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Abstract: Thin-section computed tomography (CT) is widely employed not only for assessing
morphology but also for evaluating respiratory function. Three-dimensional images obtained from
thin-section CT provide precise measurements of lung, airway, and vessel volumes. These volumetric
indices are correlated with traditional pulmonary function tests (PFT). CT also generates lung
histograms. The volume ratio of areas with low and high attenuation correlates with PFT results.
These quantitative image analyses have been utilized to investigate the early stages and disease
progression of diffuse lung diseases, leading to the development of novel concepts such as pre-chronic
obstructive pulmonary disease (pre-COPD) and interstitial lung abnormalities. Quantitative analysis
proved particularly valuable during the COVID-19 pandemic when clinical evaluations were limited.
In this review, we introduce CT analysis methods and explore their clinical applications in the context
of various lung diseases. We also highlight technological advances, including images with matrices
of 1024 × 1024 and slice thicknesses of 0.25 mm, which enhance the accuracy of these analyses.

Keywords: computed tomography; image reconstruction; artificial intelligence; densitometry; lung
diseases; interstitial; pulmonary disease; chronic obstructive

1. Introduction

Thin-section computed tomography (CT) is widely used for diagnoses of lung dis-
eases. In particular, the recognition of lung abnormalities relative to the structures of the
secondary lobule is fundamental for the diagnoses of diffuse lung diseases [1]. There are
two definitions of the secondary pulmonary lobule: Miller’s and Reid’s. Miller’s secondary
pulmonary lobules are surrounded by connective tissue septae [1]. Reid’s secondary lobules
were defined by Reid based on the branching pattern of peripheral bronchioles [2,3]. The
recently developed high-resolution CT technique with 1024 × 1024 matrices and 0.25 mm
slice thickness can provide information on peripheral airway [4], and, therefore, Reid’s sec-
ondary lobule can be recognized on these high-resolution images (Figures 1 and 2) [5]. The
lobules, as defined by Reid, exhibit a nearly uniform size, measuring approximately 1 cm
throughout the entirety of the lung. This is particularly important to understand underly-
ing pathophysiological mechanisms. A reduction in the dimensions of secondary lobules
implies a decrease in the alveolar volume available for efficient gas transfer. For instance,
more compact secondary lobules are commonly observed in severe cases of COVID-19,
in which oxygen therapy is administered [5,6]. This particular instance underscores the
vital role of information such as volume derived from images for the accurate estimation of
lung function. Within this review, we present the most common techniques employed in
evaluating respiratory function through the use of thin-section CT scans.
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Figure 1. Thin-section CT of a cadaver’s lung with 1024 x1024 matrices and 0.25 mm of slice thick-
ness. (a,b) tangential and (c,d) parallel images to the lung surface. (a,c) Maximal intensity projection 
(MIP) images with 2 mm thickness and (b,d) their original images. These images are 1024 × 1024, 
with a 0.25 mm slice thickness. Terminal bronchioles are clearly visible on MIP images (a, pink ar-
rows). The small interlobular veins can also be seen (blue arrows). Based on these peripheral struc-
tures, Reid’s secondary lobule is recognized (pink polygon). Miller’s secondary lobule can also be 
observed (yellow polygon). 

 
Figure 2. Axial images from a 71-year-old man with lung cancer and COVID-19 pneumonia. In the 
right lung, there is nodular interlobular septal thickening (red arrow) due to lymphangitis carcino-
matosis. In the left lung, there are ground glass opacities (GGO) due to COVID-19 pneumonia (blue 
arrow). The size of the secondary lobule with GGO is smaller relative to the normal area. 

2. Overview of Densitometric Analyses 
Table 1 summarizes the methods for analyzing respiratory function based on thin-

section CT. There are two main types of analysis: those that use attenuation values and 
those that evaluate the volumes of bronchi, blood vessels, and the lungs. 

  

Figure 1. Thin-section CT of a cadaver’s lung with 1024 × 1024 matrices and 0.25 mm of slice
thickness. (a,b) tangential and (c,d) parallel images to the lung surface. (a,c) Maximal intensity
projection (MIP) images with 2 mm thickness and (b,d) their original images. These images are
1024 × 1024, with a 0.25 mm slice thickness. Terminal bronchioles are clearly visible on MIP images
(a, pink arrows). The small interlobular veins can also be seen (blue arrows). Based on these peripheral
structures, Reid’s secondary lobule is recognized (pink polygon). Miller’s secondary lobule can also
be observed (yellow polygon).

Diagnostics 2023, 13, 2988 2 of 25 
 

 

 
Figure 1. Thin-section CT of a cadaver’s lung with 1024 x1024 matrices and 0.25 mm of slice thick-
ness. (a,b) tangential and (c,d) parallel images to the lung surface. (a,c) Maximal intensity projection 
(MIP) images with 2 mm thickness and (b,d) their original images. These images are 1024 × 1024, 
with a 0.25 mm slice thickness. Terminal bronchioles are clearly visible on MIP images (a, pink ar-
rows). The small interlobular veins can also be seen (blue arrows). Based on these peripheral struc-
tures, Reid’s secondary lobule is recognized (pink polygon). Miller’s secondary lobule can also be 
observed (yellow polygon). 

 
Figure 2. Axial images from a 71-year-old man with lung cancer and COVID-19 pneumonia. In the 
right lung, there is nodular interlobular septal thickening (red arrow) due to lymphangitis carcino-
matosis. In the left lung, there are ground glass opacities (GGO) due to COVID-19 pneumonia (blue 
arrow). The size of the secondary lobule with GGO is smaller relative to the normal area. 

2. Overview of Densitometric Analyses 
Table 1 summarizes the methods for analyzing respiratory function based on thin-

section CT. There are two main types of analysis: those that use attenuation values and 
those that evaluate the volumes of bronchi, blood vessels, and the lungs. 

  

Figure 2. Axial images from a 71-year-old man with lung cancer and COVID-19 pneumonia. In
the right lung, there is nodular interlobular septal thickening (red arrow) due to lymphangitis
carcinomatosis. In the left lung, there are ground glass opacities (GGO) due to COVID-19 pneumonia
(blue arrow). The size of the secondary lobule with GGO is smaller relative to the normal area.

2. Overview of Densitometric Analyses

Table 1 summarizes the methods for analyzing respiratory function based on thin-
section CT. There are two main types of analysis: those that use attenuation values and
those that evaluate the volumes of bronchi, blood vessels, and the lungs.
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Table 1. Indices of thin-section CT for measuring pulmonary function.

Index Method Target Lesion Reference

Lung volume Lung volume measured in
thin-section CT COPD and ILD [7]

%LAA
Volume ratio of LAAs below a
certain threshold (usually −950 HU)
in inspiratory CT

Emphysema [8–12]

%HAA
Volume ratio of HAAs over a certain
threshold (usually −700 HU) in
inspiratory CT

ILD [13,14]

LAC Low-attenuation clusters analysis Emphysema [15]

Fractal dimension Size distribution of clusters of
emphysematous regions Emphysema [16,17]

MLA Mean lung attenuation in
inspiratory CT COPD and ILD [18]

Perc15 HU at the 15th percentile of the
histogram in inspiratory CT Emphysema [19,20]

Skewness and
kurtosis Histogram indices in inspiratory CT ILD [18]

Air trapping
LAAs below a certain threshold
(usually −856 HU) in
full-expiration CT

Small airway disease [21,22]

PRM and DPM

Inspiratory and expiratory CT
images are registered, and each
voxel is classified as emphysema,
gas trapping, or normal

Identification of fSAD
and pre-COPD [23,24]

WA%

Wall area percentage defined as
Ao − Ai/Ao × 100
(Ai; luminal area, Ao; total area of
the airways)

Airway narrowing [25,26]

Pi10

Pi10 calculation: The square root of
the wall area is plotted against the
internal perimeter for each
measured airway.

Airway narrowing [26–28]

TAC
Total airway count; the sum of all
airway segments from the
segmented airway tree

Central airway
narrowing [28,29]

%CSA
Total area of small pulmonary
vessels (usually less than 5 mm in
diameter) in 2D images

Pulmonary vessels [30]

Vessel volume Vessel volume in 3D images Pulmonary vessels [31,32]

Vessel-related
structures

Vessel volume measured using
CALIPER

Pulmonary vessels
in ILD [33,34]

Abbreviations: COPD, chronic obstructive pulmonary disease; CALIPER, Computer-Aided Lung Informatics for
Pathology Evaluation and Rating; CSA, cross-sectional area; CT, computed tomography; DPM, disease probability
measure; fSAD, functional small airway disease; HAA, high-attenuation area; HU, Hounsfield unit; ILD, interstitial
lung disease; LAA, low-attenuation area; LAC, low-attenuation cluster; MLA, mean lung attenuation; PRM,
parametric response map; TAC, total airway count; and WA, wall area.

One of the most widely used quantitative analyses is probably the quantification
of emphysema based on attenuation values. Emphysema is histologically defined as a
condition of the lungs characterized by abnormal, permanent enlargement of airspaces
distal to the terminal bronchiole, accompanied by the destruction of their walls without
evident fibrosis [35]. The pixel value on CT is based on the attenuation value of X-rays
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measured in Hounsfield units (HU; scaled X-ray attenuation coefficient) of a voxel, where
air should be −1000 HU, and water should be 0 HU. Thus, emphysema is characterized by
the presence of areas of abnormally low attenuation on CT. Using this principle, Müller et al.
developed a method known as “density mask” to quantitatively evaluate areas below a
certain threshold, empirically defined as emphysema-like [8]. Thresholds of −910 HU and
−950 HU have been used to quantify mild and severe emphysema, respectively [8], and this
analysis has been histopathologically validated [9,36,37]. This method has been adopted in
patient selection for interventional studies [38], gene associations [39,40], and associations
with respiratory morbidity [41]. Other indices, including mean lung attenuation (MLA)
and attenuation value histograms (Perc15), have also been utilized in patients with chronic
obstructive pulmonary disease (COPD) [19] (Table 1).

Using a similar approach, high-attenuation areas (HAAs) can be utilized as markers
of interstitial lung disease (ILD). Increased HAA levels are associated with reduced forced
vital capacity (FVC) in patients with collagen vascular diseases [13,14]. Histogram indices,
such as skewness, kurtosis, and MLA, have also been correlated with FVC in idiopathic
pulmonary fibrosis (IPF) [18,42].

3. Technical Considerations for Densitometric Analyses
3.1. Radiation Dose

Before discussing the usefulness of quantitative image analysis in each disease, some
technical aspects should be considered.

The most important drawback of CT is radiation exposure. Sakane et al. found no
detectable effects of low-dose CT (with median effective dose of 1.5 mSv) on human DNA
in peripheral blood samples. However, double-stranded DNA breaks and chromosomal
aberrations increase after standard-dose examinations [43]. Therefore, dose reduction is
preferred, particularly for repeated functional lung imaging. Low-dose CT can provide
accurate attenuation values for lung density measurements, similar to standard doses [44];
however, the problem of image noise still remains [45]. There are several solutions to
this issue. Photon-counting CT can reduce radiation exposure while, at the same time,
maintaining image quality, offering a potential solution [46,47].

3.2. Reconstruction Methods

Improvement in image reconstruction techniques may offer another way to reduce
image noise (Figures 3 and 4). Filtered back projection (FBP) has been the standard CT
image reconstruction method for four decades. As shown in Figure 3, higher image noise
and more artifacts are particularly noticeable in lower-dose CT imaging relying on FBP.
In the 2000s, two types of iterative reconstruction algorithms were developed: model-
based iterative reconstruction (MBIR) and hybrid iterative reconstruction (HIR). This type
of reconstruction reduces noise and artifacts and improves both subjective and objective
image quality compared to FBP at the same radiation dose [48,49]. HIR is currently the state-
of-the-art reconstruction technique. Deep learning reconstruction (DLR) techniques have
become increasingly popular in the past five years [50,51] (Figures 3 and 4). Using artificial
intelligence, DLR can generate high-quality images from lower-dose CT faster than MBIR.
Super-resolution DLR (SR-DLR) has also been recently developed. SR-DLR utilizes high-
resolution CT with 1024 × 1024 pixels as a model for deep learning neural networks [51]
and can achieve higher-resolution images without increasing noise (Figures 5–7).
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only aids in noise reduction but also helps reduce artifacts by modeling system optics, system phys-
ics, scanner statistical properties, and human anatomy. An actual image reconstructed using AiCE 
is shown in Figure 4. Recently, a super resolution DLR known as PIQE (Canon Medical Systems 
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struction methods were used: (a) FBP. Marked artifacts are visible in the FBP image; (b) HIR (AIDR). 
Artifacts are reduced in the HIR image, but noise remains; and (c) DLR (AiCE). Emphysema and 
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Clear-IQ Engine; AIDR, adaptive iterative dose reduction; DLR, deep learning reconstruction; FBP, 
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Figure 3. Scheme of a DLR, the Advanced Intelligent Clear-IQ Engine (AiCE, Canon Medical Systems).
Top: training process, and bottom: DLR process. A deep convolutional neural network is first trained
using high-quality images reconstructed via MBIR as the training target. Once trained, the network is
validated and applied to actual data. The algorithm is based on a neural network trained with patient
data, where lower-dose hybrid iterative reconstruction images are used as input, and routine-dose
full MBIR images serve as the ground truth. Utilizing MBIR as the ground truth not only aids in noise
reduction but also helps reduce artifacts by modeling system optics, system physics, scanner statistical
properties, and human anatomy. An actual image reconstructed using AiCE is shown in Figure 4.
Recently, a super resolution DLR known as PIQE (Canon Medical Systems Corporation) has been
commercialized, incorporating deep learning-based super-resolution technology to improve spatial
resolution. In PIQE, the network is trained using ultra-high-resolution data of 1024 × 1024 matrix
size, paired with downsampled, simulated normalized resolution data. PIQE-reconstructed images
are shown in Figure 5. Abbreviations: DLR, deep learning reconstruction; MBIR, model-based
iterative reconstruction; and PIQE, Precise IQ Engine.
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Figure 4. Coronal reconstruction images of low-dose CT obtained from a 63-year-old man with
idiopathic pulmonary fibrosis. The estimated radiation exposure was 1.14 mSv. The following
reconstruction methods were used: (a) FBP. Marked artifacts are visible in the FBP image; (b) HIR
(AIDR). Artifacts are reduced in the HIR image, but noise remains; and (c) DLR (AiCE). Emphysema
and interstitial lesions are clearly visible in the DLR image. Abbreviations: AiCE, Advanced Intelligent
Clear-IQ Engine; AIDR, adaptive iterative dose reduction; DLR, deep learning reconstruction; FBP,
filtered back projection; and HIR, hybrid iterative reconstruction.
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(AIDR) with a smooth kernel (black), and PIQE (red). The histograms of HIR with a sharp kernel 
and FBP are broad owing to noise, resulting in a large %LAA, as shown in Figure 7. The histogram 
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5. Blue color shows pixels with values under −950 HU. (a) FBP, (b) HIR (AIDR, sharp kernel), (c) 
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Figure 5. Axial images of standard-dose CT obtained from a 43-year-old woman with normal
respiratory function. (a) FBP. (b) HIR using AIDR with a sharp kernel and (c) with a smooth kernel.
(d) PIQE. The spatial resolution is 512 × 512 for the matrix size and 0.5 mm slice thickness in images
(a–c). In image (d), the matrix size is 1024 × 1024, and the slice thickness is 0.5 mm. With PIQE,
the sharpness of the pulmonary vessels and bronchi is similar to that of HIR with a sharp kernel,
whereas the noise is the lowest among the four images. Abbreviations: AIDR, adaptive iterative
dose reduction; CT, computed tomography; DLR, deep learning reconstruction; FBP, filtered back
projection; HIR, hybrid iterative reconstruction; and PIQE, Precise IQ Engine.
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Figure 6. Histogram of CT attenuation values of the lung in different reconstruction images, featuring
the patient described in Figure 5. The histogram represents the entire lung and was reconstructed
using the following methods: FBP (blue), HIR (AIDR) with a sharp kernel (green), HIR (AIDR) with
a smooth kernel (black), and PIQE (red). The histograms of HIR with a sharp kernel and FBP are
broad owing to noise, resulting in a large %LAA, as shown in Figure 7. The histogram of PIQE
is as sharp as that corresponding to HIR with a smooth kernel, even with an increase in spatial
resolution. Abbreviations: AIDR, adaptive iterative dose reduction; FBP, filtered back projection; HIR,
hybrid iterative reconstruction; HU, Hounsfield unit; LAA, low-attenuation area; and PIQE, Precise
IQ Engine.

Currently, image reconstruction methods vary among manufacturers of CT equipment.
It is noteworthy that CT lung density measurements can be affected by scanner parameters
and reconstruction methods [52]. Since 2007, CT density variability has been investigated,
and efforts to reduce it have been organized by academic societies such as the Quantitative
Imaging Biomarker Alliance (QIBA) [53]. As a basic premise, CT scanners should be
calibrated. If CT imaging conditions are inconsistent (e.g., in multicenter studies), it is
essential to standardize them first. Lee et al. introduced a convolutional neural network
(CNN) architecture that can convert CT images reconstructed with one kernel into images
with different reconstruction kernels, eliminating the need for a sinogram [54]. For clinical
interpretation, it is recommended to use CT images with a high spatial frequency algorithm
and an iterative reconstruction algorithm [55], although these images feature considerable
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noise, as shown in Figure 4. Generally, the histogram flattens in noisy images; for example,
the percentage of low-attenuation areas (%LAA) increases [52] (Figures 6 and 7).
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3.3. Spatial Resolution

As mentioned above, high-resolution CT with 1024 × 1024 or even 2048 × 2048
matrices and slice thicknesses of 0.25 mm have already been developed [56,57].

Unlike conventional CT, photon-counting CT converts individual X-ray photons di-
rectly into electric signals [46]. It can achieve high-resolution images (1024 × 1024 or
2048 × 2048 matrices and a slice thickness of 0.25 mm) with a low radiation dose [58].
Therefore, a matrix size of 1024 × 1024 and a voxel size of approximately 0.25 mm ×
0.25 mm × 0.25 mm are expected to become the new standard for “thin-section CT” in
the near future. Images with 1024 × 1024 matrices are excellent for visualizing periph-
eral bronchial lumens [4] and other peripheral lung structures [56] (Figures 1 and 8).
Higher-resolution images have an impact on the analysis, at least in bronchial volume-
try parameters, such as total airway count (TAC) [29] and airway volume percentage
(AWV%) [59].
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4. CT Analysis in Chronic Obstructive Pulmonary Disease
4.1. Densitometry Analysis

We will now discuss the usefulness of quantitative assessment for each lung disease,
beginning with COPD. As mentioned above, densitometric analyses of patients with
COPD have been conducted since the 1980s, and various indices have been reported to be
useful [10]: LAA ≤ −950 HU on full-inspiration CT (%LAA950) [9], LAA ≤ −910 HU on
full-inspiration CT (%LAA910) [8], LAA ≤ −856 HU on full-expiration CT (%LAA856) [21],
HU at the 15th percentile (Perc15) [60], and MLA [8]. These parameters show a good
correlation with those of conventional pulmonary function tests, such as forced expiratory
volume in one second (FEV1), FVC, and diffusing capacity of the lung for carbon monoxide
(DLCO) [22]. For example, a lower Perc15 value was correlated with a lower FEV1 (r = 0.12,
p < 0.001) [19], and %LAA showed a better correlation with %DLCO than with FEV1 [11].

These quantitative analyses can be more objective indicators and are suitable for eval-
uating disease progression. Ash et al. reported that a larger annual progression of Perc15
was associated with all-cause mortality in large cohorts [20]. Wang et al. demonstrated that
ambient air pollutants were significantly associated with increased emphysema-assessed
%LAA and lung function [61].

The COPD classification based on quantitative CT has also been applied in genetic
research. Ito et al. found that MMP9 expression is associated with upper lobe–predominant
emphysema [62]. Moreover, Boueiz et al. identified five significant genome-wide associa-
tions with emphysema distribution [40].

4.2. Airway Assessment

Emphysema is a key component of COPD; however, airflow limitation is caused by a
combination of small airway remodeling and emphysema with varying distribution and
severity [63]. Small airways (<2 mm in internal diameter) are the primary sites of airflow
limitation in COPD [64–66]. Although thin-section CT at full inspiration cannot image the
lumens of these small airway branches, Nakano et al. showed a correlation between the
wall area of small airways measured through histology and that of large airways measured
by CT [26]. It has been reported that the percentage wall area (WA%) correlated significantly
with FVC%, FEV1% [25,67], and gas trapping, as assessed by the residual volume (RV) or
its ratio to total lung capacity (TLC) [RV/TLC] [68].

Currently, measurement of the entire bronchial volume has also been proposed for
assessing airway impairment. Smaller airway lumens reduce the number of airways visible
on CT; this impaired visibility is currently assessed as the TAC [29], which is associated with
FEV1, dyspnea, exercise tolerance, and future lung function decline. Tanabe et al. proposed
the percentage ratio of the airway tree volume in the right upper and middle-lower lobes
to the right lung volume as the AWV% for the right lung [59]. They showed that AWV%
was closely correlated with FEV1 and RV/TLC in patients with COPD. In summary, central
bronchial measurements are accessible and useful for evaluating pulmonary function.

4.3. Air Trapping on Expiratory CT

As stated earlier, it is not feasible to directly measure the lumens of small airways on
full-inspiration CT scans. Nevertheless, end-expiratory CT scans can effectively demon-
strate airflow limitation, including small airways, through the identification of “air trap-
ping” [24] (Figure 9). Many studies have evaluated the presence of air trapping, which is
defined as the percentage of voxels with values less than −856 or −850 HU, on expiratory
CT. These values were chosen because they represented the attenuation of a normally
inflated lung on inspiration, and it is assumed that a normal expiratory lung should al-
ways have a higher attenuation [69]. Schroeder et al. showed that the correlation of
%LAAexp−850 on expiratory CT with FEV1 (r = −0.77) and FEV1/FVC (r = −0.84) was
greater than the correlation of %LAA−950 on inspiratory CT with FEV1 (r = −0.67) and
FEV1/FVC (r = −0.76) in the 4062 participants of the COPDGene study [21]. They also
showed that inspiratory and expiratory volume changes decreased with increasing disease
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severity (p < 0.0001). Mets et al. found that the inspiratory-to-expiratory lung attenuation
ratio had the strongest correlation with physiological air trapping [70].
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Figure 9. Air trapping in registered images between inspiratory and expiratory CT. (a–d) Images of a
55-year-old female never-smoker with normal respiratory function. (e–h) Images of an 81-year-old
male patient with COPD who received home oxygen therapy. His lung function measurements
showed an FEV1/FVC ratio of 26.6% and a %FEV1 of 42.3%. (i–l) Images of a 73-year-old male
patient with COPD. His lung function measurements showed an FEV1/FVC ratio of 64.4% and a
%FEV1 of 75.1%. (a,e,i) Coronal reconstructed standard-dose CT images. (b,f,j) Segmented bronchial
trees. (c,g,k) %LAA results. Blue color indicates pixels with attenuation values below −950 HU.
(d,h,l) Registered images between inspiratory and expiratory CT scans. The color indicates the
difference in attenuation values between inspiratory and expiratory CT images. Red represents a
large difference, blue indicates a small difference, and violet represents almost no difference. In
the patient in the bottom row, the %LAA is 2.5%; however, marked air trapping is observed. The
peripheral bronchial lumen is not segmented. These results indicate the airway subtype of COPD.
Abbreviations: COPD, chronic obstructive pulmonary disease; FEV1, forced expiratory volume in
one second; FVC, forced vital capacity; HU, Hounsfield unit; and LAA, low-attenuation area.

4.4. Functional Small Airway Disease

Simple threshold measurements using expiratory CT do not distinguish between gas
trapping due to emphysema or to small airway disease. To solve this problem, Galbán
et al. proposed a parametric response map (PRM) and the concept of functional small
airway disease (fSAD) [24]. They assumed that voxels of the lung with an inspiratory



Diagnostics 2023, 13, 2988 10 of 24

CT attenuation less than −950 HU were emphysematous, whereas voxels with values
greater than −950 HU on inspiration but less than −856 HU on expiration represented
non-emphysematous fSAD. They analyzed follow-up CT scans in 194 patients with COPD
and speculated that fSAD preceded emphysema during COPD progression. Young et al.
identified two subtypes in COPD progression in the large cohort of the COPDGene study
and confirmed their findings using Evaluation of COPD Longitudinally to Identify Predic-
tive Surrogate Endpoints (ECLIPSE) data [71]. They identified two trajectories of disease
progression in COPD: a “Tissue→Airway” subtype (n = 2354, 70.4%), in which small air-
way dysfunction and emphysema precede wall abnormalities of large airways, and an
“Airway→Tissue” subtype (n = 988, 29.6%), in which wall abnormalities of large airways
precede emphysema and small airway dysfunction. These subtypes were reproduced in
the ECLIPSE cohort. The baseline stage in both subtypes correlated with future FEV1/FVC
decline (r = −0.16 (p < 0.001)) in the Tissue→Airway group and r = −0.14 (p = 0.011P in the
Airway→Tissue group) [71].

At present, FEV1/FVC on spirometry remains the most robust and widely available
marker of airflow limitation, and the diagnosis of COPD requires airflow limitation, de-
fined as a postbronchodilator FEV1/FVC < 0.7 [72]. However, CT studies have shown that
considerable lung damage may already have occurred before abnormalities in FEV1/FVC
became evident. Identifying individuals who eventually develop airflow obstruction
consistent with a diagnosis of COPD may enable therapeutic interventions with the po-
tential to modify the disease course [73]. The term “pre-COPD” has been proposed to
identify individuals of any age with respiratory symptoms or detectable structural (e.g.,
emphysema) or functional (e.g., hyperinflation, reduced lung diffusing capacity, rapid
FEV1 decline) abnormalities in the absence of airflow obstruction on postbronchodilator
spirometry (i.e., FEV1/FVC < 0.7) [63]. Analysis of inspiratory and expiratory thin-section
CTs is an essential tool for the diagnosis of pre-COPD.

4.5. Vessel Volume Analysis

Pulmonary vascular endothelial damage is an early step in the pathogenesis of COPD
and emphysema [74]. Detection of vascular abnormalities is necessary to diagnose early
stage COPD. Using non-contrast CT images, a technique to classify pulmonary arteries
and veins has been developed [31]. It is well known that a loss of pulmonary capillaries
is evident in pathologic sections of the emphysematous lung. Estépar et al. calculated
the ratio of vascular volume to nonvascular tissue volume, which is inversely related
to %LAA−950 [31]. Pistenmaa et al. segmented the pulmonary arteries and veins on
non-contrast CT images and defined “pulmonary arterial pruning” as a lower ratio of
small artery volume (<5 mm2 cross-sectional area) to the total lung artery volume [32].
They reported that greater pulmonary arterial pruning was associated with a more rapid
progression of percent emphysema, even after adjusting for baseline percent emphysema
and FEV1. Arterial pruning was also associated with a faster decline in the FEV1/FVC ratio.
These data are consistent with those of previous studies using contrast-enhanced magnetic
resonance imaging; pulmonary microvascular blood flow was reduced in patients with
mild COPD, including in regions of the lungs without evident emphysema [75]. Vascular
volume measurement using non-contrast thin-section CT is a minimally invasive and useful
tool for understanding the pathophysiology of COPD.

5. CT Analysis of ILD
5.1. Automatic Extraction of Various ILD Lesions in Thin-Section CT

Quantitative CT evaluation is essential for the diagnosis and management of patients
with ILD. Various CT patterns are observed in these patients, including ground-glass opaci-
ties, consolidation, reticulation, honeycomb pattern, and emphysema. Therefore, dedicated
software is required to classify these lesions. Table 2 summarizes the available systems.
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Table 2. Segmentation systems for interstitial lung diseases.

System Method References

Adaptive multiple feature method
(AMFM)

Texture-based method with 17 texture
parameters [76,77]

Gaussian Histogram
Normalized Correlation

(GHNC)

Use of local histograms in original and
differential images [78–80]

Computer-Aided Lung Informatics
for Pathology Evaluation and

Rating (CALIPER)

Biomedical Imaging Resource (Mayo Clinic,
Rochester, MN, USA) [33,34,81]

Novel artificial intelligence-based
quantitative CT image analysis

software (AIQCT)

Deep Learning-based Texture Analysis
(Fujifilm corporation, Tokyo, Japan) [82]

CT Lung
Parenchyma Analysis

Three-dimensional machine learning for
CT texture analysis

(Canon Medical Systems, Tochigi, Japan)
[83,84]

QZIP-ILD Deep Learning-based Texture Analysis
(Ziosoft, Inc., Tokyo, Japan). [85]

AVIEW Lung Texture interstitial
lung abnormalities

Deep Learning-based Texture Analysis
(Coreline, Seoul, Republic of Korea). [86]

Data-driven texture analysis
(DTA)

Convolutional
neural network algorithms [42]

Computer-Aided Lung Informatics for Pathology Evaluation and Rating (CALIPER),
developed at the Biomedical Imaging Resource (Mayo Clinic, Rochester, MN, USA), is one
of the most well-known software packages [81], but the principles on which it is based
have not been disclosed in detail. We previously developed a classification system, the
Gaussian Histogram Normalized Correlation (GHNC), which divides pixels on CT images
into several patterns based on local histograms in original and differential images [78].
This GHNC approach not only can extract honeycomb patterns, but it can also detect
subpleural fibrosis in patients with IPF. In a study comparing histological specimens with
GHNC results, GHNC detected subpleural fibrosis, which is a characteristic finding of
usual interstitial pneumonia (UIP)-pattern fibrosis [78]. Subpleural fibrosis is significantly
correlated with prognosis in patients with lung cancer [87].

5.2. CT Lung Volume in Interstitial Lung Disease

Lung volume is a basic biomarker of ILD. A strong correlation exists between CT-
derived automated lung volume, TLC, and FVC [88,89]. Si-Mohamed et al. reported that
CT lung volume was correlated with FVC (r: 0.86) and TLC (r: 0.84) (p < 0.0001). They also
reported that the median annual lung volume loss over 5.03 years was 155.7 mL in IPF
versus 50.7 mL in non-IPF (p < 0.0001) [89].

Lung volume can be measured with relative ease using 3D thin-section CT in patients
with COPD because the lungs can be considered as air-containing material exhibiting
low attenuation. However, in ILD, a simple density mask approach cannot effectively
distinguish the lung from the chest wall due to lesions with high attenuation, such as
consolidation and fibrosis [90]. Therefore, it is recommended to employ dedicated software
for the automatic segmentation of the lung, as mentioned above [78,82,85,91].

The lung volume measured on inspiratory CT showed a good correlation with TLC
measured using plethysmography despite being smaller [89,92,93], especially in patients
with COPD, due to obstructive impairment. Another reason for this difference is the body
position during testing. Conventional pulmonary function tests are typically performed
with the patient in the seated position, whereas thin-section CT is usually performed in the
supine position. CT lung volumes in a healthy cohort have been reported in the United
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States using data from non-Hispanic white individuals from the COPDGene cohort [94], as
well as in Korean patients [95].

5.3. Evaluation of Disease Progression in Patients with ILD

Thin-section CT and quantitative analysis are essential tools for evaluating disease
progression in patients with ILD. The effectiveness of antifibrotic agents has been demon-
strated in various fibrotic ILDs [96,97], and the identification of disease progression is an
important factor in determining treatment, especially in progressive fibrosing ILDs. In
recent guidelines, progressive pulmonary fibrosis was defined as at least two of the three
criteria (worsening symptoms, radiological progression, and physiological progression)
occurring within the past year, with no alternative explanation in a patient with an ILD
other than IPF [98].

CT is one of the important tests for evaluating disease progression; however, Oldham
et al. reported that the description of “disease progression” or “worsening” on daily
radiologists’ reports delayed declining in FVC or DLCO [99]. One of the reasons for this
observation is the shrinkage of ILD lesions. UIP-pattern fibrosis is accompanied by alveolar
collapse, and the volume of the lesion decreases [100] (Figures 10 and 11). Lung shrinkage is
also observed in systemic sclerosis, which shows nonspecific interstitial pneumonia (NSIP)-
pattern fibrosis in typical cases. Chassagnon et al. demonstrated this lesion shrinkage
visually and quantitatively using Jacobian maps [101].
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Figure 10. CT images and their segmented images of a 70-year-old male patient with IPF (UIP
pattern was proven by surgical lung biopsy.) (a,e) Initial CT, (b,f) CT taken two years later, (c,g) CT
obtained four years later, and (d,h) CT after six years. All CTs were acquired at a standard dose.
Segmentation was performed using QZIP-ILD (Ziosoft Inc.). Segmentation color codes: pink, normal
lung tissue; green, GGO, blue, reticulation; yellow, consolidation with traction bronchiectasis; and
violet, honeycomb pattern. In the initial CT image, a small amount of honeycomb pattern can be
observed bilaterally at the lung base. Abbreviations: CT, computed tomography; GGO, ground-glass
opacity; IPF, idiopathic pulmonary fibrosis; and UIP, usual interstitial pneumonia.
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Figure 11. Changes in pulmonary function tests and CT lesion volume. The panels show the changes
in pulmonary function tests (a), CT volume (b) and CT lesion volume (c) in the patient described in
Figure 10. Abbreviations: CTLV, CT lung volume; DLCO, diffusing capacity of the lung for carbon
monoxide; FVC, forced vital capacity; GGO, ground-glass opacity; and TLC, total lung capacity.

Due to lesion shrinkage, the increase in the volume of lesions is lower than the decrease
in the volume of the entire lung and the normal lung [79], as shown in Figure 11. Therefore,
it is important to note decreases in CT and normal lung volumes when evaluating disease
progression [89]. The Jacobian map and elastic registration between baseline and follow-up
CT images enabled the quantification of voxel stretching and shrinkage, represented as
a color map. This approach aided in the identification of local shrinkage and disease
progression in patients with ILD (Figure 12) [101]. In daily clinical practice, measuring lung
height using sagittal images can serve as a valuable surrogate marker that correlates with
CT lung volume [88] (Figure 12).
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years, (d) Jacobian map after one year, and (e) Jacobian map after six years. Follow-up CT images
were elastically registered to align with baseline images, enabling the calculation of deformation
maps using QZIP-ILD (Ziosoft Inc. (Tokyo, Japan)). Each voxel was matched to the corresponding
baseline lung scan in the follow-up examination, and the change in voxel size was represented using
a color map, with red indicating shrinkage. In the Jacobian map, faint shrinkage (yellow) is observed
in the subpleural region after one year (d), whereas the ventral and dorsal subpleural regions show
marked shrinkage (red) after six years (e). The lung height decreased in the follow-up images. CT,
computed tomography; IPF, idiopathic pulmonary fibrosis; and UIP, usual interstitial pneumonia.

5.4. Quantification of High-Attenuation Areas on Thin-Section CT

In addition to dedicated software, conventional densitometry can be applied to
ILDs [102]. If a specific range of CT values is considered normal for the lungs, areas
with high CT values are regarded as lesions, as is the case of fibrosis, and areas with low
CT values are considered indicative of emphysema. Then, the volume ratios of normal
and diseased lungs for the total CT lung volume can be determined. Densitometric anal-
ysis is a popular approach for ILD. We searched the PubMed database for all original
research articles published in English between January 1990 and June 2023, including those
on ILD, CT, and quantitative analysis. In total, 207 original articles were identified, of
which 136 utilized densitometric analyses. For example, Best et al. found a correlation
between kurtosis and FVC (r = 0.53) in patients with IPF [18]. They also showed that MLA
(p = 0.003), skewness (p = 0.001), and kurtosis (p = 0.001) deteriorated with fibrosis progres-
sion, as determined by radiologists in patients with IPF [103].

Quantification of HAAs has been applied in large cohorts to screen for ILD. In large
cohort studies (such as screening for lung cancer), awareness has increased regarding
the clinical importance of incidentally detected interstitial lung abnormalities (ILAs) on
non-contrast chest CT scans [104]. An ILA refers to a subtle or mild parenchymal abnor-
mality identified in more than 5% of lungs on CT scans in patients where ILD was not
clinically suspected previously [105]. ILAs tend to progress slowly over time and are
independent risk factors for death [106]. In previous studies, radiologists determined the
presence of ILAs [107]; however, densitometric analysis offers a more objective approach
to their detection. Easthausen et al. measured HAAs in 3110 participants in the MESA
study and developed a prediction model for HAAs in healthy never smokers [108]. They
also observed increased HAA levels in participants with ILA and exertional dyspnea.
Kim et al. measured %HAA in the MESA study cohort, and each MUC5B risk allele (T)
was associated with an increase in HAAs of 2.60% (95% confidence interval: 0.36–4.86) in
the course of 10 years [109].

In addition, we would like to discuss the syndrome of combined pulmonary fibrosis
and emphysema (CPFE) [110]. CPFE is characterized by the coexistence of pulmonary
fibrosis and emphysema, sharing pathogenic pathways and presenting unique considera-
tions related to disease progression, along with an increased risk of complications such as
pulmonary hypertension and lung cancer, and increased mortality. CT plays a vital role
as a diagnostic tool that enables the quantification of emphysema and fibrosis. However,
distinguishing honeycombs from emphysematous fibrosis remains challenging [111]. We
believe that the conventional densitometric approach is suitable for CPFE, and several
researchers have utilized densitometric analysis for CPFE [112,113]. We advocate that
conventional densitometric analysis should be considered when assessing CPFE.

5.5. Identification of UIP Patterns

Some previous studies have focused on the identification of honeycombs [114] because
they are essential for the CT-based diagnosis of UIP. These studies showed worse prognosis
in patients with honeycombs in various ILDs, such as in patients with lung cancer [115]
or rheumatoid arthritis [116]. However, recent evidence suggests that patients with a
probable UIP pattern (without honeycombs) exhibit similar disease behaviors and clinical
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courses to those in patients with honeycombs [117]. Considering treatment with antifibrotic
drugs, the detection of progressive fibrosis, with or without honeycombs, has become more
important in ILDs other than IPF, including collagen vascular disease and hypersensitivity
pneumonitis [118,119].

In UIP, fibrosis occurs in the perilobular area of the secondary pulmonary lobule [120].
Although the area along the large airways and vessels is perilobular, many other lesions
occur along the bronchovascular bundles, including other types of fibrosis such as NSIP,
bronchitis, and vasculitis. Distinguishing these lesions from UIP-pattern fibrosis on thin-
section CT images is challenging.

Figure 13 shows the segmented images of the outer part of the lung. As shown in
Figure 1, anatomically, the centrilobular region is situated approximately 3–5 mm away
from the adjacent lobular border [121]. In the subpleural region, bronchovascular bundles
are absent in the normal lung on CT (Figures 1 and 13c). Consequently, interstitial lesions
observed within 2–3 mm of the pleura in the subpleural region are highly likely to exhibit
a UIP pattern (Figure 13h). Hunninghake et al. reported that CT findings of lower lung
honeycombs and upper lung subpleural irregular lines were most closely associated with
a pathological diagnosis of UIP [122]. In NSIP, subpleural sparing was a characteristic
finding [123] (Figure 13m). Our previous study showed that small subpleural opacities
on CT corresponded to histological UIP and that the fibrotic lesion volume ratio in the
subpleural area was associated with a worse prognosis [87]. Umakoshi et al. also reported
that increased %HAA in subpleural regions was significantly correlated with decreased
DLCO [124]. We believe that the evaluation of the lung surface will be useful for detecting
UIP-pattern fibrosis.
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Figure 13. Coronal CT image and quantification CT images of the lung surface. (a–e) Images of
a 41-year-old male never-smoker with normal respiratory function. (f–j) Images of a 70-year-old
male patient with IPF (images from the same patient are shown in Figures 10–12). (k–o) Images of a
41-year-old man with pathologically proven idiopathic NSIP. (a,f,k) Coronal CT images obtained at
standard dose. (b,g,l) Segmented images of the entire lung. (c,h,m) outer part with a 2 mm width.
(d,i,n) outer part with a 5 mm width. (e,j,o) outer part with a 10 mm width. All segmentations were
performed using QZIP-ILD. Segmentation color codes are shown in Figure 10. In healthy individuals,
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no structures are observed in the outer part, with a width of 2 mm. (c) Peripheral pulmonary vessels
and bronchi are recognized in the outer part with a 10 mm width. (e) In patients with UIP, a violet
pattern, indicating a honeycomb is observed in the bilateral lung base (blue arrows in f and g).
Additionally, a yellow pattern corresponding to subpleural fibrosis is observed on the surface of the
bilateral upper lobes (red arrows in f and h). In patients with NSIP, the upper lobe surface area shows
a normal pattern. Abbreviations: CT, computed tomography; IPF, idiopathic pulmonary fibrosis;
NSIP, nonspecific interstitial pneumonia; and UIP, usual interstitial pneumonia.

6. Thin-Section CT Analysis for COVID-19 Pneumonia
6.1. CT Findings of COVID-19 Pneumonia

During the coronavirus disease 2019 (COVID-19) pandemic, a large number of CTs
have been obtained for the detection of lung abnormalities and their severity assessments.
The typical CT pattern of COVID-19 pneumonia includes bilateral peripheral GGO abnor-
malities, crazy-paving pattern, and consolidation [125] (Figure 12). The initial lung findings
on chest CT are small subpleural GGOs that grow larger with a crazy-paving pattern and
consolidation [126] (Figure 13). Lung involvement increases to consolidation up to two
weeks after symptom onset [127,128]. Many CT studies have shown that a greater lesion
extent on CT correlates with disease severity during COVID-19 pneumonia [129]. In initial
studies, the extent was evaluated visually [130], but many dedicated software packages
have been developed, including some using artificial intelligence [131]. Densitometric anal-
ysis has also been used to evaluate the extent of pulmonary lesions [132–134]. Quantitative
CT results have been widely used in clinical settings to determine the appropriate level of
care and management strategies, including the need for hospitalization or intensive care.
Figure 12 shows CT images and quantitative results of patients with COVID-19, which
were used in Kanagawa Prefecture in Japan in 2021 as a reference to determine the need for
hospitalization (Figure 14).
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Figure 14. Typical CT images and their segmented images of patients with COVID-19 pneumonia.
All segmentations were performed using QZIP-ILD. (A,D) Images from a 70-year-old man. The
lesion area is 21% of the lung area in this slice. (B,E) Images from a 28-year-old man. The lesion area
in this slice is 25% of the lung area in this slice. (C,F) Images from a 39-year-old man. The lesion
area in this slice is 30% of the lung area in this slice. All patients were admitted and required oxygen
therapy. These figures were used in Kanagawa Prefecture, Japan, during the COVID-19 pandemic as
a reference to determine the need for hospital admission. Abbreviations: COVID-19, coronavirus
disease 2019.
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6.2. Estimation of Respiratory Function Using CT in COVID-19 Pneumonia

In the context of COVID-19, the use of pulmonary function tests and other clinical
evaluations is limited. Thin-section CT provides valuable insights into respiratory func-
tion [135]. For example, a greater extent of disease indicates decreased aeration of the lungs.
We reported smaller secondary lobules in COVID-19 pneumonia lesions observed on high-
resolution CT with a 1024 × 1024 matrix size and 0.25 mm slice thickness, suggesting
alveolar collapse in these lesions [5]. This hypothesis is supported by experimental results
showing the downregulation of surfactant expression in alveolar type 2 cells infected with
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) [136]. Decreased lung
volume is often observed in patients with severe COVID-19 [137] (Figure 15).
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Figure 15. Sagittal CT images from a 74-year-old male patient with COVID-19 pneumonia and their
quantitative analysis. CT images were obtained at (a) 3 days, (b) 9 days, (c) 44 days, and (d) 6 months
from symptom onset. (e) The change in CT lung volume, normal and each lesion measured by QZIP-
ILD. The patient was admitted to our hospital with a cough and fever. (a) The PCR test for COVID-19
was positive. Hypoxemia progressed rapidly, and the patient required oxygen administration at
10 L/min O2. (b) The CT lung volume decreased by approximately 1000 mL, and the lung height on
the sagittal image decreased. Abbreviations: COVID-19, coronavirus disease 2019; CTLV, CT lung
volume; GGO, ground-glass opacity; and PCR, polymerase chain reaction.

The pulmonary blood volume (BV) in vessels less than 5 mm2 (i.e., BV5, corresponding
to a diameter of 1.25 mm) is reduced on thin-section CT in patients with COVID-19, whereas
the vascular volume is increased in vessels within the 5–10 mm2 range (i.e., BV5–10) and
larger than 10 mm2 (BV10) [138]. The BV5% value, calculated as the proportion of BV5 to
total BV, was found to be a prognostic factor for adverse outcomes (intubation or mortality)
in patients with COVID-19 [139]. In thin-section CT scans of COVID-19 pneumonia,
bilateral distribution and subsegmental vessel enlargement are usually observed in clinical
situations [85,140,141]. These vascular abnormalities are consistent with the results of dual-
energy CT [142,143] and microvascular observations using video microscopy [143]. These
vascular changes can reflect the failure of physiological hypoxic vasoconstriction caused by
dysfunctional and diffuse inflammation or secondary vascular dilatation (i.e., congestion)
proximal to SARS-CoV-2-affected microvessels due to microvascular thrombosis [144].
These vascular and parenchymal abnormalities result in V/Q mismatches, shunts, and
marked hypoxemia in patients with severe disease. CT is an essential tool for identifying
COVID-19 pneumonia patients at risk of deterioration.

7. Conclusions

Thin-section CT is a widely adopted imaging modality that has enabled various
quantitative analyses using the volume and attenuation values of the lungs, airways, and
vessels. Many of these analyses can be readily performed using commercially available
equipment. Previous studies have demonstrated that the results of these analyses are
correlated with conventional respiratory function and patient prognosis in a variety of
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diseases. Therefore, we strongly advocate for the incorporation of these analyses into
routine clinical practice. Even if challenges in their implementation still subsist, these
results should be carefully considered and applied to benefit patients in clinical settings.

Thin-section CT is an accessible and well-established tool for evaluating respiratory
function.
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