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Abstract: The origin of metastatic liver tumours (arising from gastric or colorectal sources) is closely
linked to treatment choices and survival prospects. However, in some instances, the primary le-
sion remains elusive even after an exhaustive diagnostic investigation. Consequently, we have
devised and validated a radiomics nomogram for ascertaining the primary origin of liver metastases
stemming from gastric cancer (GCLMs) and colorectal cancer (CCLMs). This retrospective study
encompassed patients diagnosed with either GCLMs or CCLMs, comprising a total of 277 GCLM
cases and 278 CCLM cases. Radiomic characteristics were derived from venous phase computed
tomography (CT) scans, and a radiomics signature (RS) was computed. Multivariable regression
analysis demonstrated that gender (OR = 3.457; 95% CI: 2.102–5.684; p < 0.001), haemoglobin levels
(OR = 0.976; 95% CI: 0.967–0.986; p < 0.001), carcinoembryonic antigen (CEA) levels (OR = 0.500;
95% CI: 0.307–0.814; p = 0.005), and RS (OR = 2.147; 95% CI: 1.127–4.091; p = 0.020) exhibited indepen-
dent associations with GCLMs as compared to CCLMs. The nomogram, combining RS with clinical
variables, demonstrated strong discriminatory power in both the training (AUC = 0.71) and validation
(AUC = 0.78) cohorts. The calibration curve, decision curve analysis, and clinical impact curves
revealed the clinical utility of this nomogram and substantiated its enhanced diagnostic performance.

Keywords: liver; neoplasm metastasis; radiomics; computed tomography; stomach neoplasms;
colorectal neoplasms

1. Introduction

The term “Cancer of Unknown Primary” (CUP) denotes a diverse cohort of metastatic
cancers wherein the tissue of origin eludes identification following a conventional diagnos-
tic assessment [1–4]. CUPs constitute approximately 2–5% of all human malignancies [3,4].
The prevailing histological pattern observed in most CUP cases manifests as moderately
differentiated adenocarcinomas, although instances of undifferentiated or poorly differ-
entiated adenocarcinomas, squamous cell carcinomas, neuroendocrine carcinomas, or
undifferentiated neoplasms also exist [2–4]. Smoking may be regarded as a potential risk
factor for malignancies arising from unknown primary sites [5]. Moreover, the overall
prognosis for CUP patients typically presents a grim outlook, with a 12-month survival
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rate of merely 24% [6]. Nevertheless, specific subtypes, such as lymphomas, extrago-
nadal germ cell tumours, and neuroendocrine tumours, hold the potential for curative
interventions [2,3]. It is worth noting that CUP can occasionally manifest as prostate can-
cer, for which well-established treatment protocols are available [4]. Generally, patients
who eventually have an identifiable primary tumour or those with tumours that demon-
strate sensitivity to chemotherapy or hormone therapy tend to exhibit a more favourable
prognosis [4].

The two most prevalent types of hollow organ tumours are gastric and colorectal can-
cers, ranking as the third and sixth most commonly diagnosed malignancies, respectively.
Notably, they both persist as leading causes of cancer-related fatalities worldwide [7,8]. The
liver emerges as one of the most frequently affected sites for metastatic dissemination in
cases of hollow organ tumours, owing to its dual blood supply from the hepatic artery and
portal vein [7]. The presence of liver metastases arising from hollow organ tumours, such
as those originating in the stomach and colorectum, can yield a more favourable prognosis,
primarily due to the array of available treatment modalities. For instance, hepatectomy is
recommended for patients with liver metastases from gastric cancer (GCLMs) presenting
with three or fewer liver metastases or unilobar metastases [8]. In contrast, hepatectomy
is generally indicated for liver metastases from colorectal cancer (CCLMs), regardless of
their number or distribution [9]. Furthermore, patients with GCLMs exhibit significantly
shorter times to surgical failure (median, 15.2 months vs. 39.7 months, p = 0.006) and overall
survival (median, 20.1 months vs. 66.2 months, p < 0.001) when compared to those with
CCLMs. Previous investigations have established that GCLMs tend to represent a more
systemic disease than CCLMs, justifying the rationale for administering chemotherapy to
GCLM patients [10]. Nevertheless, there are instances where the primary lesion remains
elusive despite extensive diagnostic scrutiny, particularly in the context of hollow organ tu-
mours [11–13]. Gastrointestinal wall thickness, assessable via computed tomography (CT)
scans, can increase due to benign factors, such as inflammation, ulcers, polyps, tuberculosis,
Crohn’s disease, diverticula, or Menetrier’s disease [14]. In addition, 18F-FDG positron
emission tomography (PET)/CT exhibits limited diagnostic utility in detecting primary hol-
low organ tumours [15,16]. Determining the primary site is an invasive, time-consuming,
and costly endeavour. Consequently, the development of a non-invasive, straightforward,
and effective model for discerning the primary site of hollow organ tumours, specifically
gastric and colorectal cancers, is of paramount importance.

Radiomics entails the precise conversion of image-derived information into accessible
data for the automated extraction of quantitative features [17,18]. Lang et al. [17] achieved
successful differentiation between metastatic spinal lesions originating from primary lung
cancer and those from other cancer types using radiomics. Several studies [18–20] have
reported the capacity of radiomics to distinguish brain metastases originating from breast,
lung, and various other cancer categories. However, liver metastases have received rela-
tively scant attention in this context. Ben-Cohen et al. [21] conducted a study involving
71 patients with liver metastases, employing CT data as the input source to classify primary
sites. Similarly, Qin et al. [22] retrospectively examined 254 patients, constructing and
validating radiomics models based on B-mode ultrasound features for identifying the
origins of hepatic metastatic lesions. Both investigations demonstrated that texture analysis
could facilitate the differentiation of liver metastases arising from distinct primary sites.
Nonetheless, further research is warranted, given the limited dataset and the propensity for
overfitting. Additionally, gastric and colorectal cancers, although originating from the same
bodily system, albeit different organs, have been the subject of relatively few comparative
studies in this context.

Hence, the objective of this study is to develop and validate a radiomics nomogram
for the precise determination of the primary site of liver metastases originating from these
two cancer types.
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2. Study Design and Patients

This study retrospectively enrolled patients diagnosed with either GCLMs or CCLMs
at Changzhou Second People’s Hospital, affiliated with Nanjing Medical University, during
the period spanning from April 2011 to September 2021. Approval for this retrospective
study was obtained from the Institutional Review Board of Changzhou Second People’s
Hospital, affiliated with Nanjing Medical University. Given the retrospective nature of the
study, the requirement for informed consent was waived.

The inclusion criteria encompassed the following conditions: (1) newly diagnosed
cases of gastric or colorectal cancer with confirmed liver metastases through pathological
examination; (2) the absence of concurrent cancers in other organ sites; (3) liver lesions
confirmed as metastases either via biopsy or, for patients lacking histopathological data, by
displaying typical metastatic imaging characteristics and morphological changes (involving
at least a 30% increase or reduction in maximum diameter) during the follow-up period;
(4) undergoing dynamic abdominal CT scans as part of their treatment regimen; (5) no
prior history of radiotherapy, chemotherapy, or other treatments; and (6) comprehensive
baseline clinicopathological and epidemiological data, including age, sex, hypertension,
diabetes, and other relevant factors. On the other hand, the exclusion criteria comprised
the following: (1) cases where the primary malignant lesion remained unidentified; (2) the
presence of concurrent cancers in other organ sites; (3) a lack of morphological changes in
liver metastases during follow-up after treatment; (4) instances where CT images were lost
or the image quality was deemed suboptimal; or (5) incomplete clinical data.

2.1. Data Collection and Definition

Demographic and clinicopathological data were retrieved from the electronic med-
ical records of patients, encompassing information such as age, gender, the presence of
hypertension, diabetes, the existence of liver metastases, primary site tumour location,
haemoglobin (HGB) levels, alanine aminotransferase (ALT) levels, carcinoembryonic anti-
gen (CEA) levels, and cancer antigen (CA)19-9 levels. The primary site tumours under
consideration included gastric cancer and colorectal cancer.

2.2. CT Image Acquisition and Image Processing

Contrast-enhanced CT examinations were conducted using a 128-row dual-source CT
scanner (SOMATOM Definition Flash, Siemens, Germany), employing a voltage of 120 kV
and tube current modulation. All patients were instructed to fast for a minimum of 8 h
before receiving intravenous contrast (Iohexol, 1.5 mL per kilogram of body weight, admin-
istered at a rate of 3 mL/s). Following the administration of the contrast agent, patients
underwent double-helical scanning during both the arterial and portal venous phases.

Regions of interest (ROIs) were delineated on each slice displaying liver metastases
during the portal venous phase using the open-source imaging platform LabelMe software
(version 3.11.2, https://github.com/wkentaro/labelme, accessed on 22 March 2019). Subse-
quently, all ROIs were imported into freeware, specifically the Local Image Features Extraction
(LIFEx) software (version 5.10, https://www.lifexsoft.org, accessed on 19 March 2018), for
texture analysis. To compute first-order features for the segmented tumours [23], a histogram
was generated. As detailed in prior studies [23,24], the number of grey levels used for resam-
pling the ROI content was set at 64.0 to calculate second-order and higher texture features.
Spatial resampling was configured at 2.0 mm (X direction), 2.0 mm (Y direction), and 1.0 mm
(Z direction) in Cartesian coordinates. Texture features were evaluated via four texture ma-
trices, namely the grey-level co-occurrence matrix (GLCM), the grey-level run length matrix
(GLRLM), the neighbourhood grey-level difference matrix (NGLDM), and the grey-level zone
length matrix (GLZLM). In total, 35 features were extracted from the texture analysis. The
features from the largest ROI of each patient were employed for subsequent analysis. The
radiomics signature (RS) was computed based on feature variations, with RS = −1.191 ×
Skewness + 1.223 × Homogeneity + −1.2 × Dissimilarity. In this formula, each variable
(p < 0.10) was weighted using its β-coefficient derived from the univariable analyses.

https://github.com/wkentaro/labelme
https://www.lifexsoft.org
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2.3. Nomogram Development and Validation

All patients underwent random allocation into training and validation cohorts, ad-
hering to a 7:3 ratio. Initially, only the training cohort was utilised for the selection of
predictive features. Variables exhibiting a significance level of p < 0.10 in the univariable
analysis were subsequently incorporated into the multivariable logistic regression analysis.
The reference group for this analysis was the CCLM group. Subsequently, we developed a
nomogram employing the R package “rms” within the R software (version 3.6.1, Institute
for Statistics and Mathematics, Vienna, Austria). This nomogram aimed to distinguish
the primary tumour origin, discerning between colorectal and gastric cancers based on
the outcomes of the multivariable logistic regression analysis. The predictive performance
of the nomogram was quantified using the area under the curve (AUC) from the receiver
operating characteristic (ROC) curve analysis, conducted in both the training and valida-
tion cohorts, utilising the R package “ROCR”. Internal validation of the nomogram was
executed via calibration curve analysis, employing bootstrapping with 1000 resamples to
assess the consistency between actual outcomes and predicted probabilities. Lastly, the
clinical utility of the nomogram was evaluated through decision curve analysis (DCA) and
clinical impact curve (CIC) assessment, considering a population size of 1000.

2.4. Statistical Analysis

Statistical analysis was performed using R (version 3.6.1, Institute for Statistics and
Mathematics, Vienna, Austria) and SPSS (version 22.0, IBM Corp., Armonk, NY, USA).
Student’s t-test and the chi-square test were applied to assess differences in continuous
and categorical variables, respectively, between groups. The correlations among texture
parameters were evaluated using Pearson’s correlation coefficient, facilitated by the R
package “psych”. To investigate disparities in texture features between patients with
GCLMs and those with CCLMs, a two-sided Student’s t-test was employed. Statistical
significance was defined as two-sided p-values < 0.05.

3. Results
3.1. Characteristics of the Patients

A total of 555 patients were included in the study, comprising 277 with GCLMs and
278 with CCLMs. The training cohort comprised 400 patients, while the validation cohort
included 155 patients. No statistically significant differences in clinical characteristics were
observed between the training and validation cohorts (all p > 0.05, as indicated in Table 1).

Table 1. Baseline characteristics of patients with liver metastases.

Characteristics Training Cohort (n = 400) Validation Cohort (n = 155) p

Age (years) 67.0 ± 33.7 67.0 ± 9.6 0.914
Sex 0.691

Male 283 (70.8%) 107 (69.0%)
Female 117 (29.3%) 48 (31.0%)

Hypertension 126 (31.5%) 57 (36.8%) 0.236
Diabetes 51 (12.8%) 17 (11.0%) 0.566

Liver metastases 0.834
1 49 (12.3%) 20 (12.9%)

>1 351 (87.8%) 135 (87.1%)
Primary tumor 0.946
Gastric cancer 200 (50%) 77 (49.7%)

Colorectal cancer 200 (50%) 78 (50.3%)
HGB (g/L) 117 ± 23.9 116 ± 24.4 0.702
ALT (U/L) 18.1 ± 37.1 16.0 ± 30.5 0.368

Missing 3 (0.75%) 0
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Table 1. Cont.

Characteristics Training Cohort (n = 400) Validation Cohort (n = 155) p

CEA (ng/mL) 0.833
<100 287 (71.75%) 114 (73.5%)
≥100 108 (27.0%) 41 (26.5%)

Missing 5 (1.25%) 0
CA19-9 (U/mL) 0.520

<1000 341 (85.3%) 137 (88.4%)
≥1000 54 (13.5%) 28 (11.6%)

Missing 5 (1.3%) 0
HGB, blood haemoglobin; ALT, alanine transaminase; CEA, carcinoembryonic antigen; CA19-9, carbohydrate
antigen 19-9.

3.2. Clinical Characteristics between Patients with GCLMs and CCLMs

In the training cohort, when comparing patients with CCLMs to those with GCLMs,
several noteworthy differences emerged. Notably, the CCLM group exhibited a lower
proportion of males (p < 0.001), higher levels of haemoglobin (HGB) (p < 0.001), elevated
carcinoembryonic antigen (CEA) levels (p = 0.039), and a reduced radiomics signature (RS)
(p = 0.010). Conversely, no statistically significant disparities were identified in other factors,
including age, hypertension, diabetes mellitus, the number of liver metastases, alanine
aminotransferase (ALT), or cancer antigen 19-9 (CA19-9) (all p > 0.05). In the validation
cohort, a similar pattern was observed when comparing patients with CCLMs to those with
GCLMs. Specifically, the CCLM group exhibited a lower proportion of males (p < 0.001),
higher HGB levels (p = 0.053), lower ALT levels (p = 0.021), elevated CEA levels (p = 0.007),
and a higher RS (p = 0.039) (Table 2).

Table 2. Baseline characteristics between patients with GCLMs and CCLMs.

Characteristics

Training Cohort Validation Cohort

Gastric Cancer
(n = 200)

Colorectal Cancer
(n = 200) p Gastric Cancer

(n = 77)
Colorectal Cancer
(n = 78) p

Age (years) 68.0 ± 9.1 65.5 ± 46.8 0.642 68.0 ± 9.0 67.5 ± 10.3 0.421
Gender <0.001 <0.001

Male 160 (80%) 123 (61.5%) 66 (85.7%) 41 (52.6%)
Female 40 (20.0%) 77 (38.5%) 11 (14.3%) 37 (47.4%)

Hypertension 57 (28.5%) 69 (34.5%) 0.196 51 (66.2%) 47 (60.3%) 0.440
Diabetes 23 (11.5%) 28 (14.0%) 0.454 65 (84.4%) 73 (93.6%) 0.068
Liver metastases 0.286 0.354

1 21 (10.5%) 28 (14.0%) 8 (10.4%) 12 (15.4%)
>1 179 (89.5%) 172 (86.0%) 69 (89.6%) 66 (84.6%)

HGB (g/L) 112 ± 25.4 121 ± 21.1 <0.001 112 ± 24.7 122 ± 23.5 0.053
ALT (U/L) 18.2 ± 41.9 17.9 ± 31.6 0.149 17.6 ± 39.7 14.7 ± 15.3 0.021
CEA (ng/mL) 0.039 0.007

<100 153 (77.3%) 134 (68.0%) 64 (83.1%) 50 (64.1%)
≥100 45 (22.7%) 63 (32.0%) 13 (16.9%) 28 (35.9%)

CA19-9 (U/mL) 0.233 0.125
<1000 175 (88.4%) 166 (84.3%) 65 (84.4%) 72 (92.3%)
≥1000 23 (11.6%) 31 (15.7%) 12 (15.6%) 6 (7.7%)

Radiomics signature −0.242 (0.349) −0.316 (0.328) 0.010 −0.360 (0.303) −0.322 (0.270) 0.039

GCLMs, liver metastases from gastric cancer; CCLMs, liver metastases from colorectal cancer; HGB, blood
haemoglobin; ALT, alanine transaminase; CEA, carcinoembryonic antigen; CA19-9, carbohydrate antigen 19-9.

3.3. Correlation between Texture Parameters of Liver Metastases in the Training Set

Within the training cohort, no statistically significant distinctions were evident when
comparing the GLRLM, NGLDM, or GLZLM parameters between the two groups, as
determined by Student’s t-test (all p > 0.10) (Table 3). In the context of histogram analysis,
patients with GCLMs displayed a trend towards higher skewness values in comparison to
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those with CCLMs (p = 0.097). A similar pattern emerged in the GLCM analysis, wherein
patients with GCLMs exhibited greater levels of homogeneity (p = 0.078) and dissimilarity
(p = 0.096) than their CCLM counterparts. To investigate the relationships between texture
parameters in the training cohort, Pearson’s correlation coefficient was employed (Figure 1).

Table 3. Principal parameters calculated by texture analysis of liver metastases.

Texture Parameter
Colorectal Cancer (n = 200) Gastric Cancer (n = 200) p
Mean SD Mean SD

Histogram
Skewness 0.496 0.140 0.473 0.140 0.097
Kurtosis 0.211 0.155 0.232 0.128 0.398
Entropy 0.554 0.206 0.557 0.217 0.890
Energy 0.196 0.142 0.201 0.159 0.725

GLCM
Homogeneity 0.495 0.144 0.521 0.147 0.078
Energy 0.088 0.119 0.083 0.125 0.642
Contrast 0.160 0.128 0.142 0.111 0.139
Correlation 0.672 0.175 0.668 0.190 0.852
Entropy 0.331 0.225 0.340 0.216 0.677
Dissimilarity 0.280 0.146 0.257 0.135 0.096

GLRLM
SRE 0.550 0.161 0.536 0.173 0.382
LRE 0.414 0.163 0.429 0.176 0.376
LGRE 0.096 0.102 0.085 0.091 0.251
HGRE 0.418 0.193 0.429 0.201 0.582
SRLGE 0.119 0.125 0.106 0.115 0.274
SRHGE 0.418 0.192 0.427 0.198 0.636
LRLGE 0.047 0.053 0.041 0.042 0.186
LRHGE 0.395 0.174 0.410 0.189 0.413
GLNU 0.038 0.086 0.038 0.061 0.920
RLNU 0.058 0.103 0.057 0.084 0.957
RP 0.536 0.167 0.521 0.179 0.385

NGLDM
Coarseness 0.204 0.167 0.195 0.153 0.556
Contrast 0.034 0.091 0.028 0.075 0.481
Busyness 0.0850 0.099 0.080 0.073 0.583

GLZLM
SZE 0.640 0.115 0.629 0.128 0.360
LZE 0.308 0.146 0.321 0.160 0.399
LGZE 0.149 0.150 0.136 0.151 0.377
HGZE 0.428 0.194 0.438 0.201 0.638
SZLGE 0.138 0.143 0.129 0.151 0.517
SZHGE 0.407 0.180 0.410 0.179 0.849
LZLGE 0.021 0.028 0.018 0.018 0.159
LZHGE 0.325 0.162 0.348 0.188 0.198
GLNU 0.044 0.091 0.043 0.067 0.922
ZLNU 0.074 0.117 0.073 0.100 0.965
ZP 0.245 0.095 0.240 0.105 0.565

GLCM, the grey-level co-occurrence matrix; GLRLM, the grey-level run length matrix; NGLDM, the neighbour-
hood grey-level different matrix; GLZLM, the grey-level zone length matrix; SRE, Short-Run Emphasis; LRE,
Long-Run Emphasis; LGRE, Low Gray-level Run Emphasis; HGRE, High Gray-level Run Emphasis; SRLGE,
Short-Run Low Gray-level Emphasis; SRHGE, Short-Run High Gray-level Emphasis; LRLGE, Long-Run Low
Gray-level Emphasis; LRHGE, Long-Run High Gray-level Emphasis; GLNU, Gray-Level Non-Uniformity for
run; RLNU, Run Length Non-Uniformity; RP, Run Percentage; SZE, Short-Zone Emphasis; LZE, Long-Zone
Emphasis; LGZE, Low Gray-level Zone Emphasis; HGZE, High Gray-level Zone Emphasis; SZLGE, Short-Zone
Low Gray-level Emphasis; SZHGE, Short-Zone High Gray-level Emphasis; LZLGE, Long-Zone Low Gray-level
Emphasis; LZHGE, Long-Zone High Gray-level Emphasis; GLNU, Gray-Level Non-Uniformity for zone; ZLNU,
Zone Length Non-Uniformity; ZP, Zone Percentage.
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Figure 1. The correlations between texture parameters within liver metastases.

3.4. Development and Validation of the Nomogram

The multivariable regression analysis demonstrated that sex (OR = 3.457; 95% CI: 2.102–5.684;
p < 0.001), haemoglobin (HGB) levels (OR = 0.976; 95% CI: 0.967–0.986; p < 0.001), car-
cinoembryonic antigen (CEA) levels (OR = 0.500; 95% CI: 0.307–0.814; p = 0.005), and
the radiomics signature (RS) (OR = 2.147; 95% CI: 1.127–4.091; p = 0.020) stood as inde-
pendent factors associated with GCLMs relative to CCLMs (Table 4). To offer a visual
representation of the predictive model, a nomogram was constructed, incorporating these
independent predictors (Figure 2). The area under the receiver operating characteristic
(ROC) curve for the training and validation cohorts was calculated as 0.71 and 0.78, re-
spectively (Figure 3). In the training cohort, the nomogram exhibited a specificity and
sensitivity of 77.66% and 55.56%, respectively, with a positive predictive value of 71.43%
and a negative predictive value of 63.48%. In the validation cohort, the nomogram demon-
strated a specificity of 66.7%, sensitivity of 79.2%, positive predictive value of 70.12%,
and negative predictive value of 76.47%. Calibration curve analysis of the training cohort
indicated a relatively strong alignment between the predicted and actual probabilities of
the nomogram (Figure 4). Decision curve analysis (DCA) in the validation cohort revealed
that utilising the nomogram to predict the likelihood of GCLMs would yield greater clinical
benefits if the threshold probability ranged from 18% to 82% (Figure 5A). Clinical impact
curve (CIC) analysis demonstrated that as the threshold probability increased, the number
of high-risk cases also rose, underscoring the valuable clinical utility of the nomogram in
patients with GCLMs (Figure 5B).
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Table 4. Multivariable analysis in the training cohort.

Multivariable Analysis

Variables OR 95%CI p

Sex
Female REF
Male 3.457 2.102–5.684 <0.001

HGB 0.976 0.967–0.986 <0.001
CEA (ng/mL)

<100 REF
≥100 0.500 0.307–0.814 0.005

Radiomics signature 2.147 1.127–4.091 0.020
HGB, blood haemoglobin; CEA, carcinoembryonic antigen; REF, reference.

Diagnostics 2023, 13, x FOR PEER REVIEW  9  of  14 
 

 

 

Figure 2. Radiomics nomogram to discriminate the primary tumours in patients with liver metasta-

ses. 

 

Figure 3. The received operating characteristics (ROC) curves for the prediction model in the train-

ing cohort (A) and the validation cohort (B). Blue line: ROC curve; brown line: reference line. 

Figure 2. Radiomics nomogram to discriminate the primary tumours in patients with liver metastases.

Diagnostics 2023, 13, x FOR PEER REVIEW  9  of  14 
 

 

 

Figure 2. Radiomics nomogram to discriminate the primary tumours in patients with liver metasta-

ses. 

 

Figure 3. The received operating characteristics (ROC) curves for the prediction model in the train-

ing cohort (A) and the validation cohort (B). Blue line: ROC curve; brown line: reference line. 
Figure 3. The received operating characteristics (ROC) curves for the prediction model in the training
cohort (A) and the validation cohort (B). Blue line: ROC curve; brown line: reference line.



Diagnostics 2023, 13, 2937 9 of 13Diagnostics 2023, 13, x FOR PEER REVIEW  10  of  14 
 

 

 

Figure 4. Calibration curve of the nomogram in the training cohort. 

 

Figure 5. Decision curve analysis (A) and clinical impact curve (B) of the nomogram in the training 

cohort. 

4. Discussion 

In this study, we developed and validated a nomogram that incorporates sex, hae-

moglobin (HGB) levels, carcinoembryonic antigen (CEA) levels, and the radiomics signa-

ture (RS) to predict the origin of liver metastases, specifically distinguishing between gas-

tric cancer and colorectal cancer. The nomogram exhibited robust discrimination capabil-

ities  in both the training and validation cohorts. These features hold significant clinical 

relevance as they can enhance the ability of healthcare providers to predict the primary 

tumour site and make informed decisions regarding subsequent treatment strategies. 

In practical clinical scenarios, the assessment of the primary tumour site should pri-

oritise convenience and efficiency while avoiding unnecessary invasive procedures that 

do not substantially benefit patients. Radiomics, as a noninvasive technology, shows im-

mense  promise  in  delivering  results  comparable  to  invasive methods. Our  radiomics 

model was successfully developed and demonstrated remarkable proficiency  in distin-

Figure 4. Calibration curve of the nomogram in the training cohort.

Diagnostics 2023, 13, x FOR PEER REVIEW  10  of  14 
 

 

 

Figure 4. Calibration curve of the nomogram in the training cohort. 

 

Figure 5. Decision curve analysis (A) and clinical impact curve (B) of the nomogram in the training 

cohort. 

4. Discussion 

In this study, we developed and validated a nomogram that incorporates sex, hae-

moglobin (HGB) levels, carcinoembryonic antigen (CEA) levels, and the radiomics signa-

ture (RS) to predict the origin of liver metastases, specifically distinguishing between gas-

tric cancer and colorectal cancer. The nomogram exhibited robust discrimination capabil-

ities  in both the training and validation cohorts. These features hold significant clinical 

relevance as they can enhance the ability of healthcare providers to predict the primary 

tumour site and make informed decisions regarding subsequent treatment strategies. 

In practical clinical scenarios, the assessment of the primary tumour site should pri-

oritise convenience and efficiency while avoiding unnecessary invasive procedures that 

do not substantially benefit patients. Radiomics, as a noninvasive technology, shows im-

mense  promise  in  delivering  results  comparable  to  invasive methods. Our  radiomics 

model was successfully developed and demonstrated remarkable proficiency  in distin-

Figure 5. Decision curve analysis (A) and clinical impact curve (B) of the nomogram in the train-
ing cohort.

4. Discussion

In this study, we developed and validated a nomogram that incorporates sex, haemoglobin
(HGB) levels, carcinoembryonic antigen (CEA) levels, and the radiomics signature (RS) to
predict the origin of liver metastases, specifically distinguishing between gastric cancer
and colorectal cancer. The nomogram exhibited robust discrimination capabilities in both
the training and validation cohorts. These features hold significant clinical relevance as
they can enhance the ability of healthcare providers to predict the primary tumour site and
make informed decisions regarding subsequent treatment strategies.

In practical clinical scenarios, the assessment of the primary tumour site should pri-
oritise convenience and efficiency while avoiding unnecessary invasive procedures that
do not substantially benefit patients. Radiomics, as a noninvasive technology, shows im-
mense promise in delivering results comparable to invasive methods. Our radiomics model
was successfully developed and demonstrated remarkable proficiency in distinguishing



Diagnostics 2023, 13, 2937 10 of 13

between gastric cancer liver metastases (GCLMs) and colorectal cancer liver metastases
(CCLMs). Notably, our study observed a higher prevalence of GCLMs in male patients
compared to CCLMs, aligning with previous findings by Chen et al. [25]. Furthermore,
patients with GCLMs displayed a higher incidence of anaemia, which may be attributed to
reduced gastric acid and intrinsic factor production, leading to the impaired absorption of
micronutrients like iron and vitamin B12, ultimately resulting in anaemia [26,27]. Addi-
tionally, Ning et al. [28] reported elevated average CEA levels in patients with colorectal
cancer in comparison to those with gastric cancer (mean CEA: 50.36 vs. 23.78 U/mL). This
observation suggests that CEA could potentially serve as an independent predictor for both
gastric and colorectal cancer, supporting our study’s findings.

Texture analysis, relying on imaging techniques, facilitates the evaluation of tumour
heterogeneity by examining the distribution and interrelationships of grey levels at the
pixel or voxel level within an image [29]. Previous investigations have delved into the asso-
ciation between radiomics features and clinicopathological data. Weber et al. [30] observed
a positive correlation between dissimilarity and Ki-67, while homogeneity exhibited an
inverse relationship with Ki-67. Furthermore, they demonstrated the potential to differ-
entiate the pathological grading of liver metastases by utilising measures of homogeneity
and dissimilarity. Martini et al. [31] identified that non-pancreatic neuroendocrine tumours
displayed higher skewness in liver metastases compared to pancreatic neuroendocrine
tumours. Additionally, higher baseline entropy and lower homogeneity in liver metas-
tases were linked to improved survival rates and enhanced responses to chemotherapy.
Homogeneity also emerged as a robust predictor of tumour regression grade [32].

In our study, we selected Histogram_Skewness, GLCM_Homogeneity, and GLCM_
Dissimilarity of liver metastases as valuable predictors to construct the radiomics signature
(RS). Skewness, measuring the asymmetry of the histogram, serves as a first-order feature
indicating intra-tumour heterogeneity in terms of intensity [33]. Previous research has
established a connection between lower skewness and reduced angiogenesis, suggesting
a higher likelihood of tumour hypoxia and necrosis [34]. Homogeneity, reflecting the
uniformity of the co-occurrence matrix, and dissimilarity, a measure of differences be-
tween elements in the matrix, are second-order texture features based on the grey-level
co-occurrence matrix (GLCM). These features capture the heterogeneity of the spatial
distribution of voxel intensities. Tumours demonstrating greater homogeneity (higher ho-
mogeneity and lower dissimilarity) may signify more compact necrotic areas [35]. Hypoxia
and necrosis can elevate interstitial hydrostatic pressure in the tumour microenvironment,
increasing the risk of tumour invasiveness and metastasis [36]. Our study revealed that
GLCMs exhibited lower skewness, dissimilarity, and higher homogeneity than CCLMs,
suggesting heightened heterogeneity in the former. These findings align with prior re-
search [32,37–39]. Oguro et al. [10] reported that GLCMs exhibited a more systemic and
aggressive oncological behaviour than CCLMs, further substantiating the utility of the
aforementioned texture features in distinguishing the primary site (gastric and colorectal
cancer) of liver metastases.

We devised a radiomics nomogram capable of predicting the specific origin sites,
namely gastric and colorectal cancer. This nomogram effectively gauges the likelihood
of the primary tumour originating from either gastric or colorectal cancer. Furthermore,
we evaluated the clinical utility of these nomograms using decision curve analysis (DCA)
and clinical impact curve (CIC), revealing their efficacy across a wide range of threshold
probabilities. This tool can assist clinicians in identifying cases of gastric cancer liver
metastases (GCLMs) as potential site-specific malignancies based on probability estimates.
Subsequently, tailored site-specific therapies can be individually tailored by referencing
established treatment protocols for the known primary tumour site, potentially benefiting
these patients [40].

However, it is important to acknowledge the limitations of this study. Firstly, we
performed texture analysis solely on the largest cross-sectional area of the tumour, rather
than conducting a comprehensive analysis of the entire tumour volume. It is worth noting
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that a prior study demonstrated comparable results when focusing on the largest cross-
sectional area [41]. Secondly, the predictive model developed in this study is specific to
gastric and colorectal cancer and does not encompass other types of primary tumours.
Nonetheless, distinguishing the primary site of tumours affecting hollow organs poses a
prevalent and significant challenge for radiologists and clinicians in their routine medical
practice. Thirdly, it is crucial to recognise that this investigation is retrospective in nature
and was conducted within a single medical centre. External validation is imperative to
further confirm the clinical effectiveness of the nomogram established in this research.
Fourthly, while the area under the curve (AUC) results were favourable, they were not
perfect, indicating room for potential model enhancement. Lastly, it is important to note
again that this study was retrospective, limiting the analysis to available data in the patient
charts, precluding an assessment of treatments and prognoses.

5. Conclusions

In this study, we developed a CT-based radiomics nomogram to discern the primary
site of liver metastases originating from gastric cancer and colorectal cancer. Our prelimi-
nary findings indicate that the nomogram, comprising sex, HGB, CEA, and RS, exhibits
excellent discriminatory ability and holds significant clinical value for distinguishing be-
tween GCLMs and CCLMs. This nomogram can serve as a valuable reference tool for
accurate diagnoses by radiologists and clinicians, streamlining the selection of appropriate
and timely treatments. Moreover, the results may provide valuable insights for future
radiomics investigations.
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