
Data Cleaning 

For ventilatory data such as inspired fraction of oxygen (FiO2), positive end-expiratory pressure (PEEP), 

mean airway pressure (MAwP), peak inspiratory pressure (PIP), Freq.respi.total ), first zero values were 

considered as missing values. Then, the last available reported value was used to be replaced by the 

missing data for the upcoming event. In case of missing data at the beginning of the ICU stay, the 

first available data was used. 

For any value missing in Vol.C.r, we set the corresponding tidal volume as missing as well. To handle 

the outliers, physiologically impossible values were replaced as follows. In case equal values for 

variables PEEP and PIP were observed, in PIP the value corresponding to the previous observation 

was used. 

  



Segmenting variables in time blocks 

At this stage, first time blocks of 6 hours were generated using the variable time. 

For each patient total number of blocks of 6 hours was calculated. Then backward time blocks 

of 6 hours were created and added to the data set under the variable name timeblocks. 

To better synchronize the data, avoid the impact of outliers and limit the missing data, for each 

continuous variable the median was calculated over each time block of 6 hours. For the categor-

ical variable, subjective amount of respiratory tract secretion (Qt.Secretions), mode (the most frequently oc-

curring category while ignoring the missing values) was selected. 

Next step was to generate the data for the time blocks of 48 hours with the following variables: 

Leucocytes, Neutrophiles, PCR, inspired fraction of oxyge (FiO2), positive end-expiratory pressure 

(PEEP), mean airway pressure (MAwP), pulmonary dynamic compliance (compliance), minute ventila-

tion, Saturation and inspired fraction of oxygen ratio (sf), Oxygenation and Saturation Index (osi), Qt.secre-

tions . We decided to analyze observations over the time blocks of 48 hours to be as close as possible 

to the CDC criteria. For this step, we only considered the patients with at least 16 blocks of 6 hours 

of ICU stay. Since all infections happening during the first 48h of hospitalization cannot be con-

sidered as nosocomial infections, we removed observations for the first 48 hours for each patient. 

Moreover, patients with less than 4 days of invasive mechanical ventilation were removed be-

cause the clinical decision system was built to analyze time blocks of 48 hours.  

For patients with VAP, we generated two separate sets of data. One corresponds to the observa-

tions from the last 48h of ICU stay when the VAP occurred, and another one for the time period 

before occurring VAP. 

The procedure to generate the data set corresponding to the VAP events was as follows. We took the 

first and the last values in the last 48 hours of ICU stay, for the variables Leuco- cytes, Neutrophiles, 

PCR, and FiO2.  For other variables, we considered the first and the last non-missing values, if there 

was any, in the last 48h time period.  For each variable, we stored these values in different set of 

variables, one for the first value (Fvalue) and one for the last value (Lvalue). We also added another 



set of variables (Delta) which compares Fvalue and Lvalue. 

For the variables FiO2, PEEP and MAwP, we considered the actual differences (Delta=Lvalue-

Fvalue). For Leucocytes, Neutrophiles, PCR, minute ventilation and osi, the relative changes 

(Delta=(Lvalue-Fvalue)/Fvalue), and for compliance and sf negative relative changes 

(Delta=(Fvalue-Lvalue)/Fvalue). To have finite values for Delta defined as relative changes, we 

replaced the zero value in Fvalue by the the non-zero Fvalue in the preceding time block. For 

Qt.secretions, we have 4 categories {0, 1, 2, 3}. Note that, in the absence of a reading, we consid-

ered that there was no secretion. So, the missing observations were replaced by "0". If Fvalue or 

Lvalue is 0 or 1, we set Fvalue and Lvalue to 1. Otherwise, we select the observed values Fvalue 

and Lvalue. The Delta, for Qt.secretions, would be the actual difference (Delta=Lvalue-Fvalue). 

We generated a separate data set to store the events for the time blocks of 48h before VAP occurs. 

We followed the same procedure in the previous step, except here we had Fvalue, Lvalue and 

Delta for each time block of 48h. These values were stored in backward time order in three separate 

columns. We also created a data set for the patients without VAP with the same method. 

For further analysis, we considered two sets of variables. One containing the observations for 

Fvalue and another one corresponding to Delta for each variable. 

 

 

Train-test split 

 

To build a predictive model, we split the data in two sets. A train set to develop the model and 

a test set to validate the model. 

In this step, we created two lists from the patients included in the three data sets generated 

in the section “Segmenting variables in time blocks”. One list for the patients with the VAP 

events (65 patients), and another list consist of patients in the data sets corresponding the 

time blocks without VAP (660 patients). Each of these lists were randomly split in train 

group and test group in a 70:30 ratio. 

Using these two lists, we generated train and test data sets. Observations corresponding to 

the patients in the train group were stored in the train set, and observations for the patients 

in the test group were stored in the test set. 

In both sets, the VAP event was assigned to the binary variable VAP (whether VAP occurred 



or not; 1 or 0). The number of VAP events in train and test sets were 45 and 22, respectively. 

Note that, certain patients were intubated on multiple occasions. This leads to a greater total 

number of VAP events compared to the number of patients with the VAP. 

Number of observations for the free of VAP events in the train and test sets were 1852 and 

788, respectively. We recall that each line of observation in these data sets corresponds to the 

values in a time block of 48h. 

 

 

Test and train sets consist of the patients’ ID, observations for the variables VAP, as well as 

Fvalue and Delta for the variables FiO2, PEEP, MAwP, minute  ventilation, sf, osi, compliance, 

and Qt.secretions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Imputation  

First, we identified the variables with missing values in both train and test sets. 

We observed 2 missing values for Saturation and inspired fraction of oxygen ratio (sf) and Oxy-

genation and Saturation Index (osi) in the test set. For variables pulmonary compliance (compli-

ance) and minute ventilation, the number of missing values in train and test sets were 935 

and 439, respectively. 

Missing Value imputation in train set was done by ‘randomForest’ (v4.6-14) with the function 

‘rfImpute’. The imputed values are the weighted average of the non-missing observations, 

where the weights are the proximities from randomForest. The missing values in each var-

iable of the test set were replaced by the mean of imputed values for the same variable with 

missing values in the train set. In the case where variables were complete in train and not in 



the test set, the missing values in the test set were replaced by the mean of the values in the 

train set. This process can be applied prospectively to new data. 

  



Predictive models 

The first implemented algorithm was Random Forest by ‘randomForestSRC’ (V2.9.3), with the func-

tion ‘rfsrc’. The performance of this model is measured using the error rate. The number of tress 

(ntree) was set to the default number of 1000. In the outcome, the number of variables randomly 

sampled as candidates for splitting a node (mtry) was 4. To return the variable importance (VIMP) 

information, we set importance="TRUE" in the function. 

Our data set had a structure of an imbalanced data where the proportion of the majority class 

(free of VAP) to the minority class (VAP) is much larger than one (the imbalanced ratio was about 

38). Given this situation, we then fit a classifier with ‘imbalanced’ function using the balanced 

random forest method (BRF). BRF method under-samples the majority class (the class with the 

greater frequency) so that its cardinality matches that of the minority class. The performance 

of ‘imbalanced.rfsrc’ is measured using the Geometric Mean. The number of trees was set to 

500. 

We also used K-fold cross validation technique to get more information about our algorithm per-

formance. The K-fold cross-validation splits the data into K equally sized parts (fold), and iteratively 

trains the model on K-1 folds and test it on the holdout Kth fold. We implemented 5- fold cross vali-

dation by caret package and using “train” function. The function “traincontrol” was used to specify 

the type of resampling (method="cv"). We fit both Stepwise Regression (“glmStepAIC”) and Ran-

dom Forest (“rf”) models. For these models, accuracy was used to select the optimal model using 

the largest value. The final value for the number of trees was 500 and mtry was 2. 

Finally, we applied Elastic net (EN) and weighted Elastic net (WEN) regularizations by caret package 

using 5-fold cross-validation. In the trainControl function, we used the method "repeatedcv" with a 

"random" search. In the train function the method "glmnet" was used and the tuning grid was set 

to 25 to fit the elastic net. In the weighted Elastic Net, we assigned weights 38 (the imbalanced 



ratio) for VAP events and 1 for free of VAP events. AUC was used to select the optimal model using 

the largest value. The final values of the penalty coefficients used for the model were derived. 

 

Method Function/method Measure of Performance Hyper-Parameter 

RandomForest rfsrc Error rate (overall 

error rate 2.37%) 

ntree=1000, mtry=4 

Imbalanced RF imbalanced(brf) G-mean=0.74 ntree=500, mtry=4 

Stepwise.Reg. (5-fold CV) glmStepAIC Accuracy=0.97 NA 

RandomForest (5-fold CV) rf Accuracy= 0.98 ntree=500, mtry=2 

ElasticNet.Reg (5-fold CV) glmnet AUC=0.83 α = 0.019; λ = 0.042 

Weighted ElasticNet (5-fold 
CV) 

glmnet AUC= 0.83 α = 0.58; λ = 0.034 

 

  



 

Per patient validation 

In this step, we evaluated the final model on its capacity to correctly assess the infection status 

of patients over time. 

Two approaches were applied: first, we looked at the accuracy of predictions by stratifying patients 

into subgroups. Then, we evaluated performance of the model over time. 

The procedure is as follows. 

Prediction results from the model 

From the final model, chosen based on its performance, we generated a data set consist of 5 vari-

ables; the predicted classes (Pred), the predicted classes using the thresholds correspond to the lev-

els of sensitivity 80% (Pred.th1), and 85% (Pred.th2), and variables VAP and ID. 

Subgroup stratifications 

Patients in the test group were divided into two subgroups. A group of patients for whom we had at 

most 3 time blocks of observations (G1), another group of patients with at least 4 time blocks of 

observations (G2). This classification was done separately for patients with VAP and without VAP.  

The number of patients with VAP for subgroups G1 and G2 are 13 and 9, respectively. For patients 

without VAP, we have 186 and 40. 

Subgroups’ validation based on the final model 

The number of patients for whom we obtained accurate predictions (i.e. predicted class=observed 

VAP status) in class predictions Pred, Pred.th1 and Pred.th2 are 185, 165 and 157. The number of 

patients with inaccurate predictions (i.e. predicted class ≠ observed VAP status) over time, in each 

class predictions, are 7, 13 and 17, respectively. 

We identified the patients for whom the predictions contained at least one error (i.e. there exists 

an observation where predicted class ≠ observed VAP status) for each subgroup G1 and G2. The 

global error rates were calculated for each subgroup and presented in supplemental table 1 (error 

prediction).



Model performance over time  

In this step, we generated a data set that compares the observed value of VAP with its predicted value for all 

patients and in all time blocks, starting from the first time-block and progressively accounting for subse-

quent blocks. If predicted value of VAP status corresponds to the observed value over the time-period con-

sidered, we set the validation value as 1, otherwise as 0.  

From this data set we computed false positive rates (FPR) and true positive rates (TPR) over time. We de-

fine 

• FPR= number of patients with VAP status 0 and validation value 0 / number of patients with VAP 

status 0 

• TPR= number of patients with VAP status 1 and validation value 1 / number of patients with VAP 

status 1 

 


