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Abstract: (1) Background: to test the diagnostic performance of a fully convolutional neural network-
based software prototype for clot detection in intracranial arteries using non-enhanced computed
tomography (NECT) imaging data. (2) Methods: we retrospectively identified 85 patients with stroke
imaging and one intracranial vessel occlusion. An automated clot detection prototype computed
clot location, clot length, and clot volume in NECT scans. Clot detection rates were compared to the
visual assessment of the hyperdense artery sign by two neuroradiologists. CT angiography (CTA)
was used as the ground truth. Additionally, NIHSS, ASPECTS, type of therapy, and TOAST were
registered to assess the relationship between clinical parameters, image results, and chosen therapy.
(3) Results: the overall detection rate of the software was 66%, while the human readers had lower
rates of 46% and 24%, respectively. Clot detection rates of the automated software were best in
the proximal middle cerebral artery (MCA) and the intracranial carotid artery (ICA) with 88–92%
followed by the more distal MCA and basilar artery with 67–69%. There was a high correlation
between greater clot length and interventional thrombectomy and between smaller clot length and
rather conservative treatment. (4) Conclusions: the automated clot detection prototype has the
potential to detect intracranial arterial thromboembolism in NECT images, particularly in the ICA
and MCA. Thus, it could support radiologists in emergency settings to speed up the diagnosis of
acute ischemic stroke, especially in settings where CTA is not available.

Keywords: deep learning; non-enhanced brain CT; intracranial arterial vessel occlusion

1. Introduction

Worldwide, ischemic stroke is the second leading cause of death; thus, representing a
significant health problem [1]. Morbidity and mortality in stroke patients highly depend
on early and effective therapy. Non-enhanced computed tomography (NECT) is an integral
part of the standardized stroke imaging protocol. It is primarily used to exclude hemor-
rhage, but also for the identification of subtle, early, direct, and indirect findings suggesting
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embolism. The most important direct sign is the hyperdense artery sign (HAS), whereas
subtle parenchymal hypoattenuation, loss of insular ribbon, cortical sulcal effacement, and
obscuration of grey-white matter differentiation in the basal ganglia are indirect signs [2].

HAS is difficult to detect but has a high impact on the diagnosis, therapy, and progno-
sis of stroke. It is the first correlate of ischemic stroke and is highly specific for complete
vessel occlusion as the high attenuation values in the vessel are indicative of an acute
thrombus [3–5]. NECT can provide a direct correlate for the clot. In contrast, computed
tomography angiography (CTA), CT perfusion, or interventional angiography can only
show the vessel occlusion as an indirect correlate for a clot, which cannot supply further
clot characteristics. Clot characteristics, e.g., Hounsfield unit (HU) values, clot composition,
clot volume, clot burden, and exact clot location may give important additional information
on etiology, prognosis, and therapeutic success [6,7]. Lower clot burden, smaller thrombus
length, and more distal thrombus location are predictors of a better clinical and radiologic
outcome [8–10]. Hyperdense clots are erythrocyte-rich and respond better to mechanical
thrombectomy [11–13]. In contrast, isodense clots are rich in fibrin with increased elastic-
ity and stiffness [14,15] and are associated with unsuccessful reperfusion by mechanical
thrombectomy [16]. These isodense fibrin-rich clots are more responsive to pharmacologic
thrombolysis [17]. Therefore, clot characteristics may alter the therapeutic strategy for
large vessel occlusion, suggesting that a more comprehensive endovascular approach,
including the use of intra-arterial pharmacological thrombolytics, should be considered
in the presence of fibrin-rich isodense clots. However, the sensitivity of HAS is low, the
characterization of a clot is even more challenging, and the absence of HAS cannot exclude
vessel occlusion [3,10,18,19].

In emergency settings, such as acute stroke, prompt decision-making is paramount.
A delay in treatment initiation can have a significant impact on the patient’s prognosis.
Nonetheless, the identification of a thrombus within smaller cerebral vessels or in individ-
uals exhibiting pre-existing neurological alterations necessitates a significant amount of
time, even for experienced radiologists or neuroradiologists. An automated CT scan assess-
ment tool could assist radiologists in clot detection and assess relevant clot characteristics.
Research about automated clot detection in NECT of acute ischemic stroke is rare and in
most of the published studies is not compared to clinical data [20–22].

Hence, the purpose of our study was to test the diagnostic performance of a prototype
tool for automated clot detection and characterization in NECT scans and relate the results
to clinical parameters and chosen therapy.

2. Materials and Methods
2.1. Study Design

The local institutional ethics committee approved this retrospective data evaluation
(587/2019BO2). We performed a retrospective database search between April 2018 and
September 2020. This study was conducted according to the STARD guidelines (Standards
for Reporting of Diagnostic Accuracy Studies) [23]. The inclusion and exclusion criteria are
detailed in Figure 1.

2.2. CT Image Analysis

One neuroradiologist (M.H., reader 1) with 30 years and one radiologist (R.S., reader 2)
with 5 years of experience in cerebral imaging, interpreted the randomized non-enhanced
0.75 mm thin-slice image of the axial brain CT of the included patients regarding the
presence and location (side and segment) of HAS. The intracranial internal carotid artery
(ICA) occlusion was detected beyond the passing the carotid channel in the temporal bone;
the middle cerebral artery (MCA) segments (MCA1 up to the upward point of the Sylvian
fissure, MCA2 up to the top of the Sylvian fissure, MCA3 up to the cortical surface); the
posterior cerebral artery (PCA) segments PCA1 and PCA2; and the basilar artery (BA). The
readers were blinded to clinical history and imaging reports. This evaluation was repeated
three months later to evaluate the intra-observer agreement. In a different session with
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a time difference of more than six months, reader 1 evaluated the corresponding CTA of
the same patients to generate reference standard interpretations for vessel occlusion. In
this reading, for statistical correlation, the degree of calcification in intracranial arteries
was also assessed using the atherosclerosis score published by Chen 2006 and Woodcock
1999 [24,25].
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2.3. Automated Clot Detection Tool

The software is a prototype and not a commercially available product (Siemens Health-
ineers, Forchheim, Germany); only non-contrasting data was used to find the clot. The
technique of automatic thrombus detection relies on a convolutional neural network trained
on an independent multicenter data set consisting of thin-slice NECT scans of 664 patients
suffering from acute ischemic stroke. Clots were circled in these test data sets so that the
software could learn what a clot is. In an internal cross-validation performed on the training
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data, the clot was found in 616 (92.8%) of 664 patients among the five predicted candidates
with the highest clot candidate scores when the affected hemisphere was assumed to be
known and in 603 (90.8%) when it was not.

The model input comprises several channels and the original image, such as a
left/right difference image and a vessel probability map obtained from a brain atlas. The
model output is a voxel-level heatmap indicating potential clots from which candidate
positions are derived. According to the model, the clot detection prototype displays the
most likely clot candidates (with a maximum of 5), as shown in Figure 2.
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Figure 2. Clot detection prototype with clot evaluation. The tool shows the most likely clot candidates
(with a maximum of 5) ordered by the clot candidate score (“Score”, scale range 0–100), and the
corresponding location in CT using a coordinate system (A). The clot candidate score is determined by
the maximum heat map value (“per-pixel likelihood”). Higher values indicate a stronger resemblance
to a true clot sign. The different candidates can be manually selected to be displayed in the CT
images. In this case, “Candidate 2” represents the true clot and is illustrated in (B). Random walk
segmentation, which is initialized automatically based on the heat map, is run to obtain the clot
contour for each candidate. The clot is contoured in the displayed slice (yellow dots, B), and the
estimated volume and longest extent (7.8 mm) are displayed next to it. (C) shows the correlating CT
angiography and (D) the cerebral angiography of the same patient as in (A,B) with a nearly similar
length of the occluded vessel segment (CT angiography: 7.28 mm; cerebral angiography: 7.14 mm vs.
7.8 mm in non-enhanced CT (B)).
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They are ordered by the correlating clot candidate score (CCS; scale range 0–100),
which is determined by the maximum heat map value (“per-pixel likelihood”). Higher
values indicate a stronger resemblance to a true clot sign. The neuroradiologist reviews the
candidates and selects the correct true clot.

The random walk segmentation, which is initialized automatically based on the heat
map, is run to obtain the clot contour for each candidate. This contour is, in turn, used
to calculate the clot volume and estimate the length of the clot using principal compo-
nent analysis.

2.4. Clinical Analysis

For all patients, the time between symptom onset and CT imaging was classified as
<4.5 h, >4.5 h, or uncertain (wake-up stroke/symptom onset not observed). The National
Institutes of Health Stroke Scale (NIHSS) was assessed immediately before the scan [26].
The clinically suspected stroke etiology was evaluated based on the patient’s history
and technical investigations during the hospitalization using the TOAST criteria (Trial
of Org 10,172 in Acute Stroke Treatment) [27]. The type of therapy chosen (exclusively
supportive, intravenous thrombolysis, interventional thrombectomy/intraarterial lysis in
combination or alone) was registered for each patient to assess the relationship between
clinical parameters, image analysis results, and chosen therapy. In addition, the Alberta
Stroke Early CT Score (ASPECTS) was calculated automatically.

2.5. Standard of Reference

The CTA was set as the ground truth for assessing vessel occlusion by the non-invasive
imaging technique. However, clot length and volume measurements are not reliable in CTA.
Therefore, the corresponding estimates issued by the prototype could not be correlated.

2.6. Statistical Analysis

Statistical analyses were computed using SPSS Version 27 (IBM Corp., Armonk, NY,
USA). CTA was used as the ground truth for comparing the diagnostic accuracy of the
human readers and the automated clot detection tool. A case was counted as true positive if
there was congruence between the location of vessel occlusion in the CTA and the location
of a positive HAS reported by the readers or one of the maximum five clot candidates
suggested by the tool. Findings were considered false positives if readers reported a
HAS at an incorrect location or if the true clot was not included among clot candidates
suggested by the tool. The tool always suggests at least one clot candidate, resulting in no
false-negative findings. There were no true-negative findings because we did not include
patients without vascular occlusion. Therefore, we do not report true-negative and false-
negative findings for the clot detection tool and the human readers. In addition, specificity
and negative predictive value could not be calculated. We calculated the sensitivity and
positive predictive value (PPV); p-values were determined using the chi-squared test.

The Shapiro–Wilk test was used to test for normal distribution. Spearman’s rank–order
correlation coefficient was used to compare ordinal clinical parameters with imaging analy-
sis. The phi coefficient investigated the correlation between nominal clinical parameters
and imaging findings. Spearman’s correlation coefficient and phi coefficient r < 0.1 were
interpreted as no correlation, 0.1 ≤ r < 0.3 as weak, 0.3 ≤ r < 0.7 as moderate, and r ≥ 0.7
as strong.

The significance level was set at 0.05 for all tests and displayed in the images as follows:
* < 0.05, ** < 0.01; *** < 0.001. Inter-observer and intra-observer agreements were calculated
for each imaging finding using Cohen’s kappa. A kappa of <0.4 was considered as poor,
<0.75 as moderate, and ≥0.75 as an excellent agreement.
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3. Results
3.1. Study Population

Eighty-five patients were enrolled in this retrospective study. The mean age of the
patients was 75 ± 12 years (34 males, 51 females, range: 16–97 years). Based on the CTA
assessment, the clot was located in the anterior circulation in 80% of the cases and the
posterior circulation in 20%. Vessel occlusions of the left (n = 40) and right (n = 39) sides
were represented with approximately equal frequency. The basilar artery was occluded in
six cases. Detailed information on vessel distribution, time interval between symptom onset
and imaging; and clinical analysis results including NIHSS, TOAST criteria, atherosclerosis
score, and selected therapy are shown in Appendix A, Table A1.

3.2. Results of the NECT Analysis by the Readers

As shown in Table 1, true-positive and false-positive detection rates, sensitivity, and
PPV of the HAS showed several differences between the two readers which lead to a poor
inter-observer agreement of κ = 0.36.

Table 1. Accuracy of clot detection. CTA = computed tomography angiography; ICA = intracranial
internal carotid artery; MCA1/2/3 = proximal/middle/distal-middle cerebral artery; BA = basilar
artery; PCA1/2 = proximal/distal-posterior cerebral artery.

Parameter ICA MCA1 MCA2 MCA3 BA PCA1 PCA2 Total

Ground truth (CTA) 12 16 32 8 6 7 4 85 [100%]
True positive

Tool 11 14 22 3 4 1 1 56 [66%]
Reader 1 5 7 14 5 5 3 0 39 [46%]
Reader 2 5 10 3 0 2 0 0 20 [24%]

False positive
Tool 1 2 10 5 2 6 3 29 [34%]

Reader 1 1 1 6 2 0 1 1 12 [14%]
Reader 2 1 0 0 0 0 0 0 1 [1%]

Sensitivity in %
Tool 92 88 69 38 67 14 25 66

Reader 1 42 44 44 63 83 43 0 46
Reader 2 42 63 9 0 33 0 0 24

Positive predictive value in %
Tool 92 88 69 38 67 14 25 66

Reader 1 83 88 70 71 100 75 0 76
Reader 2 83 100 100 n/a 100 n/a n/a 95

Thus, the comparison of each reader’s first and second ratings revealed excellent
intra-observer agreement (average κ = 0.93). Therefore, further statistical analysis was
calculated with the first evaluation of each reader, but separately for readers 1 and 2.

3.3. Results of the Automated Clot Detection by the Prototype

True- and false-positive detection rates, sensitivity, and PPV of the clots suggested
by the tool are displayed in Table 1. The accurate candidate was displayed in the first
position in 33%, second in 15%, third in 8%, fourth in 5%, and fifth in 5% of cases. The
correlating CCS, clot length, and volume as well as the automated ASPECTS are displayed
in Table 2. For the distribution of true clots among clot candidates and corresponding CCS,
see Appendix A, Table A2.
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Table 2. Results of automated clot detection by the software, clot candidate score, and ASPECTS.
ASPECTS = Alberta Stroke Program Early CT Score; CCS = clot candidate score; ICA = intracranial
internal carotid artery; MCA1/2/3 = proximal/middle/distal-middle cerebral artery; BA = basilar
artery; PCA1/2 = proximal/distal-posterior cerebral artery.

Location ASPECT Score Volume [mm3] Longest Extent [mm] CCS [Mean ± Standard
Deviation]

Median (Range) Mean (Range) Mean (Range) All Positions

ICA 8 (2–10) 159 (33–443) 19 (9–37) 65 ± 20
MCA1 1 (0–9) 159 (1–365) 17 (1–41) 58 ± 23
MCA2 9 (2–10) 74 (2–332) 12 (2–36) 40 ± 24
MCA3 9 (0–10) 7 (6–8) 4 (3–5) 19 ± 13

BA 9 (7–10) 68 (13–137) 10 (4–21) 27 ± 22
PCA1 10 (7–10) 9 (9–9) 3 (3–3) 38 ± 54
PCA2 8 (4–9) 20 (20–20) 6 (6–6) 13 ± 0
Total 8 (0–10) 106 (1–443) 14 (1–41) 46 ± 27

The displayed position of the clot candidate in the ranking issued by the tool re-
vealed a highly significant negative correlation with the true-positive candidates (p < 0.001,
r = −0.32); a clot candidate displayed in the first or second position was more often a true-
positive finding. Moreover, the automatically calculated CCS revealed a highly significant
positive correlation with the true-positive candidates (p < 0.001, r = 0.28).

3.4. Head-to-Head Comparison of the Tool with the Human Readers

Figure 3 displays the comparison of true-positive rates for clot detection between the
readers, the tool, and the reference standard CTA.
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Figure 3. True-positive rates of clot detection according to occluded vessel and readers compared
to the ground truth/reference standard computed tomography angiography (CTA). (* p < 0.05,
** p < 0.01; *** p < 0.001); intracranial internal carotid artery (ICA); proximal/middle/distal-middle
cerebral artery (MCA1/2/3); basilar artery (BA); proximal/distal-posterior cerebral artery (PCA1/2).

The tool was significantly superior in detecting clots in comparison to the readers
(p = 0.009 for reader one and p < 0.001 for reader 2). The occluded vessel was significantly
superior in the detection of ICA/MCA1 and MCA2 clots (p < 0.01 in ICA for both readers
and MCA1 for reader 1; p < 0.001 in MCA2 for reader 2 and p < 0.05 in MCA2 for reader 1).
Like the readers, the tool correctly detected more clots in the anterior (readers 27–46%; tool
74%) than in the posterior circulation (readers 12–47%, tool 35%).
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Unlike the readers, the tool output was not associated with the severity of the ischemic
demarcation, as reflected by the ASPECTS. The smaller the ASPECTS (indicating a greater
number of involved vascular territories/a higher volume of demarcation), the more likely
it was that the readers correctly detected a clot (true-positive findings; reader 1, p = 0.012,
r = 0.27; reader 2, p = 0.037, r = 0.23).

There was neither a significant correlation for the readers nor for the tool between the
presence of a true-positive finding and the severity of atherosclerosis or the etiology of the
clot (TOAST) or the clinical severity of the stroke (NIHSS) or the time point of imaging.

3.5. Clinical Use Case: Decision Support for ICA/MCA Recanalization

To simulate a realistic clinical emergency setting where diagnostic decisions are limited,
we conducted an additional experiment in which only up to three clot candidate suggestions
per patient were checked by the human reader. Moreover, the decision for an endovascular
thrombectomy is more often made for clots in proximal arteries (ICA and MCA1) because
of a better benefit–risk evaluation [28].

The automatically estimated length and volume of the clot correlated significantly
with the clinician’s choice of more invasive therapies, i.e., the greater the clot length
(p = 0.002, r = 0.42) and the higher the calculated volume (p = 0.033, r = 0.28), the more
likely the clinician decided in favor of an invasive interventional thrombectomy rather than
an exclusively supportive therapy.

4. Discussion

Our findings suggest that automated clot detection in NECT images yields higher
sensitivity than the visual assessment of HAS, and is complementarily beneficial to the
ASPECTS. Stroke imaging is of paramount importance and therefore it should be made
more confident. In agreement with other studies, the low inter-observer agreement of HAS
between the neuroradiologists in our study is not surprising, as the challenge of detecting
clots in NECT scans is not trivial [29,30]. For this reason, an independent automatic tool that
compensates for this could improve image analysis. Fortunately, many approaches (CTA,
CTP, magnetic resonance imaging (MRI) with diffusions-weighted imaging (DWI) and
gradient-echo sequences (GRE)) to this diagnosis exist. Corresponding to the HAS sign on
CT, the susceptibility vessel sign (SVS) on susceptibility-weighted imaging (SWI) presents
acute or subacute thrombi on MRI due to locally increased deoxyhemoglobin [31,32].
The detection rates of vessel occlusions were similar between SWI, time-of-flight MR
angiography (MRA), gadolinium-enhanced MRA, and digital subtraction angiography,
although SWI is superior in identifying the distal end of the thrombus and estimating
thrombus length [33]. However, due to its higher availability and the required speed for
pre-treatment diagnostics, CT imaging remains the leader in this field. Hence, different
post-processing tools attempt to target vessel occlusion in major vessels [20–22,34–36]. The
authors of these studies used volumetric image analysis considering the volume, length,
clot burden score, vessel morphology, or degree of curvilinearity. Most of the published
studies are based on CTA [36–39]. Only a few studies are based on NECT images, which
constitute the only available imaging option in many smaller hospitals [20–22,35]. Al Kasab
et al. investigated an automated clot detection algorithm based on NECT images with
true-positive rates similar to ours but did not compare them to clot length/volume and
therapy chosen and nor to the detection rate of HAS by human readers [35]. The other cited
studies are more focused on the technical part of the clot detection algorithm and do not
compare it to clinical data, outcomes, or therapeutic approaches [20–22].

The major limitation of HAS recognition consists of its variable attenuation. The
latter depends on the clot composition. Earlier post-mortem studies demonstrated that
thromboembolic stroke could be caused by white, red, and mixed-blood cell clots [40].
They presume that red clots and some of the mixed clots are more readily detectable
than the white ones and thus an ipsilateral to contralateral HU ratio of <1.382 is optimal
for detecting intraarterial thromboembolism [41,42]. One possible hypothesis is that the
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higher detection rate of blood clots by the tool compared to human readers is due to the
underlying learning neural network. The input for our neural network is always a CT slice
with additional information per voxel such as the HU difference to the opposite side. The
advantage of this is that the algorithm does not necessarily rely on high-density values
within the clots. In comparison to clot characterization in MRI, our results are in line with
the literature. Liebeskind et al. and Kimura et al. demonstrated that erythrocyte-rich
thrombi are associated with increased CT density and with increased susceptibility on
T2*-weighted gradient echo images [6,17]. Furthermore, the susceptibility can be quantified
using quantitative susceptibility mapping and higher susceptibility values which indicate
a cardioembolic etiology with a higher diagnostic performance than SVS [43].

In the last years, neural networks were trained to learn thresholds for multilevel
thresholding and optimized vessel segmentation [44,45]. In a recent report by Chung et al.,
the machine learning technique increased inter-rater reliability in interpreting stroke image
data [46]. In their study, machine learning applied in GRE MRI scans using radiomics
clot analysis provided valuable information on clot composition in acute MCA occlusion
patients. In a similar attempt to ours, Qiu et al. focused on thrombus characterization in
stroke patients using radiomics analysis performed in both NECT image data and CTA
scans [47]. They could demonstrate that radiomics features derived from these image data
sets were more predictive for recanalization with intravenous alteplase compared to more
classical parameters like clot length, volume, or permeability.

The major strengths of our prototype are the higher sensitivity and PPV compared to
the two readers. Like the readers, much more clots were detected in the anterior circulation
compared to the posterior circulation (74% vs. 35%). Hence, clot detection for ICA, MCA1,
and MCA2 was significantly superior to the detection rate by the readers. The reversal for
MCA2 clots is plausible, as with increasing distance to the circle of Willis, the arterial caliber
rapidly decreases, limiting clot depiction. A further advantage of the prototype software is
the relative independence of clot detection from the scan plane. For human readers, HAS
in arteries that run perpendicular to axial planes might avoid detection [48]. To address
this issue, Mannel et al. propose to include multiplanar reconstructions and sagittal planes
to increase the sensitivity of detection of the MCA “dot” sign [49]. Clot detection by the
readers improved in patients with larger infarcts (lower ASPECTS), presumably due to
better clot-to-background contrast. However, the automated clot detection of our prototype
was not associated with the ASPECTS. Though we did not have a standard of reference for
assessing the clot length and volume, the calculated values significantly correlated with the
treatment invasiveness; thus, indirectly confirming the severity of the vessel occlusion as
scored by the prototype.

To our knowledge, automated clot detection in acute ischemic stroke based on NECT
image data is rare, and was not compared with clot characteristics and therapeutic decision-
making to date. Its improvement for the smaller intracranial vessels should be pursued to
make stroke diagnosis more reliable and quicker. Interestingly, the automatically estimated
length and volume of the clot correlated with the clinician’s choice of more invasive therapies.

Our study has some limitations. First, the small number of patients only allows for
a preliminary evaluation of this prototype. Further studies are needed to confirm the
findings. Second, for the validation of the tool’s output for clot length and volume, we had
to rely on an indirect correlation with the invasiveness of the applied treatment, as the CTA
only shows the vessel occlusion site but cannot capture the entire clot length. Third, the
prototype is technically unable to detect patients without vascular occlusions because the
clot tool always suggests one to five clot candidates; thus, further studies are required to
evaluate the tool’s ability to ensure correct negative classification and avoid false positives.
Fourth, we investigated patients with a singular intracranial vessel occlusion. In contrast,
every tenth patient with an acute ischemic stroke presented a multivessel occlusion which
is associated with decreased endovascular success and a worse outcome [50]. Due to this
relatively high prevalence, this multivessel occlusion scenario should be considered and
needs to be investigated in further studies regarding the robustness and performance of
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the tool. Fifth, this prototype is not fully automated because the true clot must be manually
selected by a (neuro)radiologist from a choice of five candidates weighted by likelihood.

5. Conclusions

Our preliminary results showed that the presented clot detection tool based on a
convolutional neural network detected 56 of 85 intracranial clots, although it is technically
unable to identify patients without occlusion. In particular, in ICA and proximal MCA, the
tool demonstrated higher sensitivity and PPV than human readers. This new method can
alert the treating neurologists and reporting radiologists of potential intracranial vessel
occlusion, prioritizing the assessment of patient imaging and management. It could be
especially beneficial to small hospitals or countries where CTA is not readily available or
highly specialized neuroradiologists are limited.
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Appendix A

Table A1. Clinical data and location of vessel occlusion. CTA = computed tomography angiography;
ICA = intracranial internal carotid artery; MCA1/2/3 = proximal/middle/distal middle cerebral
artery; BA = basilar artery; PCA1/2 = proximal/distal posterior cerebral artery; NIHSS = National
Institutes of Health Stroke Scale; TOAST = Trial of Org 10172 in Acute Stroke Treatment.

Parameter ICA MCA1 MCA2 MCA3 BA PCA1 PCA2 Total

Total number based on CTA 12 16 32 8 6 7 2 85 [100%]

Side [r/l]
basilar 0 0 0 0 6 0 0 6 [7%]

left 7 8 14 7 0 2 1 40 [47%]
right 5 8 18 1 0 5 1 39 [46%]

NIHSS: median (range) 12 (0–23) 11 (1–22) 7 (2–21) 5 (1–21) 0 (32–11) 9 (4–22) 5 (2–19)

Time interval between
symptom onset and

CT scan

<4.5 h 8 12 24 6 3 4 0 58 [68%]
>4.5 h 4 1 2 0 1 3 1 12 [14%]

uncertain 0 3 6 2 2 0 1 15 [18%]

Etiology of Stroke
classified to TOAST

criteria

large-artery atherosclerosis 5 2 6 0 4 0 1 19 [22%]
cardioembolic 5 7 20 3 1 4 1 41 [48%]

other determined etiology 1 1 2 2 0 0 0 6 [7%]
undetermined etiology 1 6 4 3 1 3 0 19 [22%]
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Table A1. Cont.

Parameter ICA MCA1 MCA2 MCA3 BA PCA1 PCA2 Total

Atherosclerosis Score
published by

Chen et al. [24]

none 1 3 6 1 0 0 0 12 [14%]
mild 3 10 5 2 4 1 0 26 [31%]

mild to moderate 2 3 14 5 0 2 0 26 [31%]
moderate 3 0 3 0 1 1 2 10 [12%]

severe 3 0 4 0 1 3 0 11 [13%]

Therapy chosen

exclusively supportive 3 0 7 4 3 3 1 22 [26%]
intravenous thrombolysis 4 1 14 4 1 3 0 28 [33%]

interventional
thrombectomy 4 5 1 0 1 0 0 11 [13%]

thrombolysis and
thrombectomy 1 10 10 0 1 1 1 24 [28%]

Table A2. Clot candidate distribution with corresponding Clot Candidate Score of automated
clot detection by the software. ICA = intracranial internal carotid artery; MCA1/2/3 = proxi-
mal/middle/distal middle cerebral artery; BA = basilar artery; PCA1/2 = proximal/distal posterior
cerebral artery.

Location Clot Candidate Score [Number (Mean ± Standard Deviation)]

Position 1 Position 2 Position 3 Position 4 Position 5

ICA 7 (77 ± 7) 3 (53 ± 17) 0 (0 ± 0) 1 (23 ± 0) 0 (0 ± 0)
MCA1 11 (67 ± 10) 1 (49 ± 0) 0 (0 ± 0) 0 (0 ± 0) 2 (9 ± 8)
MCA2 6 (68 ± 18) 9 (32 ± 16) 5 (28 ± 16) 2 (22 ± 15) 0 (0 ± 0)
MCA3 1 (33 ± 0) 0 (0 ± 0) 0 (0 ± 0) 1 (8 ± 0) 1 (15 ± 0)

BA 2 (49 ± 4) 0 (0 ± 0) 1 (29 ± 0) 0 (0 ± 0) 1 (9 ± 0)
PCA1 1 (76 ± 0) 0 (0 ± 0) 0 (0 ± 0) 0 (0 ± 0) 0 (0 ± 0)
PCA2 0 (0 ± 0) 0 (0 ± 0) 1 (13 ± 0) 0 (0 ± 0) 0 (0 ± 0)
Total 28 (68 ± 14) 13 (38 ± 18) 7 (26 ± 15) 4 (19 ± 11) 4 (10 ± 6)
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