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Abstract: Colon cancer is the third most common cancer type worldwide in 2020, almost two million
cases were diagnosed. As a result, providing new, highly accurate techniques in detecting colon
cancer leads to early and successful treatment of this disease. This paper aims to propose a heterogenic
stacking deep learning model to predict colon cancer. Stacking deep learning is integrated with
pretrained convolutional neural network (CNN) models with a metalearner to enhance colon cancer
prediction performance. The proposed model is compared with VGG16, InceptionV3, Resnet50, and
DenseNet121 using different evaluation metrics. Furthermore, the proposed models are evaluated
using the LC25000 and WCE binary and muticlassified colon cancer image datasets. The results show
that the stacking models recorded the highest performance for the two datasets. For the LC25000
dataset, the stacked model recorded the highest performance accuracy, recall, precision, and F1
score (100). For the WCE colon image dataset, the stacked model recorded the highest performance
accuracy, recall, precision, and F1 score (98). Stacking-SVM achieved the highest performed compared
to existing models (VGG16, InceptionV3, Resnet50, and DenseNet121) because it combines the output
of multiple single models and trains and evaluates a metalearner using the output to produce better
predictive results than any single model. Black-box deep learning models are represented using
explainable AI (XAI).

Keywords: colon cancer; stacking ensemble; CNN; transfer learning; explainable AI (XAI)

1. Introduction

Colorectal cancer (CRC) is a type of cancer that affects the large intestine, commonly
called the colon. It begins when cells in the colon have mutations in their DNA, causing
them to grow and divide uncontrollably. If left untreated, these abnormal cells can become
tumors that invade neighboring tissues or spread to other body parts [1]. Colorectal cancer
risk factors include age, family history of colorectal polyps or malignancies, inflammatory
bowel disease (IBD), smoking, and obesity [2]. Colorectal cancer (CRC) is a prevalent
disease that threatens public health, as it affects many people globally [3]. Globally, it
ranked third in terms of prevalence and second in terms of death rate [4].

In 2019, 142,462 instances of colon and rectal cancer were reported, with 75,581 males
and 66,881 females affected in the United States [5]. In 2023, 153,020 adults will be diagnosed
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with colorectal cancer [6]. The main risk factors for colon cancer incidence are unhealthy
behaviors, such as excessive alcohol use, obesity, smoking, a diet high in red and processed
meat, advanced age, and family history of the disease [6]. Consequently, there is a constant
need for a highly accurate system for detecting colon cancer at a very early stage, which
can lead to prevention of the disease’s development, a reduction in the associated risks,
and support for early treatment.

Deep learning has made essential contributions to the healthcare field by allowing
for the development of powerful algorithms capable of analyzing medical data, making
predictions, and assisting in various medical tasks such as medical imaging analysis and
illness detection [7–10]. Deep learning techniques are more accurate in image analysis
than other conventional ML techniques and traditional methods such as colonoscopy [11],
histopathology [12], and functional tomography (PET-CT) [13] because they are able to
learn the deep spatial representations from images, improve the quality of results, and
increased efficiency. Deep learning is also faster than traditional methods in detecting
cancer [14–16].

A convolutional neural network (CNN) is a form of deep learning (DL) algorithm fre-
quently utilized for text mining [17], as well as image [18] and video recognition tasks [19].
CNNs automatically learn and extract increasingly complex features from input images or
videos by employing convolutional and pooling layers to create higher-level input repre-
sentations. Furthermore, CNNs can learn autonomously, enabling them to identify intricate
visual patterns without relying on human-designed features [20,21]. CNN is the most
effective framework for detecting and classifying medical images, as it can identify image
patterns and extract essential features from them [22]. Data augmentation techniques such
as cropping, flipping, rotation, etc., are important to enhance the effectiveness and results of
CNN models [23]. Pretrained CNN models such as VGG16, InceptionV3, DenseNet121, and
ResNet50 are used mostly to solve complex problems in image processing and computer
vision [24,25]. For example, Babu, Tina, et al. extracted features using pretrained CNN
models (Alexnet, VGG-16, and Inception-V3) and used extracted features to train SVM to
classify colon cancer images [24]. Garg and Somya utilized pretrained CNN-based models
to identify colon cancer with augmentation techniques [25].

Ensemble learning is a powerful machine learning (ML) [26] technique that combines
multiple models to create more accurate, robust, and reliable predictions. By combining
different models, ensemble methods can reduce the variance of individual predictors while
also improving accuracy [27]. Ensemble techniques can also help improve generalization
performance by reducing overfitting caused by single-model approaches [27]. There are
various types of ensemble learning, including bagging, boosting, stacking, and voting [28].
For example, Sharma et al. applied voting ensemble learning based on CNN models with
the Xception and ResNet models. Younas et al. proposed a weighted ensemble model by
combining six CNN models [29].

The main contributions of this paper are summarized as follows:

• A stacking model is developed based on integration of the output of pretrained base
models (VGG16, InceptionV3, DenseNet121, and ResNet50) with a meta-learning
(SVM) model to enhance performance;

• Stacking-SVM models are compared with VGG16, InceptionV3, DenseNet121, and
ResNet50 using various evaluation methods and two image databases;

• Stacking-SVM achieves the best results compared to other models;
• Black-box deep learning models are represented using explainable AI (XAI).

The rest of this paper is organized as follows. Section 2 discusses colon-cancer-related
work and briefly describes related literature. Section 3 discusses the architecture of the
proposed system to predict colon cancer. Section 4 provides a discussion and analysis of
the results. Finally, the paper is concluded in Section 5.
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2. Related Work

In previous studies, a wide range of ML approaches have been proposed for the
analysis of CRC. Most works have used k-means, KNN, and SVM [30–32].

CNN has been used successfully to classify colon cancer in recent years. CNNs can
extract relevant features from medical imaging data and apply them to the classification
task, allowing for a more accurate disease diagnosis. By utilizing CNNs, it is possible to
create a DL model that can accurately distinguish between benign and malignant tumors
with high accuracy rates. Furthermore, by leveraging transfer learning techniques, such
as by fine tuning pretrained models on large datasets of labeled images, researchers have
achieved even higher performance levels when classifying colon cancer using CNNs [29].
For example, in [15], the authors applied CNN models (AlexNet, VGG, ResNet, and
DenseNet) and inception models to the CRC-5000, AiCOLO, nct-crc-he-100k, and Warwick
colon cancer datasets. The results revealed that the ResNet model outperformed other
models in terms of accuracy. In [24], the authors extracted features using pretrained CNN
models (AlexNet, VGG-16, and Inception-V3) and used extracted features to train an
SVM to classify colon cancer. Inception-V3 was found to be the most accurate model
using Indian datasets. In [25], the authors utilized pretrained CNN-based models (VGG16,
NASNetMobile, InceptionV3, InceptionResNetV2, ResNet50, Xception, MobileNet, and
DenseNet169) to identify colon cancer with augmentation techniques using the LC25000
dataset. In [33], the authors proposed an approach based on the integration of different
techniques (Modified ResNet-50, principal component analysis (PCA), and AdaBoost)
using a combination of three datasets: the Kvasir, ETIS-LaribPolypDB, and CVC-ClinicDB
datasetsIn [29], the authors presented a prediction system for classification of colorectal
polyps based on the CNN architecture. Multiple pretrained CNN architectures were
compared to determine the best hyperparameter settings to improve metric evaluation
results. The results revealed that the suggested method achieved a high performance score.
In [34], the authors presented a novel context-aware DNN for colon cancer classification
using colorectal adenocarcinoma histology images. According to the results, context-
aware DNNs performed the best. In [35], the authors presented a colon cancer diagnosis
system based on a CNN, supervised learning, and morphological operations. From the
results, the proposed method achieved a high accuracy. In [36], the authors suggested
a DCNN model for classification of benign and adenocarcinoma colon tissues. They
used the LC25000 dataset. The results showed that the proposed approach performed
well in classifying assessed cancer tissues. In [37], the authors combined AI algorithms
with hyperspectral imaging (HSI) to diagnose colorectal cancer. The authors obtained
a dataset from a University in Germany. The HSI with the NN achieved high accuracy.
In [38], the authors used six models (LightGBM, SVM, MLP, LDA, XGBoost, and RF) to
classify histopathological images using the LC25000 dataset. The experimental results
showed that the XGBoost model achieved the best performance. In [16], the authors
modified MobileNetV2 and added two layers (max pooling and average pooling layers) to
classify colon cancer using the LC25000 dataset. Modified MobileNetV2 achieved the best
performance. In [39], the authors proposed a novel DL-based supervised learning model
using different augmentation methods on the LC25000 dataset. In [40], the authors used
pretrained CNN: models MobileNetV2 and InceptionResnetV2 on the LC25000 dataset.
Transfer learning outperformed a fully pretrained CNN, achieving the highest accuracy.

The authors of [41] used the WCE dataset and suggested a novel nested feature fusion
method for the fusion of deep features retrieved by the pretrained EfficientNet family
to develop a method for the early classification of colorectal cancer. Compared to other
models, the proposed method was more accurate. In [42], the authors used pretrained
CNN models VGG-16, ResNet-18, and GoogLeNet to detect colon cancer. In comparison
with other models, the VGG16 model achieved the best accuracy.

In [43], the authors used two datasets to apply voting ensemble learning based on CNN
models: Xception and ResNet. The voting ensemble model recorded the best performance
for polyp detection in colonoscopy images, with an acceptable level of all performance
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measures. In [29], the authors proposed a weighted ensemble model by combining six
CNN models using the UCI and PICCOLO datasets. They also used different methods of
data augmentation and optimization techniques to ensure the accuracy of the classification
model. In [44], the authors proposed StackBox, which combines the prediction outputs from
different models (RetinaNet and EfficientDet), with a metalearner using the BKAI-IGH
NeoPolyp dataset.

3. Methodology

This section presents the proposed strategy for detecting colon cancer using histopathol-
ogy images, as shown in Figure 1. The proposed approach includes many steps: data
collection; data augmentation; and description Transfer learning using VGG16, ResNet50,
InceptionV3, and DensNet121. Finally, we describe an ensemble deep learning model.

Figure 1. The proposed method for predicting colon cancer.

3.1. Data Collection

We used two colon image datasets for our experiments.

• We used a dataset known as LC25000, which contains histopathological images of
colon cancer [45]. There are 5000 images for adenocarcinoma and 5000 images for
benign colon cancers in the set. The dataset is split into 70% training (7000 images)
and 30% testing (2000 images).
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• The WCE colon image dataset collected from Bernal from the Universitat Autonoma
de Barcelona [46] includes 6000 images with four classes: normal (N), ulcerative colitis
(UC), polyps (P), and esophagitis (E). The dataset is split into 75% training (4500
images) and 25% testing (1200 images).

3.2. Data Augmentation

Data augmentation techniques transform an image by mapping the points in the image
in a different location or manipulating its intensity levels. As a result of this operation, the
existing dataset is modified and subsequently added back into the data pool, increasing
the dataset’s size. These techniques improve the trained model’s performance [47,48].
We applied different data augmentation methods: rescale = 1./255, rotation_range = 45,
zoom_range = 0.2, width_shift_range = 0.2, height_shift_range = 0.2, horizontal_flip = true,
and escale = 1./255.

3.3. Pretrained CNN Models

We added three layers before the output layer in each pretrained CNN, a flattening
layer, and two fully connected layers. The flattening layer converts the output of the
convolution layer into a 1D layer that is used as input to the fully connected layers. The final
layer is the output layer, which uses a sigmoid activation function for binary classification
and a softmax activation function for multiclassification. Detailed descriptions of the
pretrained CNN models are provided for each classifier.

• VGG16 is one of the first CNN models to achieve high accuracy on the ImageNet
dataset, which contains over one million images divided into 1000 categories. VGG16
is made up of 16 layers (13 convolutional and 3 fully linked). Convolutional layers
are organized into blocks, each with a predetermined number of layers (e.g., two or
three) [49].

• InceptionV3 is an image categorization architecture based on CNN. InceptionV3 is
made up of several convolutional layers, pooling layers, and fully connected layers.
InceptionV3 includes a stack of convolutional layers, a global average pooling layer,
numerous fully connected layers, and a Softmax output layer [50].

• Resnet50 comprises 50 convolutional layers and includes residual connections with
shortcuts that help the model better manage the vanishing gradient problem and
effectively train deeper architectures. The architecture is divided into stages, each
containing a sequence of convolutional blocks and identity blocks. Each convolu-
tional block contains three convolution layers, whereas each identity block only has
one. The ResNet50 architecture’s last layer is a fully connected layer that performs
classification [51].

• DenseNet121 is a CNN architecture consisting of four layers: the input layer, transition
layer, dense block, and output layer. The input layer receives an image or data as
input. The transition layers consist of multiple convolutional operations, which reduce
the size of feature maps before entering densely connected blocks. Each dense block
comprises several sets of batch normalization followed by Relu activation and then a
series of 3×3 Conv2d with the same padding to preserve spatial resolution between
two consecutive stages in the network, which helps to achieve faster convergence
when training models on large datasets [52].

3.4. The Proposed Stacking Ensemble Model

The stacking ensemble method is a powerful AI model that combines multiple models
to produce better predictive results than any single model. It works by training each
base model on the same dataset, then combining their predictions via a metamodel that is
used to generate more accurate results than traditional methods. It also allows for greater
interpretability of the overall result and provides an avenue for further exploration of poten-
tial improvements in performance through hyperparameter optimization techniques [53].
There are various types of stacking, including: for example, homogeneous stacking uses
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base models of the same type [54], whereas heterogeneous stacking uses base models of
different types [54]. The proposed stacking ensemble model works in several stages, as
shown in Figure 2:

• The pretrained models (VGG16, ResNet50, InceptionV3, and DenseNet121) are trained
and saved, then loaded, and all model layers are frozen without the output layers.

• Training stacking combines the output predictions of the training set for each pre-
trained model. A metalearner (in this case, an SVM) is trained and optimized using
stacking. A grid search is used to optimize SVMs as metalearners.

• Testing stacking combines the output predictions of each pretrained model. The
metalearner (SVM) is then evaluated using accuracy, precision, recall, F1 score, and
ROC analysis.

Figure 2. The proposed stacking model.

3.5. Evaluating Models

We used different methods to evaluated models:

• Accuracy (ACC), precision (PRE), recall (REC), and F1 score (F1) are the most often-
used metrics for classification performance. Equations (1) and (2) illustrate these
measures (4).
True negative (TN) indicates that an individual is healthy and the test is negative,
in contrast to true positive (TP), which indicates that the person is ill and the test is
positive. When a test shows positive although the subject is healthy, this is known as
a false positive (FP). A false negative (FN) occurs when a person is sick but the test
is negative

Accuracy =
TP + TN

TP + FP + TN + FN
. (1)

Precision =
TP

TP + FP
(2)
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Recall =
TP

TP + FN
(3)

F1 − score =
2 · precision · recall
precision + recall

(4)

• A confusion matrix (CM) is used to evaluate the performance of models, comprising a
table that summarizes an algorithm’s correct and incorrect predictions, with each row
representing the actual class and each column representing the anticipated class [55].

• Receiver operating characteristic (ROC) and area under the curve (AUC) are per-
formance metrics for classification problems. ROC represents a probability curve,
whereas AUC represents the degree of separability. By indicating the degree of separa-
tion between classes, the model is able to perform well. Models with higher AUCs
predict better [56].

4. Experimental Results

This section describes the experimental setup, as well as the results of CNN models
and Stacking-SVM with fixed LR and dynamic LR using two colon image databases.

4.1. Experimental Setup

The experiments in this study were implemented using the TensorFlow [57] library,
along with Keras [58], both of which were run using the Anaconda-Jupyter notebook
platform [59] with an NVIDIA GeForce GT 1030, Intel(R) Core(TM) i5-8500 CPU, and
12.0 GB RAM. For the LC25000 dataset, the number of epochs = 20, activation the function is
a sigmoid, the optimizer is Adam, and the loss function is binary_crossentropy, with a fixed
learning rate of LR = 0.1. For the WCE dataset, the number of epochs = 50, the activation
function is softmax, the optimizer is Adam, and the loss function is categorical_crossentropy,
with a fixed learning rate of LR = 0.1.

4.2. Performance Analysis of the Pre-Trained CNN and Stacking-SVM Models Using the
LC25000 Dataset

All CNN models and Stacking-SVM were applied to the LC25000 dataset for binary
classification, in which we distinguished as benign and adenocarcinomas. The LC25000
was split into 70% training set and 30% testing set. The PRE, REC, and F1 for each class
were registered; CM and ROC curves are displayed.

4.2.1. Results of Fixed Learning Rate (LR)

Table 1 shows the experimental results for Stacking-SVM and four other CNN models:
VGG16, ResNet50, InceptionV3, and DenseNet121 using fixed LR. The Stacking-SVM model
had the highest evaluation matrix in terms of PRE, REC, and F1 score average (100).

For the benign class, Stacking-SVM recorded the greatest ACC, PRE, REC, and F1
score (100). DenseNet121 recorded the second-highest results. ResNet50 recorded the
lowest performance in REC, REC, and F1 score (85, 65, and 73, respectively). For the
adenocarcinomas class, Stacking-SVM registered the highest PRE, REC, and F1 score (100).
DenseNet121 had the second-highest results. ResNet50 recorded the lowest performance in
terms of PRE, REC, and F1 score (71, 89, and 79, respectively).

In Figures 3 and 4, we show the CMs and ROC curves of the models on the testing set.
Using the CM of Stacking-SVM, only 7 of 2000 images were incorrectly classified. When
using ResNet50’s CM, 468 of 2000 images were incorrectly classified. The ROC curves
are also presented. We can see that Stacking-SVM has the highest AUC, at 99.474, and
ResNet50 has the lowest AUC, at 76.768. The Stacking-SVM classifier touches the top-left
corner, indicating that it successfully distinguished the samples.
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Table 1. Performance of the five CNN models and Stacking-SVM with a fixed learning rate using the
LC25000 dataset.

Model Class PRE REC F1

VGG16
Benign 96 99 98

Adenocarcinomas 99 96 98

Average 98 98 98

ResNet50 Benign 85 65 73

Adenocarcinomas 71 89 79

Average 78 77 76

InceptionV3
Benign 100 92 96

Adenocarcinomas 93 100 96

Average 96 96 96

DenseNet121
Benign 100 97 99

Adenocarcinomas 97 100 99

Average 99 99 99

Stacking-SVM Benign 100 100 100

Adenocarcinomas 100 100 100

Average 100 100 100

Figure 3. Confusion matrix of pretrained CNN models and the proposed model with a fixed learning
rate using the LC25000 dataset.

4.2.2. Results of Dynamic Learning Rate (LR)

Table 2 shows the experimental results for Stacking-SVM and four other CNN models:
VGG16, ResNet50, InceptionV3, and DenseNet121 using a fixed learning rate. The Stacking-
SVM model had the highest F1 evaluation matrix in terms of PRE, REC, and F1 average (98).
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Figure 4. ROC of models with a fixed learning rate using the LC25000 dataset.

Table 2. Performance of the CNN models and Stacking-SVM with a dynamic learning rate using the
LC25000 dataset.

Model Class PRC REC F1

VGG16
Benign 89 100 94

Adenocarcinomas 100 87 93

Average 94 93 93

ResNet50 Benign 75 77 76

Adenocarcinomas 77 75 76

Average 76 76 76

InceptionV3
Benign 98 96 97

Adenocarcinomas 96 98 97

Average 97 97 97

DenseNet121
Benign 100 93 97

Adenocarcinomas 94 100 97

Average 97 97 97

Stacking-SVM Benign 97 99 98

Adenocarcinomas 99 97 98

Average 98 98 98

For the Benign class, Stacking-SVM recorded the greatest F1, at 98, and DenseNet121
recorded the highest PRE, at 100, with a REC value of 93. ResNet50 recorded the lowest
performance in terms of PRE, REC, and F1 score (75, 77, and 76, respectively).

For the adenocarcinoma class, Stacking-SVM registered the highest F1 score, at 98, and
VGG16 had the highest PRE, at 100, with a REC value of 87. ResNet50 recorded the lowest
performance in terms of PRE, REC, and F1 score (77, 75, and 76, respectively).

In Figures 5 and 6, we show the CMs and ROC curves of the models on the testing set.
Using the CM of Stacking-SVM, only 35 of 2000 images were incorrectly classified. When
using ResNet50’s CM, 478 of 2000 images were incorrectly classified. ROC curves are also
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presented. We can see that Stacking-SVM has the highest AUC, at 98.799, and ResNet50
has the lowest AUC, at 77.404.

Figure 5. Confusion matrix of pretrained CNN models and the proposed model with dynamic a
learning rate using the LC25000 dataset.

Figure 6. ROC of models with a dynamic learning rate using the LC25000 dataset.

4.3. Performance Analysis of the Pretrained CNN and Stacking-SVM Models Using the WCE Dataset

All CNN models and Stacking-SVM were applied to the WCE database for multiclas-
sification: normal (N), ulcerative colitis (UC), polyps (P), and esophagitis (E). The dataset
was split into 75% training (4500 images) and 25% (1200 images). The PRE, REC, and F1
score for each class were registered; CM and ROC curves are also displayed.
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4.3.1. Results of Fixed Learning Rate

Table 3 shows the experimental results of a fixed LR for Stacking-SVM and the CNN
models (VGG16, ResNet50, InceptionV3, and DenseNet121) using the WCE dataset. Based
on a comparison of other models, the Stacking-SVM model performed best. For the N class,
Stacking-SVM recorded the highest PRE, REC, and F1 score (100, 99, and 100, respectively).
VGG16 recorded the second-highest results. ResNet50 recorded the lowest performance in
terms of PRE, REC, and F1 score (43, 99, and 60, respectively). For the UC class, Stacking-
SVM recorded the highest PRE, REC, and F1 score (100, 86, and 92, respectively). VGG16
recorded the second-highest results. ResNet50 recorded the lowest performance in terms
of PRE, REC, and F1 (78, 5, and 9, respectively). For the P class, Stacking-SVM recorded
the highest PRE, REC, and F1 (88, 100, and 93, respectively). VGG16 recorded the second-
highest results. ResNet50 recorded the lowest performance in terms of PRE, REC, and F1
score (73, 11, and 19, respectively). For the E class, Stacking-SVM recorded the highest
PRE, REC, and F1 score (99, 100, and 99, respectively). VGG16 recorded the second-highest
results. ResNet50 recorded the lowest performance in terms of PRE, REC, and F1 score (65,
96, and 77, respectively).

Table 3. Performance of the CNN models and Stacking-SVM with a fixed learning rate (LR) using the
LC25000 dataset.

Model Class PRE REC F1

VGG16

N 95 99 97

UC 96 81 88

P 90 92 91

E 92 100 96

Average 93 93 93

ResNet50

N 43 99 60

UC 78 05 09

P 73 11 19

E 65 96 77

Average 65 53 41

InceptionV3

N 72 100 84

UC 81 85 83

P 99 67 80

E 100 89 94

Average 88 85 85

DenseNet121

N 98 100 99

UC 77 100 87

P 100 71 83

E 99 96 98

Average 93 92 92

Stacking-SVM

N 100 99 100

UC 100 86 92

P 88 100 93

E 99 100 99

Average 97 96 96
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Figure 7 demonstrates CMs for CNN models and Stacking-SVM using a fixed LR
on the test dataset. There were four classes of the testing, with 300 images for each class.
Stacking-SVM predicted 1154 of 1200 images correctly, with the highest ACC rate of 96.16.
VGG16 predicted 1116 of 1200 images correctly, with the second-highest ACC rate of 93.
ResNet50 predicted 633 of 1200 images accurately, with the lowest ACC rate of 53.

Figure 7. Confusion matrix of pretrained CNN models and the proposed model with a fixed learning
rate (LR) using the WCE dataset.

4.3.2. Results of Dynamic Learning Rate

Table 4 shows the experimental results of dynamic LR for Stacking-SVM and CNN
models V (GG16, ResNet50, InceptionV3, and DenseNet121) using the WCE dataset. The
Stacking-SVM model had the highest performance compared to other models.

For the N class, Stacking-SVM recorded the highest PRE and F1 score (91 and 93,
respectively). VGG16, InceptionV3, and DenseNet121 recorded the highest REC scores, at
100. ResNet50 recorded the lowest performance in terms of PRE, REC, and F1 score (34, 95,
and 51, respectively).

For the UC class, Stacking-SVM recorded the highest REC and F1 score (81 and 85,
respectively). DenseNet121 recorded the highest PRE, at 99. ResNet50 recorded the lowest
performance in terms of PRE, REC, and F1 score.

For the P class, Stacking-SVM recorded the highest REC and F1 score (86 and 87,
respectively). DenseNet121 recorded the highest PRE, at 100. ResNet50 recorded the lowest
performance in terms of PRE, REC, and F1 score (69, 23, and 34, respectively).

For the E class, Stacking-SVM recorded the highest REC and F1 score (99 and 96,
respectively). DenseNet121 recorded the highest PRE, at 100. ResNet50 recorded the lowest
performance in terms of REC and F1 score (71 and 77, respectively).

Figure 8 demonstrates CMs for CNN models and Stacking-SVM using a dynamic LR
on the test dataset. There were four classes of the testing dataset, with 300 images for each
class. Stacking-SVM predicted 1087 of 1200 images correctly, with the highest ACC rate of
91. VGG16 predicted 997 of 1200 images correctly, with the second-highest ACC rate of 84.
ResNet50 predicted 576 of 1200 images accurately, with the lowest ACC rate of 48.
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Table 4. Performance of the CNN models and Stacking-SVM with a dynamic learning rate using the
WCE dataset.

Model Class PRE REC F1

VGG16

N 61 100 76

UC 94 67 78

P 99 76 86

E 100 90 95

Average 89 83 84

ResNet50

N 34 95 51

UC 71 02 03

P 69 23 34

E 84 71 77

Average 65 48 41

InceptionV3

N 68 100 81

UC 77 68 72

P 95 79 86

E 99 81 89

Average 85 82 82

DenseNet121

N 41 100 58

UC 99 45 62

P 100 43 60

E 100 68 81

Average 85 64 65

Stacking-SVM

N 91 96 93

UC 90 81 85

P 88 86 87

E 94 99 96

Average 91 91 91

4.4. Discussion
Rate of Model Results with Fixed and Dynamic Learning Rates Using Two Datasets

Figure 9 shows shows the average rate of model results with fixed and dynamic
learning rates using the LC2500 dataset. We can see that the models with a fixed LR
achieved the highest results compared to models with a dynamic LR. As shown in Figure 9A,
Stacking-SVM recorded the highest average rate, at 100. DenseNet121 recorded the second-
highest average rate, at 99, while ResNet50 recorded the worst average rate, at 77. As
shown in Figure 9B , Stacking-SVM recorded the highest rate, at 98, and NceptionV3 and
DenseNet121 recorded the second-highest average rate, at 97. ResNet50 recorded the worst
average rate, at 76.

Figure 10 shows the average rate of model results with fixed and dynamic learning
rates using the WCE dataset. We can see that the models with a fixed LR achieved the
highest results compared to models with a dynamic LR. As shown in Figure 10A, Stacking-
SVM recorded the highest average rate of ACC, REC, and F1 score (96), as well as PRE
(97). VGG16 recorded the second-highest average rate, at 93, while ResNet50 recorded the
worst average rate. As shown in Figure 10B, Stacking-SVM recorded the highest rate, at
91. VGG16 recorded the second-highest average rate, and ResNet50 recorded the worst
average rate.
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Figure 8. Confusion matrix of pretrained CNN models and the proposed model with a dynamic
learning rate using the WCE dataset.

Figure 9. The average rate of model results with fixed and dynamic learning rates using the LC25000
dataset. (A) Average rate of model results with a fixed dynamic learning rate; (B) average rate of
model results with a dynamic learning rate.

Figure 10. The average rate of model results with fixed and dynamic learning rates using the WCE
dataset. (A) Average rate of model results with a fixed dynamic learning rate; (B) average rate of
model results with a dynamic learning rate.
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4.5. Explainable Artificial Intelligence

A heat map of a post hoc explainable model was generated to better understand the
behavior of each model. Grad-CAM explainable models were used to extract relevant
rich features from the images and generate the heat map for each colon cancer class in
the dataset [60]. Grad-CAM maps allow the model to accurately locate textures within an
image, thereby improving predictions. The red and yellow areas in the heat map indicate
where the CNN model has influenced predictions, while the blue areas are not related
to the predictions. Figure 11 shows a visualization of deep features for each class in the
LC25000 database. Figure 12 shows the visualization of deep features for each class in the
WCE database.

Figure 11. Visualization of deep features for each class for the LC25000 database.

Figure 12. Visualization of deep features for each class for the WCE database.

4.6. Comparison of Model Results with the Literature

A comparison of the proposed model with other models is shown in Table 5. Based
on binary classification using the LC25000 dataset, in [36], the authors used a CNN with
PACC = 99.80, REC = 99.87, and F1 = 99.87. In [38], the authors used XGBoost with
ACC = 99. In [16], the authors used MobileNetV2 with ACC = 99. In [39,40], the authors
used CNN with ACC = 96.33 and 99. In [25], the authors used NASNetMobile with
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ACC = 98, PRE = 98, REC = 98, and F1 = 98. In [29], the authors applied ensemble learning
to classify colon cancer with a private dataset and achieved ACC = 96.3 and PRE = 95.5.
Stacking-SVM recorded the highest rate compared to others models, at 100. Based on
multiclassification using the WCE dataset, in [41], the authors used EfficientNet with
ACC = 94.11. In [42], the authors used VGG16 with ACC = 96.33. In our work, Stacking-
SVM recorded the highest performance compared to other models.

Table 5. Comparison of the proposed model with other models reported in literature.

Ref. DL Architecture Dataset(s) Results (%)

[35] VGG-16, Resnet-50, SVM LC25000 ACC = 93

[36] DeepCNN LC25000 ACC = 99.80, REC = 99.87, F1 = 99.87

[38] XGBoost LC25000 ACC = 99

[16] MobileNetV2 LC25000 ACC = 99

[39] CNN LC25000 ACC = 96.33

[40] CNN LC25000 ACC = 99.98

[25] NASNetMobile LC25000 ACC = 98, PRE = 98, REC = 98, and F1 = 98

[41] EfficientNet WCE dataset ACC = 94.11

[42] VGG16 WCE dataset ACC = 96.33

[29] the weighted ensemble model UCI and PICCOLO ACC = 96.3, PRE = 95.5, REC = 97.2, F1 = 96.3

Our work Stacking-SVM LC25000 ACC = 100, PRE = 100, REC = 100, F1 = 100

Our work Stacking-SVM WCE ACC = 98, PRE = 98, REC = 98, F1 = 98

5. Conclusions

Worldwide, colon cancer ranks third in terms of prevalence; there were almost two
million cases diagnosed in 2020. As a result, providing new, highly accurate techniques in
detecting colon cancer leads to early and successful treatment of this disease. The main goal
of our work was to propose Stacking-SVM based on pretrained CNN models (ResNet50,
VGG16, InceptionV3, and DenseNet121) and a metalearner (SVM) to generalize and classify
colon cancer using binary classes and multiclasses. The main steps of the proposed frame-
work are data collection, data augmentation, data splitting, model pretraining, and model
proposal. In level 1, the output of multiple base models (ResNet50, VGG16, InceptionV3,
and DenseNet121) is combined in stacking (training stacking and testing stacking). In level
2, training stacking is used to train a metalearner (SVM). Testing stacking is used to evaluate
the metalearner (SVM) and predict the final result. We conducted experiments using two
public image databases (LC25000 and WCE) with both fixed and dynamic learning rates.
Stacking-SVM models were compared with different pretrained CNN models using other
evaluation metrics: ACC, PRE, REC, F1, ROC, AUC, and CMs. The results show that
Stacking-SVM with a fixed learning rate achieved the highest average performance for
the two databases. The ACC, PRE, REC, and F1 score of the Stacking-SVM model were
100, 100, 100, and 100, respectively, for the LC25000 database. The ACC, PRE, REC, and
F1 score of the Stacking-SVM model were 98, 98, 98, and 98, respectively, for the the WCE
database. Stacking-SVM recorded the highest performance compared to existing models
(VGG16, InceptionV3, Resnet50, and DenseNet121) because it takes the predictions made
by multiple single models as inputs, learns to combine them in a way that produces a final
prediction, and evaluates the metalearner using the output to produce better predictive
results than any single model. In our future work, we plan to aggregate more data to ensure
the model’s generalizability. Furthermore, we plan to deploy the developed model in a real
clinical system to evaluate its performance on a practical dataset.
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