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Abstract: It is rare to use the one-stage model without segmentation for the automatic detection
of coronary lesions. This study sequentially enrolled 200 patients with significant stenoses and
occlusions of the right coronary and categorized their angiography images into two angle views:
The CRA (cranial) view of 98 patients with 2453 images and the LAO (left anterior oblique) view of
176 patients with 3338 images. Randomization was performed at the patient level to the training
set and test set using a 7:3 ratio. YOLOv5 was adopted as the key model for direct detection. Four
types of lesions were studied: Local Stenosis (LS), Diffuse Stenosis (DS), Bifurcation Stenosis (BS),
and Chronic Total Occlusion (CTO). At the image level, the precision, recall, mAP@0.1, and mAP@0.5
predicted by the model were 0.64, 0.68, 0.66, and 0.49 in the CRA view and 0.68, 0.73, 0.70, and 0.56 in
the LAO view, respectively. At the patient level, the precision, recall, and F1 scores predicted by the
model were 0.52, 0.91, and 0.65 in the CRA view and 0.50, 0.94, and 0.64 in the LAO view, respectively.
YOLOv5 performed the best for lesions of CTO and LS at both the image level and the patient level. In
conclusion, the one-stage model without segmentation as YOLOv5 is feasible to be used in automatic
coronary lesion detection, with the most suitable types of lesions as LS and CTO.

Keywords: coronary angiography; deep learning; coronary artery stenosis detection; convolutional
neural network; one-stage detection; without segmentation

1. Introduction

Coronary artery disease (CAD) is one of the most common types of cardiovascular
disease. It could cause stenoses and occlusions of coronary arteries, which will finally lead
to severe endpoints such as myocardial ischemia and infarction. It is also the leading cause
of mortality in the world, which is responsible for 16% of the total 55.4 million deaths
in recent years [1]. Coronary angiography (CAG), which is recommended as the most
important examination for CAD, is considered the gold standard for the diagnosis and
treatment of ischemic heart disease [2–4]. CAG images can provide detailed anatomical
information of vessels from multiple angle views, which is better than other examinations
such as coronary CT angiography (CCTA) and cardiac magnetic resonance imaging (cMRI).

However, compared to CCTA and cMRI, CAG images still have some limitations:
(1) Instantaneous contrast agent inhomogeneity makes the images fuzzy, with poor contrast
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between vessels and surrounding tissues; (2) irregular angle views cause images to change
continuously; (3) complex vessel structures in two-dimensional images cause different
coronary arteries to overlap and make them difficult to distinguish. Even so, given its
extensive clinical application and significant diagnostic value, many studies still try to
perform studies of artificial intelligence (AI)-assisted diagnosis of CAG via the deep learning
(DL) method. The method of segmentation before detection has been mostly employed in
previous studies. As described in the limitations of CAG images, difficulties in defining
and detecting lesions caused by overlapped coronary arteries were the major challenges in
the one-stage detection of multi-type coronary lesions. However, right coronary arteries
rarely encounter these challenges due to less overlap.

Currently, segmenting the coronary arteries followed by diameter measurements or
stenosis evaluations is the most studied method [5–7]. Zhao et al. [8] classified the lesions
by performing image segmentation of the vessel centerline, calculating vessel diameters,
and measuring the degree of stenoses. Liu et al. [9] performed vessel boundary-aware seg-
mentation, branch node localization, coronary artery tree construction, and vessel diameter
fitting, and ultimately accomplished stenosis detection. Algarni et al. [10] employed image
noise removal, contrast enhancement, and Otsu thresholding as pre-processing techniques
and used attention-based nested U-Net and VGG-16 for vessel segmentation and lesion
detection. Their method only generated a binary classification of normal and abnormal im-
ages. However, both vessel segmentation and the extraction of coronary artery centerlines
require significant work regarding manual annotation. Meanwhile, providing pixel-level
specific lesion annotations for each frame reduces the robustness of lesion assessment and
limits its clinical use and applications with large datasets.

Furthermore, some studies have stepped further by incorporating the automatic
selection of contrast-enhanced images to extract the key frames of diagnosis for AI analysis.
Cong et al. [11] employed convolutional neural networks (CNNs) and long short-term
memory (LSTM) networks for automatic detection and key frame sampling. Then, they
used the modified pre-trained Inception-V3 network [12] and employed the anchor-based
feature pyramid network (FPN) for stenosis localization. Similarly, Moon et al. [13] used
weakly supervised DL to extract key frames and performed the classification of regions of
50% stenosis. Then, they used the convolutional block attention module (CBAM) [14] to
achieve the precise localization of vessel stenosis.

Some other studies have also employed multiple types of network models to improve
detection performance. Ling et al. [15] used ResNet, Mask R-CNN, and RetinaNet to con-
struct a system that includes functionalities of classification, segmentation, and detection.
Du et al. [16] designed a multi-scale CNN to extract texture features of different scales
from CAG images. They used the Faster R-CNN [17] framework for the detection and
localization of stenoses. Danilov et al. [18] also trained and tested eight different detectors
based on various network architectures and confirmed the feasibility of DL methods for
the real-time detection of coronary stenoses by the intercomparisons among them.

On the other hand, studies also used artificially synthesized data because of the
significant manual pre-processing steps of CAG images. Antczak et al. [19] trained a patch-
based classification model with an artificial dataset and then tuned up the network using
real-world patches to improve its accuracy. Ovalle-Magallanes et al. [20] proposed a pre-
trained CNN model based on transfer learning for segmentation, along with fine-tuning by
artificial and real-world data, to introduce a novel method for automated stenosis detection.
The relevant studies are summarized in Table 1.
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Table 1. Related studies are summarized in four aspects: Methods, data, classes, and results.

Ref. Methods Data Classes Results

Zhao et al. (2021) [8]

FP-U-Net++, arterial
centerline extraction,
diameter calculation,
arterial stenosis detection

99 patients,
314 images

1–24%, 25–49%,
50–69%, 70–100%

Precision = 0.6998,
recall = 0.6840,

Liu et al. (2023) [9] AI-QCA 3275 patients,
13,222 images 0–100% Precision = 0.897,

recall = 0.879

Algarni et al. (2022) [10] ASCARIS model 130 images normal and abnormal
Accuracy = 97%,
recall = 95%,
specificity = 93%

Cong et al. (2023) [11]
Inception-v3 and LSTM,
redundancy training, and
Inception-V3, FPN

230 patients,
14,434 images <25%, 25–99%, CTO

Accuracy = 0.85,
recall = 0.96,
AUC = 0.86

Moon et al. (2020) [13] GoogleNet Inception-v3,
CBAM, Grad-CAM 452 clips Stenosis ≥ 50% AUC = 0.971,

accuracy = 0.934

Ovalle-Magallanes et al.
(2020) [20]

pre-trained CNN via
Transfer Learning, CAM

10,000 artificial
images, 250 real
images

Stenosis

Accuracy = 0.95,
precision = 0.93,
sensitivity = 0.98,
specificity = 0.92,
F1 score = 0.95

Antczak et al. (2021) [19] A patch-based CNN for
stenosis detection

10,000 artificial
images, 250 real
images

Stenosis Accuracy = 90%

Du et al. (2021) [21]
A DNN for the
recognition of lesion
morphology

10,073 patients,
20,612 images

Stenotic lesion, total
occlusion, calcification,
thrombus, and
dissection

F1 score = 0.829, 0.810,
0.802, 0.823, 0.854

Ling et al. (2023) [15] DLCAG diagnose system 949 patients,
2980 images Stenosis mAP = 86.3%

Danilov et al. (2021) [18]
Comparison of
state-of-the-art CNN
(N = 8)

100 patients,
8325 images Stenosis ≥ 70%

mAP = 0.94,
F1 score = 0.96,
prediction speed = 10 fps

Pang et al. (2021) [22] Stenosis-DetNet with SFF
and SCA

166 sequence,
1494 images Stenosis Accuracy = 94.87%,

sensitivity 82.22%

However, these studies still have some limitations: (1) Data in these studies are col-
lected from patients with CAD who might undergo medical therapy or percutaneous
coronary intervention (PCI) only. Lesions of them may be mild and simple, which could
not represent the real world. (2) These studies lack detailed analysis of lesions as stenoses
in detailed types. Du et al. [21] segmented the coronary arteries into more than 20 segments
and explored various manifestations, such as stenosis, occlusion, calcification, thrombosis,
and dissection. However, they did not analyze stenoses more comprehensively, of which
lesions are the most common and important in clinical practice. (3) These studies all per-
formed detection based on segmentation. Compared to direct detection, their approaches
still involved more learning steps and more complex structures. Too many methods were
employed to enhance model efficiency, which leaves space for further modification.

Inspired by this, we intended to develop a strategy to overcome these shortcomings in
this study. We classified vascular lesions into four categories: Local stenosis, diffuse stenosis,
bifurcation stenosis, and chronic total occlusion. We conducted a multi-view analysis of
angiographies from candidates and adopted YOLOv5 as the key model for segmentation-
free DL study of lesion detection, localization, and classification. Furthermore, we also
employed the technique of gradient-weighted class activation mapping (Grad-CAM) for
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the visual explanations to evaluate the model performance and the feasibility of one-stage
lesion detection without segmentation.

The contributions of this study are as follows:

1. This study enrolled angiography images from patients who were candidates for
coronary artery bypass (CAB) surgery for the first time to evaluate the detection
performance of DL techniques with complex lesions.

2. A single-stage detection model by the region-free approach was employed for the first
time to detect vascular lesions directly, aiming to improve detection efficiency.

3. A more detailed classification of vascular stenoses was performed, providing a com-
prehensive evaluation of the network model’s performance among different types of
lesions.

2. Materials and Methods
2.1. Dataset Characteristics

Two hundred and fourteen patients who were potential candidates for CAB surgery
were enrolled from a single cardiac center (Fuwai Hospital, Beijing, China). This study was
reviewed and approved by the ethics committee of Fuwai Hospital. There were some exclu-
sion criteria when collecting data: (1) Combined with other cardiovascular diseases except
atrial septal defect, ventricular septal defect, patent ductus arteriosus, and valvular heart
disease; (2) combined with other diseases requiring surgical treatment; (3) emergency coro-
nary artery bypass grafting or clinically unstable coronary artery disease (e.g., myocardial
infarction within 30 days, preoperative implantation of the aorta counterpulsation, the need
for continuous pumping of nitrates, etc.); (4) preoperative critical condition; (5) history of
cardiovascular pulmonary resuscitation (CPR). The dataset was built by patients’ angiogra-
phies, which were saved as Digital Imaging and Communications in Medicine (DICOM)
files and contained several angle views for left and right coronaries. Finally, images of
the right coronary were analyzed in this study. Two major angle views were analyzed
separately: The LAO (left anterior oblique) view is approximately 45◦ in the left anterior
oblique view, which can display the proximal segment and middle segment well, and the
CRA (cranial) view is approximately 20◦ in the cranial view, which can display the distal
segment and posterior descending branch well. Fourteen patients had normal imaging
findings with no lesion in the right coronary. Ninety-eight patients had lesions in the CRA
view, and 176 patients had lesions in the LAO view. The final dataset had 2453 images
in the CRA view and 3338 images in the LAO view. They were randomly divided into
training sets and validation sets at the patient level by a ratio of 7:3. The enrollment profile
is shown in Figure 1.

Four types of lesions (Figure 2) were analyzed in this study: (1) Local stenosis (LS): A
local stenosis defined as any stenosis under 20 mm in length; (2) diffuse stenosis (DS): A
diffuse stenosis defined as any stenosis over 20 mm in length, which was also named long
lesion [23,24]; (3) bifurcation stenosis (BS): A bifurcation stenosis defined as any stenosis
adjacent to, and/or involving, the origin of a significant side branch [25]; (4) chronic total
occlusion (CTO): A chronic total occlusion defined as 100% occlusion of a coronary artery
for a duration of greater than or equal to 3 months based on angiographic evidence. The
details of image distribution are shown in Table 2.
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Figure 2. Four types of lesions on the right coronary artery. (A) Local stenosis (blue rectangular
box); (B) diffuse stenosis (red rectangular box); (C) bifurcation stenosis (yellow rectangular box);
(D) chronic total occlusion (green rectangular box).

Table 2. Distributions of images and lesions in the CRA and LAO angle views.

The CRA View The LAO View p Value

Age, years 63 ± 8 64 ± 9 0.54
Gender

Male (%) 68 (69%) 118 (67%) 0.72
Images 2453 3338 0.66

Training Set (%) 1747 2395
Test Set (%) 706 943

Lesions
Training Set 3259 1529 <0.01

LS 2003 1005
DS 376 96
BS 500 375

CTO 380 53
Test Set 3874 1262 <0.01

LS 2187 433
DS 405 273
BS 411 174

CTO 871 382
CRA: cranial; LAO: left anterior oblique; LS: local stenosis; DS: diffuse stenosis; BS: bifurcation stenosis; CTO:
chronic total occlusion.



Diagnostics 2023, 13, 3011 6 of 17

2.2. Reference Standard and Annotation Procedures

We treated manual annotations by cardiologists and radiologists as the reference stan-
dard to evaluate the diagnostic performance of the model. Firstly, a researcher converted
the DICOM files into JPG image files. Then, the images of the right coronary were selected
from these files and handed over to two well-trained cardiologists or radiologists with over
10 years of experience in CAG to choose ideal frames and label the lesions. The lesions
were classified into four types: LS, DS, BS, and CTO. In cases of conflicting annotations,
the cardiologist and the radiologist collaborated and reached a consensus to determine the
final type.

2.3. Experimental Environment and Methodology

Our experiments were conducted on a graphics workstation with Intel(R) Xeon Gold
6132 CPU@2.60 GHz 2.59 GHz, and NVIDIA TITAN RTX 24 G. Python 3.8 and PyTorch
1.13 were chosen as the DL framework. Figure 3 shows the flowchart of the DL procedure.
DICOM Files were first exported into serial images. Ideal frames were chosen by our
researcher and datasets were subsequently established. The manual annotation procedure
was performed in the ways mentioned above, and the labeled images were sent to the
network for training and testing. It outputs three vectors containing the predicted box
class, confidence, and coordinate location in CAG images. Coronary lesions were directly
detected, eliminating the requirement for time-consuming processes like segmentation and
blood vessel extraction in previous studies. The types of coronary lesions were simplified
to four with discriminative characteristics. To the best of our knowledge, the proposed
method is the first to employ the single-stage YOLOv5 model with the region-free method
to directly detect coronary lesions in CAG images. Moreover, Grad-CAM was incorporated
to visualize the distinguishing area of specific lesion types for network interpretation.
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We performed experiments both at the image level and the patient level. Because of
the tiny changes in images in the same angle view of one single patient, it might be treated
as one lesion for those found in the same position in the serial images. We defined that the
prediction was correct at the patient level if one correct prediction of the lesion was found
in one of the images in the serial.
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2.4. Architecture of Models
2.4.1. The YOLOv5x Model

Figure 4 shows the structure of the YOLOv5x [26]. The input was uniform-size
CAG image data, which were sent to the one-stage segmentation-free CNN. The network
automatically learned the most class-related discriminant region highlighted to detect
lesions directly, skipping the time-consuming classification and location in two steps.
Finally, the network directly returned the size, position, and category of the target lesion,
achieving end-to-end predictions.
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Figure 4. Overview of the YOLOv5x model architecture. The whole architecture contains 4 general
modules, namely, an input terminal, a backbone, a neck, and a prediction network, along with 6 basic
components: Focus, CSP1_X, CSP2_X, CBS, Res Unit, and SPP.

The YOLOv5x consisted of a backbone feature extraction network, a neck network,
and a head target prediction network. The Mosaic data enhancement method was used
to augment the data, which makes the network more robust. The backbone network was
mainly composed of a focus structure, a cross-stage-partial (CSP) module, and a spatial
pyramid pooling (SPP) module. The focus structure sliced the input CAG images and
stitched the sliced result, which reduces the loss of lesion information and effectively
improves the quality of feature extraction of contrast maps. Two CSP structures were
employed to speed up the inference, decrease computation, and improve lesion detection.
The feature pyramid network (FPN) [27] and path aggregation network (PAN) [28] were
used in the neck to realize multi-scale lesion feature fusion. Three branches of target
detection heads were used in the procedure, which could detect lesions on small, medium,
and large targets, respectively. The dense anchor frame could significantly increase the
network’s ability to identify targets, which is obvious for small target detection. The
network directly outputs results with predictions of lesion types and confidence to realize
the automatic integrated prediction of the lesion type and position.

In this study, the batch size was 16 for the training set and 32 for the test set. A total of
100 epochs of training were conducted. LambdaLR was used as the learning rate updating
strategy, and the stochastic gradient descent (SGD) optimizer and an initial learning rate of
10−4 were used. Box loss, obj (object) loss, and cls (class) loss were used:
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Loss = CIoULoss +
S×S
∑

i=0

B
∑

j=0
Iobj
ij [Cilog(Ci) + (1− Ci)log(1− Ci)]

−
S×S
∑

i=0

B
∑

j=0
Inoobj
ij [Cilog(Ci) + (1− Ci)log(1− Ci)]

+
S×S
∑

i=0

B
∑

j=0
Iobj
ij ∑

c∈classes
[pi(c)log(pi(c)) + (1− pi(c))log(1− pi(c))]

(1)

where S represents the size of the final layer of feature maps and B is the number of
detection boxes. Iobj

ij stands for items in the grid (i, j) and Inoobj
ij for objects not present in

the grid (i, j).
YOLOv5 used CIoUloss [29] as the loss function of bounding box coordinate regression,

which addresses the issue of slow convergence speed and imprecision regression in IoU
and GIoU [30]. Additionally, while conducting non-maximum suppression, weighted non-
maximum suppression (NMS) was employed, which effectively detects some overlapping
vessels in coronary angiography images without consuming more processing resources.

2.4.2. The Grad-CAM Technique

We used the Grad-CAM [31] for visual explanations after lesion detection to identify
the discriminative regions in each trained model that have varied contribution weights for
its classification decision. Grad-CAM can be considered mathematically as a modification
of CAM and can be utilized to extend to any CNN-based network.

To understand the significance of each neuron to a specific lesion category c (e.g.,
the local stenosis), Grad-CAM used the gradient information flowing into the ultimate
convolutional layer of the CNN. The neuron importance weights αc

k were obtained by an
averaged pooling of gradients via backpropagation from category c:

αc
k =

1
Z ∑i ∑j

∂yc

∂Ak
ij

(2)

where Z is a normalization operation. The output of Grad-CAM is generated when all
feature maps of the same size are weighted and added in accordance with their respective
weights. Then, a rectified linear unit (ReLU) was applied to the linear combination to reject
feature maps with negative activation values (Ak):

Lc
Grad−CAM = ReLU

(
∑
k

αc
k·A

k

)
(3)

2.5. Performance Evaluation

The detection performance was evaluated by the confusion matrix, precision-recall
(P-R) curve, precision, recall, F1 score, and mean average precision (mAP) at the image level
and the precision, recall, F1 score, and mFP at the patient level. They were defined as

Precision =
TP

TP + FP
(4)

Recall =
TP

TP + FN
(5)

F1 score = 2× Precision× Recall
Precision + Recall

(6)

IoU =
|A ∩ B|
|A ∪ B| (7)



Diagnostics 2023, 13, 3011 9 of 17

mFP =
FP
n

(8)

where A is the predicted label from YOLOv5x and B is the reference label. A true posi-
tive (TP) represents the correct classification of lesions with the intersection over union
(IoU) ≥ threshold. A false positive (FP) represents the incorrect classification of lesions OR
with the intersection over union (IoU) < threshold. The mean false positive (mFP) represents
the mean number of FPs for each patient. A false negative (FN) is an undetected reference
label. We also employed mAP@0.1 (IoU = 0.1) and mAP@0.5 (IoU = 0.5) in the study.

2.6. Statistics

Descriptive factors were summarized as the mean and standard deviation. Pearson’s
Chi-square tests and Student’s t-tests were conducted for categorical and continuous factors,
respectively. A two-sided p-value < 0.05 was considered statistically significant. Statistical
Product Service Solutions (SPSS) 25.0 was used for statistical analysis.

3. Results
3.1. The Image Level

Details of the results are presented in Table 3. In the general statistics, the precision,
recall, mAP@0.1, and mAP@0.5 predicted by the model were 0.64, 0.68, 0.66, and 0.49 in
the CRA view, respectively. Meanwhile, the precision, recall, mAP@0.1, and mAP@0.5 pre-
dicted by the model were 0.68, 0.73, 0.70, and 0.56 in general in the LAO view, respectively.
The results of CTO showed the best performance with F1 scores of 0.65 and 0.86 in the four
types of lesions in both angle views, compared to the results of LS of 0.67 and 0.50 for the
opposite.

Table 3. Results of four lesions with two angle views at the image level.

Lesions Number Precision Recall mAP@0.1 mAP@0.5 F1 Score

CRA

LS 1055 0.685 0.647 0.643 0.405 0.665
DS 96 0.458 0.844 0.687 0.677 0.594
BS 374 0.656 0.658 0.675 0.625 0.657

CTO 53 0.75 0.566 0.647 0.263 0.645
All 1578 0.637 0.679 0.663 0.493 0.657

LAO

LS 433 0.426 0.617 0.479 0.273 0.504
DS 273 0.648 0.868 0.773 0.688 0.742
BS 174 0.699 0.655 0.694 0.521 0.676

CTO 382 0.927 0.796 0.87 0.749 0.857
All 1262 0.675 0.734 0.704 0.558 0.703

mAP@0.1: mean average precision (IoU = 0.1); mAP@0.5: mean average precision (IoU = 0.5); CRA: cranial; LAO:
left anterior oblique; LS: local stenosis; DS: diffuse stenosis; BS: bifurcation stenosis; CTO: chronic total occlusion.

The confusion matrices for YOLOv5x (Predicted) and manual annotations (True) of
four types of lesions are shown in Figure 5 (IoU = 0.1). All the detected regions were taken
into account when calculating the confusion matrix’s values, similar to other studies on
YOLO [32–34]. Two angle views of the right coronary showed the same performance. In
the CRA view, the probability of correct localization and classification for DS was 0.81,
which was the best, and 0.54, 0.66, and 0.47 for LS, BS, and CTO, respectively. However, it
was noted that 51% of the real CTO was predicted as background, while the background
was also treated as LS, which represented 66% of the predicted LS. In the LAO view, the
probability of correctly locating and classifying DS was 0.79, which was also the best,
followed by 0.60, 0.58, and 0.77 for LS, BS, and CTO, respectively. However, like the
performance in the CRA view, it could be found that 51% of the background was treated as
LS in the LAO results.
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The P-R curves of the two angle views shown in Figure 6 were performed for the
situation of IoU = 0.1. The area under the curve (AUC) in general was 0.663 (mAP@0.1) in
the CRA view and 0.704 (mAP@0.1) in the LAO view. It could be found in Figure 6 that
in the LAO view, the result of CTO had an excellent performance, compared to the result
of LS on the opposite. Meanwhile, in the CRA view, four types of lesions had the same
performance.
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Figure 7 shows the effect of YOLOv5x-detected lesions in CRA and LAO views. From
the test results, it could be found that the model’s detection was close to the manual
annotations of physicians. With the value of confidence displayed in the following, the
model showed good consistency with the reference standard.
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Figure 7. Representative coronary lesion detection results using YOLOv5 in the test set. The bounding
boxes contain images of coronary lesions. CRA: cranial; LAO: left anterior oblique; Blue box: the
manual annotation; Orange box: predicted local stenosis; Red box: predicted diffuse stenosis (long
lesion); Pink box: predicted bifurcation stenosis; Yellow box: predicted CTO; Value: confidence.

3.2. The Patient Level

At the patient level, the model yielded the results of the precision, recall, and F1 score
as 0.52, 0.91, and 0.65 in the CRA view and 0.50, 0.94, and 0.64 in the LAO view, respectively.
The results of CTO showed the best performance with an F1 score of 0.77 and 0.88 in four
types of lesions in both angle views, compared to the results of 0.54 for BS and 0.44 for LS
on the opposite. We also calculated the mFP in two angle views. The performance of LS
made the most mistakes across the four types of lesions. The model performed the best in
the CTO with 0.07 and 0.10 of mFP in both views. Moreover, the mFP was 2.47 in the CRA
view and 1.86 in the LAO view. Table 4 shows the details of the results (IoU = 0.1).
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Table 4. Results of four lesions with two angle views at the patient level.

Lesions TP + FN TP FN FP P R F1 Score mFP

CRA

LS 59 55 4 44 0.556 0.932 0.696 1.467
DS 6 6 0 8 0.429 1.000 0.600 0.267
BS 15 13 2 20 0.394 0.867 0.542 0.667

CTO 6 5 1 2 0.714 0.833 0.769 0.067
All 86 79 7 74 0.523 0.908 0.652 2.467

LAO

LS 28 24 4 57 0.296 0.857 0.440 1.118
DS 18 18 0 17 0.514 1.000 0.679 0.333
BS 11 10 1 16 0.385 0.909 0.541 0.314

CTO 19 19 0 5 0.792 1.000 0.884 0.098
All 76 71 5 95 0.497 0.942 0.636 1.863

TP: true positive; FN: false negative; FP: false positive; P: precision; R: recall; mFP: mean predicted positive; CRA:
cranial; LAO: left anterior oblique; LS: local stenosis; DS: diffuse stenosis; BS: bifurcation stenosis; CTO: chronic
total occlusion.

The Grad-CAM technique always provided valuable information on the model learn-
ing procedure. We generated the heat map of Grad-CAM to consequently testify the regions
of interest for YOLOv5x in both angle views. As shown in Figures 8 and 9, the activated
regions (the highlighted area) corresponded to the regions that the model labeled. The
model was confirmed to have a robust performance even with mild lesions. It was found
that the model could learn the characteristics of lesions well and locate and classify the
lesions precisely.
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4. Discussion

This study used a single-stage model via the region-free method for the first time
to detect coronary lesions directly in CAG images. We also classified common vascular
abnormalities into four types: LS, DS, BS, and CTO. Our results showed that direct detection
models like YOLOv5x can effectively identify vessel lesions. Meanwhile, because of the
segmentation-free feature, YOLOv5x offered a more concise processing procedure, and
hence it could maintain a good balance between model performance and detection efficiency
in general.

In previous studies, the YOLO series of models have mostly been applied in tumor
detection and retinal fundus disease evaluation. However, the fundus vessel lesion eval-
uation shows similarity compared to the coronary stenoses during the DL processing
procedure [35–37]. Santos et al. [36] also used YOLOv5 as the detection model. In their
public datasets of diabetic retinopathy images, YOLOv5 generated mAP@0.5 of 0.154 and
an F1 score of 0.252. In our study, the detection of lesions achieved a precision of 0.675, a
recall rate of 0.734, an mAP@0.1 of 0.558, and an F1 score of 0.703 in the LAO view at the
image level. Meanwhile, at the patient level, the detection of lesions reached a precision of
0.792, a recall rate of 100%, an F1 score of 0.884, and a maximum mFP of 0.466.

Generally, it can be found that the YOLO series of models demonstrates promising
performance in the automatic detection of coronary artery lesions. The high precision and
recall rates at both the image and patient levels indicate the model’s reliability in identifying
vascular abnormalities in CAG images. The impressive F1 scores further validate the model’s
ability to balance precision and recall effectively. The low mFP also suggests that the model
minimizes false-positive detections, which is crucial for accurate diagnosis and reducing
unnecessary interventions. Overall, these findings highlight the potential of using YOLO-
based direct detection models for the efficient and reliable detection of coronary artery
abnormalities in medical imaging applications.
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In the subgroup analysis of the four lesions, the CTO group and the DS group showed
good results. They achieved a precision of 0.927, a recall rate of 0.796, mAP@0.1 of 0.870,
and an F1 score of 0.857 for the CTO group in the LAO view at the image level and a
precision of 0.648, a recall rate of 0.868, mAP@0.1 of 0.773, and an F1 score of 0.742 for the
DS group. Du et al. [16] tested the performances of four models (CALD-Net, ZF-Net+Faster
R-CNN, VGG+Faster R-CNN, and ResNet50+Faster R-CNN), finding recall rates of 0.88,
0.41, 0.50, and 0.62. Pang et al. [22] tested the performances of five models (Faster R-CNN,
Guided Anchoring, Libra R-CNN, Cascade R-CNN, and Stenosis-DetNet), finding F1 scores
of 0.80, 0.79, 0.81, 0.78, and 0.88. Even in the analysis with a large dataset comprising
20,612 CAG images of 10,073 patients, it had a precision of 0.769 for the stenosis and 0.757
for the CTO lesion [21]. Our study showed that the direct detection of lesions like CTO and
diffuse stenoses had the same performance compared to these studies. Consequently, it
might be concluded that single-stage detection models like YOLOv5 could generate a stable
result, which is similar to, or even better than, detection models combining segmentation
in suitable situations.

However, in our study, the performance in the LS group showed an unsatisfactory
result. In the LAO view of the image level, the LS group had a precision of 0.426, a recall
rate of 0.617, a mAP@0.1 of 0.479, and an F1 score of 0.504. At the patient level, the LS group
also had the highest mFP compared to other groups with results of 1.467 in the CRA view
and 1.118 in the LAO view, which meant more than one false labeling of LS for each patient.
Correspondingly, the mFP in the CTO group was just 0.067 in the CRA view and 0.098 in
the LAO view. Moon et al. [13] used the internal dataset and external dataset in their study.
They showed a similar performance, with a mean accuracy of diffuse lesions better than
focal lesions in each dataset. These results might be related to factors such as low-range
stenosis, which is inconspicuous, susceptibility to background noises, and small lesion
characteristics resulting in confusion with the visual features of normal arteries. Therefore,
it is necessary to perform segmentation before the detection of local stenoses in the DL
procedure.

Grad-CAM demonstrated the network-learned lesion characteristics, located the iden-
tification details of lesions, and visualized the distinguishing area of specific lesion types in
the image based on DL. The low-heat region and high-heat region in the heatmap are deter-
mined based on the contribution of the regions in the image to the identification of lesions,
with the high-heat region playing a decisive part in the network’s inferential decision-
making. The network has successfully learned the characteristics of the lesion, allowing the
lesion area to receive adequate attention in Grad-CAM, as indicated by the position of the
intact area with high heat (darker part) and the detection box being consistent. Figures 8B1
and 9B1 show that the model effectively learned the tiny characteristics of local stenoses
and classified them correctly. Moreover, high-heat areas were only visible in the stenosis
area but not in normal blood vessels. As can be observed in the wide array of high-heat
areas in Figures 8G1,H1 and 9G1,H1, CTO exhibited a greater range of characteristics than
local stenosis, which was also identified by the model. However, Grad-CAM struggles to
show only the complicated regions that require attention. Some noise might be produced,
which manifests as comparatively low-heat areas like the edge regions in C1 of Figure 8.

This study has several limitations. (1) We only performed the DL analysis in the right
coronary. Lesions in the right coronary are always simpler than in the left. The YOLO
series of models might face much bigger challenges, and their robustness should be tested
in more complex circumstances. (2) The CAG images of candidate patients were collected
in primary hospitals in our country, which might make it difficult to control the quality
of angiography. It could be an important confounding factor that would impact the final
performance of network models. (3) Our dataset should be enriched in future studies.
The YOLOv5 model performed better for the local stenosis in the CRA view than for the
CRA view, accompanied by a dataset of 1055 lesions compared to 433 lesions. It could
be supposed that the performance of YOLOv5 could be better in a huge dataset of CAG
images.
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5. Conclusions

Our study used the one-stage strategy to detect coronary lesions in a segmentation-free
manner and demonstrated that the YOLOv5 model could be feasible in CAG analysis using
the DL method, with good robustness. We also found in the subgroup study that lesions of
CTO and DS were most suitable for direct detection without segmentation, which could
shorten processing time and improve working efficiency.
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