMayo et al. [121] 4–12 (8.9) years Parietal lobe ↓ GABA in left parietal lobe, ↑ GABA with age

Ito et al. [122] 2–15 (6.7) years Anterior cingulate ↓ GABA/Cr in anterior cingulate cortex and left cerebellum,
↑ Glu/Cr in left cerebellum

↑ Represents increase; ↓ represents decrease. ASD, autism spectrum disorder; CBF, cerebral blood flow;
DAN, dorsal attention network; VAN, ventral attention network; DMN, default mode network;
NAA, N-acetylaspartate; Cr, creatine; Cho, choline-containing compounds; mI, myo-inositol; Glu, glutamate;
GABA, gamma-aminobutyric acid.

6. ASL-Based Alterations in ASD Perfusion

Arterial spin labeling is a non-invasive MRI technique that utilizes magnetically la-
beled arterial blood water as an endogenous tracer. It quantifies changes in cerebral blood
flow (CBF) within functional brain regions, thereby reflecting the association between
cerebral perfusion and core symptoms. Reduced CBF in children with ASD may lead to ab-
normal neuronal development in the brain, and the number of hypoperfused brain regions
is positively correlated with age in children with ASD [104]. This abnormal neurodevel-
opment leads to cognitive, language, and motor developmental impairments in children
with ASD [114]. However, CBF values in the frontal lobe show a non-linear correlation
with age. At the ages of 2 and 5 years, CBF in the frontal lobe of children with ASD is
normal. Around the ages of 3–4 years, there is a decline in CBF. This may be associated with
slower growth and development of the frontal lobe in children with ASD starting at age 3,
followed by a gradual normalization of frontal lobe development around age 5. However,
after the age of 6, CBF in the frontal lobe gradually decreases [114]. The decreased CBF in
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the left frontal lobe, bilateral parietal lobes, bilateral temporal lobes, and insula in children
with ASD is associated with impaired communication and socio-cognitive deficits and
decreased self-care skills [115–117]. Reduced CBF in the bilateral fusiform and right inferior
temporal gyri in adolescents with ASD is associated with deficits in social cognition and
facial recognition [123]. Tang et al. [114] found that decreased CBF in the frontal, temporal,
hippocampal, and caudate nucleus regions in individuals with ASD aged 2–18 years could
be effective in the differential diagnosis of ASD, with the highest area under the curve
(AUC) of 0.84. In addition, increased CBF in adolescents and adults with ASD reflects
hyperperfusion, which may be related to the increase in metabolic demands caused by
the remodeling of neural axons or glial cells after injury, with increased CBF in the medial
orbitofrontal cortex, bilateral inferior frontal gyrus, and right precentral gyrus associated
with social communication deficits in children [124,125]. In normal conditions, the FC
within the brain of healthy individuals is tightly coupled with CBF and energy supply. This
close coupling allows functional regions to engage in more neural activity, particularly
in areas of the association cortex where the neurovascular coupling is higher, promoting
active involvement in higher cognitive functions and efficient execution of effective infor-
mation processing. At the same time, these regions exhibit a high long-range and a high
CBF/FC ratio, reflecting the high metabolism of long-distance connections in the brain. In
contrast, the primary visual cortex, which has abundant short-range connections, exhibits a
lower CBF/FC ratio. It is speculated that the low metabolism associated with short-range
connections helps conserve energy in the brain [126]. However, children with ASD may
exhibit neurovascular decoupling in which decreased CBF in the anterior cingulate cortex is
accompanied by increased FC associated with social cognitive deficits [124]. Children with
ASD exhibit abnormalities in the inhibitory/excitatory balance of local neuronal clusters in
the frontal cortex. The lack of inhibition may impair the establishment of long-range FC
pathways and disrupt the balance between network metabolism and axonal connectivity,
leading to neurovascular decoupling [124].

Therefore, altered neurovascular coupling may serve as an emerging biomarker for
early diagnosis of ASD in children. A summary of the ASL-based ASD perfusion research
literature is presented in Table 2.

7. Proton Magnetic Resonance Spectroscopy–Based Biochemical Metabolite
Alterations in ASD

Proton magnetic resonance spectroscopy is a non-invasive neuroimaging technique
used to quantify the concentrations of biochemical metabolites in specific regions of the
brain. It reveals the pathological basis of ASD by identifying abnormalities in molecular
behaviors. The primary metabolites assessed include N-acetylaspartate-containing com-
pounds (NAA), creatine-containing compounds (Cr), choline-containing compounds (Cho),
glutamate + glutamine (Glx), myo-inositol (mI), and gamma-aminobutyric acid (GABA).
NAA, predominantly located within neurons and axons, serves as a biomarker for neuronal
density, heterogeneity, and vitality [127,128]. Compared with TD children, children with
ASD show a decrease in NAA concentrations. This decline primarily occurs in the left
amygdala [129], bilateral orbitofrontal cortex [118], thalamus [130], anterior cingulate cor-
tex [119,131], temporal cortex, cerebellum [127], and parietal lobe [132]. These reductions
reflect impaired, diminished, or immature neuronal function in ASD, which is associated
with social deficits and memory impairments [129,132]. Cr refers to the combined signal of
creatine and phosphocreatine and plays a crucial role in maintaining energy homeostasis
in the central nervous system. Children with ASD exhibit a reduction in the NAA/Cr ratio
in the prefrontal white-matter region and anterior cingulate cortex, suggesting alterations
in axonal function and cognitive impairments [119,120,128,133]. GABA, the predominant
inhibitory neurotransmitter in the cerebral cortex, plays a crucial role in maintaining the
balance of neural circuits [127]. Compared with TD children, children with ASD show
decreased GABA levels in the frontal cortex, parietal lobe, and somatosensory motor area,
reflecting excessive excitability in the cerebral cortex [121,127,134]. The decrease in GABA
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concentrations in the somatosensory motor area is associated with abnormal processing
of tactile information. The reduced GABA concentration in the frontal cortex may be due
to deficits in GABAergic interneurons, leading to glial activation, migration defects, and
impairments in communication and cognition [127]. Furthermore, studies have found
a positive correlation between GABA levels and age in the left parietal lobe of children
with ASD [121]. In adults with ASD, there is an increase in GABA concentration in the
left dorsolateral prefrontal cortex. The changes in GABA concentration in the prefrontal
cortex, from decreased levels in childhood to increased levels in adulthood, reflect the im-
portance of age-related alterations in brain neurometabolism in individuals with ASD [12].
Additionally, in children with ASD, there is a decreased GABA/Cr ratio in the left motor,
anterior cingulate cortex, and auditory cortices, which is negatively correlated with the
severity of ASD symptoms [122,135]. Glutamate (Glu), as an excitatory neurotransmitter,
plays a crucial role in synaptic induction, cell migration, synaptic elimination, and other
functions that are essential in neurodevelopmental processes. Glutamine (Gln) participates
in the regulation of glutamate recycling and brain ammonia metabolism [127]. Glu, Gln,
and GABA interact through the glutamate/GABA-glutamine cycle to maintain cortical
excitatory/inhibitory balance, which is crucial for synaptic maturation, refinement of neu-
ronal circuits, and regulation of cognition, emotion, and behavior [132,136]. Glx represents
the overall levels of Glu and Gln and their functions in the brain. Compared with TD
children, children with ASD have increased Glu concentration in the cingulate gyrus and
prefrontal cortex, possibly due to decreased levels of glutamic acid decarboxylase, the
enzyme that converts Glu to GABA in the brain [127,131]. Previous studies have suggested
that an imbalance between excitation and inhibition in individuals with ASD forms the
neurobiological basis of cognitive impairments [137,138]. ASD patients show alterations in
GABA, Glx, Glu/Cr, and GABA+/Glu concentrations within the frontal and cingulate cor-
tices at different developmental stages, reflecting an imbalance between neurotransmitter
excitation and inhibition [12,139,140]. Cho, composed of phosphatidylcholine metabolites,
is used to measure membrane turnover rate. mI, a key component of the second messenger
system, serves as a specific marker for astrocytes [127]. The significant reduction of Cho and
mI in the anterior cingulate cortex and frontal lobe of children with ASD indicates impaired
neuronal integrity in these regions, which is associated with social impairments [119].
Hence, by quantifying abnormal changes in brain metabolites at different stages, 1H-MRS
can assist in diagnosing ASD. In the future, the combination of 1H-MRS and multimodal
MRI will help further delineate the diverse phenotypes of ASD.

8. Glymphatic System Changes in ASD

Evaluating the coupling relationship between neurovascular and cerebrospinal fluid
(CSF) may reveal the complex pathophysiological mechanisms of the brain in ASD and may
provide new insights into the early diagnosis of ASD. The glymphatic system is a unique
network in the central nervous system of the brain, which allows the dynamic exchange
of CSF and interstitial fluid through pathways such as the paravascular spaces (PVS).
These play an important role in normal homeostasis and interstitial solute clearance. Water
in the CSF can transport soluble Aβ and tau proteins and the energy metabolite lactate
from the brain tissue through the induction of polarized astrocyte-specific aquaporin-4
into the interstitium [141]. Elevation in Aβ protein levels was observed in the neurons of
postmortem brain tissue, blood, and peripheral CSF of individuals with ASD, which may
have been associated with an impaired glymphatic system [142]. It was found that 44%
of children with ASD had an enlarged PVS [143]. Recent studies have indicated that the
function of the glymphatic system in the brains of individuals with ASD can be assessed
using DTI along the perivascular space (DTI-ALPS). DTI-ALPS uses the diffusion tensor
method to measure the diffusivity rate of water molecules and assess the movement of
water molecules in the direction of the PVS. Studies have shown that reduced DTI-ALPS
reflects impaired glymphatic function in children with ASD and is positively correlated
with age [144]. In addition, children with ASD have increased extra-axial CSF (EA-CSF)
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at the age of 6–24 months and 2–4 years, which is associated with deficits in gross motor
skills and non-verbal abilities [142,145,146]. Increased EA-CSF may be due to impaired
early brain venous drainage or immature development of arachnoid granulations in young
children with ASD, leading to reduced absorption [147]. Subsequently, the increased EA-
CSF gradually normalizes after 4 years of age in children with ASD, which may be related
to the gradual normalization of early increase in brain volume in later childhood [142,147].
Shen et al. [145] found that increased EA-CSF at 6 months of age could predict ASD at
24 months of age with 69% accuracy. Moreover, Diem et al. [148] suggested that arteriolar
dilatation caused by neurovascular coupling could play a key role in the removal of
cerebral waste products. Further studies are needed to determine whether neurovascular
uncoupling involves the glymphatic system in children with ASD (Figure 3).
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9. Conclusions

In summary, ASD is not only characterized by abnormal changes in brain morphology,
structure–function connectivity, cerebral perfusion, and neuronal metabolism, but also by
some degree of impairment in the function of the glymphatic system. Differences in age,
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subtype, brain damage, and remodeling in children with ASD, could lead to heterogeneity
in research results.

10. Future Directions

Exploring the mechanism of brain damage in children with ASD and determining
imaging biomarkers based on multimodal MRI remains the focus of future research, with
an aim to provide an objective basis for the early identification of ASD and assist the clinic
in formulation of individualized intervention plans. Multimodal MRI is expected to further
assist in the early and accurate clinical diagnosis of ASD through deep learning combined
with genomics and artificial intelligence.
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