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Abstract: Recently, there has been a growing interest in the application of artificial intelligence (AI)
in medicine, especially in specialties where visualization methods are applied. AI is defined as a
computer’s ability to achieve human cognitive performance, which is accomplished through enabling
computer “learning”. This can be conducted in two ways, as machine learning and deep learning.
Deep learning is a complex learning system involving the application of artificial neural networks,
whose algorithms imitate the human form of learning. Upper gastrointestinal endoscopy allows
examination of the esophagus, stomach and duodenum. In addition to the quality of endoscopic
equipment and patient preparation, the performance of upper endoscopy depends on the experience
and knowledge of the endoscopist. The application of artificial intelligence in endoscopy refers to
computer-aided detection and the more complex computer-aided diagnosis. The application of AI
in upper endoscopy is aimed at improving the detection of premalignant and malignant lesions,
with special attention on the early detection of dysplasia in Barrett’s esophagus, the early detection
of esophageal and stomach cancer and the detection of H. pylori infection. Artificial intelligence
reduces the workload of endoscopists, is not influenced by human factors and increases the diagnostic
accuracy and quality of endoscopic methods.

Keywords: artificial intelligence; upper gastrointestinal endoscopy; Barrett’s esophagus; esophageal
squam cell carcinoma; gastric cancer; H. pylori

1. Introduction

In recent years, there has been a growing interest in the application of artificial intelli-
gence (AI) in medicine, especially in specialties where visualization methods are applied.
The most significant development of AI is taking place in the fields of radiology, gastroen-
terology (endoscopy), surgery and dermatology, but also in other specialties. The beginning
of AI dates back to 1950 [1].

Artificial intelligence is defined as the ability of a computer to achieve human cognitive
performance, primarily learning and decision making [2,3]. To achieve this, it is necessary
to enable computers to “learn”. There are two ways that allow computers to perform
specific operations. One is classic programming, where based on predefined algorithms
(programs), the computer determines output data based on input data. Another much
more complex approach is machine learning (ML), and it is the basis of AI.
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In classic machine learning, during programming, mathematical descriptions of pat-
terns (e.g., color, texture, edge, size, etc.) are defined, and the computer further classifies
existing data (hand-crafted algorithm) [4,5]. The program itself is insufficient to enable the
differentiation of output variables solely based on input data. In order to achieve further
ML, “training” is necessary, attained by processing a large number of different input data,
which the computer “learns”. In endoscopy, these inputs are images or videos. After the
training phase, the computer is able to recognize certain features even in images or videos
that are unknown to it. There are different ML models, which can be unsupervised and
supervised [3]. The following concepts can be used: support vector machines (SVMs),
decision trees and artificial neural networks [3].

A more complex machine learning system is deep learning (DL). The most commonly
used system for DL is the convolutional neural network (CNN) [5]. The schematic structure
of the CNN system is shown in Figure 1.
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This system mimics the human neural network. It consists of a large number of
artificial neurons, which are organized into an artificial neural network. Namely, neurons
are classified into layers and the so-called multilayered system. The neurons of one layer
are connected to the neurons of the next layer and the output data of each neuron have
the function of input data for the neurons of the next layer [4,6]. During DL, the computer
itself extracts the data, thus forming its recognition patterns, without the influence of
the programmer [5]. However, the disadvantage of the deep learning system is that it
remains unknown how the computer makes individual decisions (black box) [5]. Unlike
conventional ML, which requires human intervention to correct errors, the DL system has
the ability to learn from its errors [2].

The application of artificial intelligence in endoscopy refers to computer-aided detec-
tion (CAD) and the somewhat more complex computer-aided diagnosis (CADx).

The development of AI methods in upper gastrointestinal endoscopy is focused in
three segments [7]:

• Quality assessment;
• Detection of lesions;
• Characterizations of lesions.

These three segments follow the endoscopist’s cognitive process. Namely, first it is
necessary to perform a quality examination, followed by the detection of lesions and their
characterization. By integrating AI algorithms, the diagnostic process is significantly im-
proved. Quality assessment refers to the adequate visualization of all anatomical landmarks,
with the assistance of AI methods (e.g., multi-frame classification) [7]. The application
of AI in upper endoscopy is primarily aimed at improving the detection of premalignant
and malignant lesions. This is especially important if it is known that during endoscopy a
significant part of cancer can be undiagnosed. Namely, the frequency of missed malignan-
cies was evaluated in a study that included 4,105,399 patients [8]. Carcinomas diagnosed
<6 months after upper endoscopy are marked as prevalent, and those diagnosed up to 6 to
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36 months are marked as missed [8]. The highest percentage of missed esophageal cancers
was for adenocarcinoma (6.1%), while for squamous cell carcinoma it was 4.2% [8]. The
majority of missed gastric cancers were adenocarcinomas, at 5.7% [8]. Similar results were
obtained in some other studies [9,10].

Current research in the field of AI application in upper gastrointestinal endoscopy is
focused on the detection, demarcation and characterization of esophageal and stomach
cancer, including premalignant conditions (Barrett’s esophagus, H. pylori infection, etc.) [2].
The emphasis is placed on early diagnosis of these diseases.

2. Barrett’s Esophagus and Esophageal Adenocarcinoma

Barrett’s esophagus (BE) represents the replacement of squamous epithelium of the
esophagus by metaplastic columnar epithelium [11]. Since metaplasia is present in Barrett’s
esophagus, this is a premalignant condition and can lead to esophageal adenocarcinoma
(EAC). The progression of BE to EAC is below 1% per patient year [2,12,13].

During endoscopic exploration of the esophagus, it is necessary to determine the
level of the esophagogastric junction and the Z line. Under normal conditions, the esoph-
agogastric junction and the Z line are at the same level. If there is an extension of the
cylindrical epithelium by more than 1 cm from the proximal end of the gastric folds, BE is
suspected [14]. The diagnosis is confirmed by the histopathological finding of specialized
intestinal metaplasia [14]. When taking biopsies of suspected Barrett’s esophagus, the
Seattle protocol is applied. Namely, in patients with non-dysplastic BE, it is recommended
to take biopsies from four quadrants of the esophagus, every 2 cm, starting from the esoph-
agogastric junction [15]. In patients with BE and low-grade dysplasia, biopsies of all four
quadrants, every 1–2 cm, starting from the esophagogastric junction are recommended,
while in the case of BE with high-grade dysplasia, biopsies of all four quadrants, every
1 cm, from the esophagogastric junction are recommended [15]. Biopsies of all observed
changes (nodules, depressions, irregularities, etc.) are mandatory. Barrett’s esophagus is
further classified based on the Prague classification [16]. For its application, it is necessary
to determine the level of the esophagogastric junction, the circumferential Barrett’s esopha-
gus and the maximum extension (tongue) of the Barrett’s esophagus. The difference (in
centimeters) between the esophagogastric junction and the circumferential (C), i.e., tongue
of Barrett’s esophagus (M) is classified as C (centimeters) M (centimeters).

In order to make a correct diagnosis of BE, it is necessary to conduct a careful and
detailed examination of the esophagus. The method of choice is high-definition white-light
endoscopy (HD-WLE), but classical (dye) and virtual chromoendoscopy methods also play
a significant role [12,17]. From dye chromoendoscopy, the use of 1.5–3.0% acetic acid is
useful, because dysplastic tissue has an accelerated loss of aceto-whitening, and it enables
easier differentiation from normal tissue [18]. In addition, better visualization is enabled
by virtual chromoendoscopy techniques: NBI (narrow-band imaging), BLI (blue laser
imaging), LCI (linked color imaging) and others [17].

Given that a detailed examination is necessary and discrete mucosal changes need
to be observed, significant assistance could be provided by AI. Namely, by applying AI
techniques, the detection, diagnosis and endoscopic treatment of BE may be improved [6].
The importance of early detection of dysplasia and carcinoma in BE is in the outcome
and different therapeutic modalities. Specifically, advanced EAC has a poor prognosis
and requires invasive treatment (most often surgical treatment), while earlier stages of the
disease (stage T1) allow endoscopic resection [13,19,20].

The application of AI in the diagnosis of BE is aimed at the detection of lesions, their
characterization and the assessment of the depth of invasion (if cancer is present) [6].

The first study on the application of AI in the detection of early BE neoplasia was
published by van der Sommen et al. in 2016 [21]. In their research, 100 high-definition (HD)
endoscopic images (44 patients) were used and further analyzed by a total of five expert
endoscopists. One endoscopist had access to the results of the histopathological analysis
(nonblinded) and his findings were the “gold standard”, while the others did not know
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the pathohistological findings [21]. The computer system was constructed using the SVM
model, based on the color and texture of the region of interest [21]. The mentioned system
showed a sensitivity and specificity of 86% and 87%, respectively [21]. De Groof et al.
developed and validated a computer-aided detection system for early neoplasia in BE [12].
The authors used a CAD system based on the ResNet/UNet hybrid model. The ResNet
model is used for image classification, while the UNet model is used for intra-image
prediction segmentation [12]. The study indicated that the mentioned CAD system enables
the classification of endoscopic images into non-dysplastic and dysplastic BE with an
accuracy of 89%, a sensitivity of 90% and a specificity of 88% [12]. In addition to the
detection of neoplasia, this system allows determining the optimal localization of the
biopsy site in 97% of cases [12]. This is very significant because the histopathological
analysis of the altered region is crucial for diagnosis establishment. The application of AI
in BE neoplastic detection and delineation shows performance similar to that of expert
endoscopists, which is higher than that of non-expert endoscopists [12,22]. Fockens et al.
also proved that the CAD system with high sensitivity (depending on the datasets, 88%
and 100%) has better performance compared to general endoscopists, but with slightly
lower specificity (64–66%) [23].

Most of the developed AI models for the detection of neoplastic BE are image-based,
that is, they are based on analyzing static images. With the further development of AI,
systems enabling the analysis of real-time video sequences were formed [9,10,24]. These
systems are much closer to everyday clinical practice. Abdelrahmin et al. have developed
and validated a CAD system that enables the real-time detection of neoplastic BE with
an accuracy of 92.0%, a sensitivity of 93.8% and a specificity 90.7% [24]. Furthermore, the
CAD system showed significantly better accuracy, sensitivity and specificity compared to
endoscopists [24].

Narrow-band imaging, as a method of virtual chromoendoscopy, enables a clearer
visualization of the mucosal and vascular pattern. The application of this technique
improves the visualization of early neoplastic lesions compared to classic WLE (white-light
endoscopy), especially if it is used in combination with magnification (zoom endoscopy).
Struyvenberg et al. conducted a study in which they evaluated the performance of the CAD
system with the application of NBI zoom endoscopy in the detection of neoplastic BE [25].
The results of this study showed that the application of a video-based CAD system, along
with the technique of NBI zoom endoscopy, had an accuracy of 83%, a sensitivity of 85%
and a specificity of 83% [25]. As the main limitation of the study, the authors mentioned
the small number of NBI zoom images that are available for “learning” the CAD system,
which is understandable when it is known that the majority of datasets are images obtained
by WLE. Swagner et al. developed an algorithm for the CAD of early BE neoplasia using
volumetric laser endomicroscopy [26]. This algorithm showed good performance, and its
importance as assistance to the endoscopists in their clinical work was pointed out [26].

Lui et al. conducted a meta-analysis in which the pooled sensitivity of AI techniques
in the diagnosis of neoplastic BE was 88.0% (95% CI, 82.0–92.1%), the specificity was 90.4%
(95% CI, 85.6–94.5%) and the area under the curve (AUC) was 0.96 (95% CI, 0.93–0.99) [22].
Additionally, there were no significant differences in the different modalities of endoscopy
(WLE vs. volumetric laser endomicroscopy), nor in AI methods (CNN vs. non-CNN) [22].
Similar results were obtained in the meta-analysis conducted by Vissagi et al. [20]. These
findings concluded that AI methods in the diagnosis of Barrett’s neoplasia have a sensitivity
of 89%, a specificity of 86%, a positive likelihood ratio (PLR) of 6.50, a negative likelihood
ratio (NLR) of 0.13, a diagnostic odds ratio (DOR) of 50.53 and an area under the summary
receiver operating characteristic curve (AUROC) of 90% [27]. In the aforementioned study,
no significant difference in performance between AI and endoscopists was recorded if WLE
methods were used [27].

A summary of the results of selected studies in the application of AI for the detection
of neoplastic BE is shown in Table 1 [9,10,12,21,23–26,28].
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Table 1. Summary of selected studies on the application of artificial intelligence in the diagnosis of neoplastic Barrett’s esophagus.

Authors
(Reference) Year Country Design Dichotomous Variable Endoscopic

Methods AI Method Performance

Accuracy (%) Sensitivity (%) Specificity (%)

van der Sommen
[21] 2016 Netherlands Retrospective neoplastic/non-neoplastic BE WLI SVM N/A 86.0 87.0

de Groof
[12] 2020 Netherlands Retrospective neoplastic/non-neoplastic BE WLI ResNet/UNet

(CNN) 89.0 90.0 88.0

Fockens
[23] 2023 Netherlands Prospective

(multicentric) neoplastic/non-neoplastic BE WLI CNN N/A 100.0 66.0

Abdelrahim
[24] 2023 UK Retrospective

(multicentric) neoplastic/non-neoplastic BE WLI CNN 92.0 93.8 90.7

Struyvenberg
[25] 2021 Netherlands Retrospective

(multicentric) neoplastic/non-neoplastic BE NBI ResNet/UNet
(CNN) 84.0 88.0 78.0

de Groof
[9] 2020 Netherlands Prospective neoplastic/non-neoplastic BE WLI ResNet/UNet

(CNN) 90.0 91.0 89.0

Ebigdo
[10] 2020 Germany Prospective neoplastic/non-neoplastic BE WLI CNN 89.9 83.7 100

Hashimoto
[28] 2019 USA Retrospective neoplastic/non-neoplastic BE WLI CNN N/A 98.6 88.8

NBI N/A 92.4 99.2
Swager

[26] 2017 Netherlands Retrospective neoplastic/non-neoplastic BE VLE CNN N/A

N/A—not available; AI—artificial intelligence; BE—Barrett’s esophagus; WLI—white-light imaging; SVM—support vector machine; CNN—convolutional neural network; UK—United
Kingdom; NBI—narrow-band imaging; USA—United States of America; VLE—volumetric laser endomicroscopy.
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3. Esophageal Squamous Cell Carcinoma (ESCC)

Squamous cell carcinoma is the most common esophageal carcinoma [13,29]. Overall
5-year survival in this type of cancer is 15–25%, with better prognosis if the disease is
detected at an earlier stage [13]. Also, detecting ESCC in earlier stages allows performing
less aggressive treatment modalities (endoscopic therapy) [20]. The method of choice in the
diagnosis of ESCC is upper gastrointestinal endoscopy. Dye and virtual chromoendoscopy
methods also contribute to early diagnosis [20,30,31]. The application of dye chromoen-
doscopy with Lugol’s solution is particularly significant, which enables easier detection of
esophageal squamous dysplasia [32]. Staining with Lugol’s solution enables the demarca-
tion of the altered mucosa of the esophagus, because the mucosa containing early ESCC is
not stained with this solution and due to glycogen depletion [19]. Although this method of
dye chromoendoscopy represents the “gold standard” in the diagnosis of early squamous
cell neoplasia, with a high sensitivity (over 90%), the specificity of this method is about
70% [5]. The reason for the lower specificity is the fact that some benign diseases can cause
glycogen depletion, and therefore cannot be stained with Lugol’s solution. The appearance
of dysplastic epithelium in the esophagus is quite difficult to detect with the use of WLE,
since macroscopic changes (nodules, plaques and ulcerations) seen in advanced ESCC
are generally not present. In order to improve the percentage of detection of esophageal
dysplasia and early ESCC, AI techniques are also being developed.

The beginning of the application of computer assistance in the diagnosis of ESCC
occurred in 2007, when Kodashima et al. developed a computer analysis system based
on endocytoscopy [33]. It enabled easier differentiation of malignant from non-malignant
esophageal tissue. However, this method was based on the computer analysis of images of
the nuclear region of cells but did not involve AI.

One of the more significant studies in the field of AI application in the early diagnosis
of esophageal cancer was published in 2018 by Horia et al. [34]. They used WLE and NBI
as the endoscopic methods and a CNN as the deep learning method. The sensitivity of
the developed method was 98%, with the detection of all lesions smaller than 10 mm [34].
In the aforementioned study, NBI showed higher sensitivity compared to WLE (89% vs.
81%) [34]. The diagnostic accuracy of the aforementioned AI system in the detection of
superficial esophageal cancer was 99%, or 92% for advanced cancer [34]. The authors
noted that the CNN could not adequately register some cases of esophageal cancer if the
surrounding mucosa was inflamed [34]. In the manuscript by Feng et al., the application of
a CNN on images obtained by WLI (white-light imaging) showed a sensitivity of 90.1%, a
specificity of 94.3%, an accuracy of 88.3%, a PPV of 88.3% and an NPV of 94.7% [35]. Similar
results were obtained by Wang et al. [36]. In their study, Feng et al. used the YOLOv5l
model as a deep learning method. Depending on the endoscopy method, it was concluded
that NBI has better performance compared to WLE but is inferior to dye chromoendoscopy
with Lugol’s solution [35]. Otherwise, the obtained data are comparable to the performance
of expert endoscopists, while they are significantly higher than those of less experienced
endoscopists (junior and mid-level endoscopists) [35].

In addition to the detection of early ESCC, it is necessary to determine the depth of
the invasion. This is necessary in order to determine the adequate therapeutic modality
(surgery vs. endoscopy). Shimamoto et al. developed an AI model using a CNN to estimate
the depth of ESCC invasion in real time [37]. This is the first study in which data extraction
from video images was used. Their method showed a sensitivity of 71%, a specificity of
95% and an accuracy of 89% if ME was used along with WLE [37]. These performances are
comparable to or better than expert endoscopists, depending on whether ME is used in
addition to WLI or not [37].

Yuan et al. incorporated WLE, ME-NBI and Lugol’s solution staining into their AI
model for the early detection of superficial ESCC [38]. In this multicenter study, they
concluded that the application of AI enables the detection of this type of cancer with an
accuracy of 91.1%, a sensitivity 96.9.7% and a specificity 83.9% for all investigated endo-
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scopic imaging modalities [38]. This is a study that included the most different endoscopic
modalities, and in addition to endoscopic images, it also included video analysis.

The pooled performance of the AI method in the detection of neoplastic lesions of the
esophageal squamous epithelium is a sensitivity of 75.6% (95% CI, 48.3–92.5%), a specificity
of 92.5% (95% CI, 66.8–99.5%) and an AUC of 0.88 (95% CI, 0.82–0.96) [32]. The results
from this study favor the use of NBI over WLE [22]. In the meta-analysis by Vissagi et al.,
data were obtained that the application of AI techniques in the diagnosis of squamous cell
carcinoma of the esophagus has a sensitivity of 95%, a specificity of 92%, a PLR of 12.65,
an NLR of 0.05, a DOR of 258.36 and an AUROC of 97% [27]. The performance of the AI
method is slightly better than the performance of the endoscopist, but without a significant
difference [27].

The results of selected studies on the application of AI in the diagnosis of ESCC are
shown in Table 2 [34–41].
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Table 2. Summary of selected studies on the application of artificial intelligence in the diagnosis of esophageal squamous cell carcinoma.

Authors
(Reference) Year Country Design Dichotomous Variable Endoscopic

Methods AI Method Performance

Accuracy (%) Sensitivity (%) Specificity (%)

Horie
[34] 2019 Japan Retrospective cancer/non-cancer WLI CNN N/A 98.0 * 79.0 **

Feng
[35] 2023 China Retrospective cancer/non-cancer WLI CNN 88.3 90.1 94.3

Wang
[36] 2023 China Retrospective cancer/non-cancer WLI YOLOv5l 96.9 87.9 98.3

NBI 98.6 89.3 99.5

LCE 93.0 77.5 98.0

Shimamoto
[37] 2020 Japan Retrospective depth of invasion WLI CNN 87.3 50.0 98.7

ME 89.2 70.8 94.9

Yuan
[38] 2022 China Retrospective

(multicentric)
superficial

carcinoma/non-carcinoma WLI CNN 86.6 93.3 78.5

non-ME NBI 91.7 98.0 85.1

ME-NBI 96.5 99.4 89.0

Iodine
staining 92.2 96.7 86.9

Ohmori
[39] 2020 Japan Retrospective cancer/non-cancer WLI CNN 81.0 90.0 76.0

NBI/BLI 77.0 100.0 63.0

ME 77.0 98.0 56.0

Guo
[40] 2019 India Retrospective cancer/non-cancer NBI SegNet N/A 98.0 95.0

Nakagwa
[41] 2019 Japan Retrospective cancer/non-cancer WLI Single Shot

MultiBox 91.0 90.1 95.8

* For each case; ** for each image. N/A—not available; AI—artificial intelligence; WLI—white-light imaging; CNN—convolutional neural network; YOLOv5l—model “You Only Look
Once” large extension; NBI—narrow-band imaging; LCE—Lugol chromoendoscopy; ME—magnifying endoscopy, BLI—blue laser imaging.
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4. Early Gastric Carcinoma

Gastric cancer is the fifth most common cancer worldwide [42]. Five-year survival
depends on the stage at which the disease was detected. For advanced gastric cancer, 5-year
survival is 5–25%, while for early it is over 90% [43]. Early gastric cancer does not penetrate
the gastric wall deeper than the submucosa, regardless of lymph node metastases [44].
There are two types of gastric cancer, intestinal and diffuse [45]. The therapeutic approach
and prognosis of these two types of cancer are different.

In the early stages, gastric cancer is usually asymptomatic. In the later evolution of the
disease, the following may occur: dyspeptic symptoms, abdominal pain, nausea, vomiting,
disgust for meat, weight loss, anemia, bleeding, etc. [45]. The diagnosis is made on the basis
of upper gastrointestinal endoscopy and a pathohistological analysis of gastric biopsies.
Endoscopic presentation of early gastric cancer can be in the form of red discoloration
of part of the gastric mucosa, gastric ulceration or depressed gastric lesion [46]. Since
these lesions are often discrete and difficult to visualize, advanced endoscopic methods
can help in diagnosis. The methods of dye and virtual chromoendoscopy, as well as the
application of ME, have better performance in detecting early gastric cancer compared to
classic WLE [46–48].

Miyaki et al. published one of the first studies on the application of AI in the detection
of early gastric cancer in 2013 [49]. The constructed system was trained on a total of
493 endoscopic images, of which 235 were images without neoplastic tissue and 258 had
gastric cancer present. In the training sample with cancer, 67% of the samples were with
differentiated cancer and 33% with undifferentiated cancer [49]. This system showed an
accuracy of 85.9%, a sensitivity of 84.8%, a specificity of 87.0%, a PPV of 86.7% and an NPV
of 85.1% [49].

The detection of early gastric cancer with the assistance of AI can be performed
on previously obtained endoscopic images but also in real time. Luo et al. developed
and validated the GRAIDS (Gastrointestinal Artificial Intelligence Diagnostic System) for
the diagnosis of upper gastrointestinal cancers [50]. In this multicenter study, the authors
developed the system using Deep Lab’s V3+ concept. The system was trained and validated
on a total of 1,036,496 endoscopic images (84,424 patients), so this is the largest study on
the use of AI in the diagnosis of cancer of the upper gastrointestinal tract [50]. The results
indicated the excellent performance of this model, with the possibility of real-time use.

Early detection of gastric cancer, in addition to enabling better survival, also enables
the application of less invasive but curative methods compared to advanced cancer. The
main criterion used when evaluating the possibility of curative endoscopic resection is
the depth of invasion. The first study in the application of CAD to assess the depth of
gastric cancer invasion based on endoscopic images was published by Kubota et al. [51].
This system showed an overall accuracy of 64.7%, which is slightly higher for the T1 stage
(77.2%) and lowest for the T2 stage (49.1) [51].

In a study by Niikura et al., the effectiveness of AI and expert endoscopists in the
detection of gastric cancer was compared [52]. In a sample of 500 patients (100 with
gastric cancer and 400 without cancer), AI detected cancer in 100% of patients and expert
endoscopists in 94.1% of cases [52]. Early cancer was diagnosed in 100% in the AI group
and in 88.4% in the expert group, while success in detecting invasive cancer (T1b stage and
higher) was 100% in both groups [52]. Although there is a difference in the detection of
early cancer, it is not statistically significant.

A meta-analysis that assessed the performance of AI in the detection of neoplastic gas-
tric lesions indicated a pooled sensitivity of these techniques of 92.1% (95% CI, 87.7–95.4%)
and a specificity of 88.0% (95% CI, 78.0–95.0%) with an AUC of 0.96 (95% CI, 0.94–0.99) [22].
There was no significant difference in the different modalities of endoscopy (WLE vs. NBI)
or in the AI method (CNN vs. support vector model) [22].

The excellent performance of AI methods in the diagnosis of gastric cancer can also
be explained by the characteristic morphological characteristics of these tumors. Namely,
according to the Paris classification, gastric carcinomas are most often type IIa (elevated
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lesion), alone or in combination with type IIc (depressed lesion), as IIa+IIc or IIc+IIa [53].
Changes in the mucosal and vascular pattern are certainly important.

The application of AI methods, in addition to endoscopy, can be used in pathohisto-
logical and CT diagnoses of gastric cancer, surgical treatment and predicting the outcome
of this disease [43,54].

The results of selected studies on the application of AI in the diagnosis of early gastric
cancer are shown in Table 3 [49,50,55–59].
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Table 3. Summary of selected studies on the application of artificial intelligence in the diagnosis of early gastric carcinoma.

Authors
(Reference) Year Country Design Dichotomous Variable Endoscopic

Methods AI Method Performance

Accuracy (%) Sensitivity (%) Specificity (%)

Miyaki
[49] 2013 Japan Retrospective cancer/non-cancer ME-FICE SVM 85.9 84.8 87.0

Luo
[50] 2019 China Retrospective

(multicentric) cancer/non-cancer WLI CNN 92.7 94.6 91.3

Tang
[55] 2020 China Retrospective cancer/non-cancer WLI CNN 85.1–91.2 85.9–95.5 81.7–90.3

Ikenoyama
[56] 2021 Japan Retrospective cancer/non-cancer WLI, ICE, NBI CNN N/A 58.4 87.3

Nagao
[57] 2020 Japan Retrospective depth of invasion WLI CNN 94.4 84.4 99.3

NBI 94.3 75.0 100.0

ICE 95.5 87.5 100.0

Kanasaka
[58] 2018 Taiwan Retrospective cancer/non-cancer ME-NBI SVM 96.3 96.7 95.0

Zhu
[59] 2018 USA Retrospective depth of invasion WLI CNN 89.1 76.4 95.5

N/A—not available; AI—artificial intelligence; ME—magnifying endoscopy; FICE—flexible spectral imaging color enhancement; WLI—white-light imaging; CNN—convolutional
neural network; ICE—indigo-carmine chromoendoscopy; SVM—support vector machine; USA—United States of America.
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5. H. pylori Gastritis

Helicobacter pylori is a microaerophilic Gram-negative bacterium. It is estimated that
the infection is present in half of the world’s population [60]. H. pylori can lead to chronic
gastritis, intestinal metaplasia, MALT (mucosa-associated lymphoid tissue) lymphoma and
gastric cancer [60]. In patients with H. pylori-induced gastritis, endoscopic findings include
mucosal edema, diffuse hyperemia, thickening of gastric folds, mucosal nodularity and
atrophy [61,62]. The regular arrangement of collecting venules and fundic gland polyps are
characteristic of H. pylori negative mucosa [62]. However, the endoscopic findings are not
specific, and the diagnosis of H. pylori infection can be confirmed by a histopathological
analysis of gastric biopsies or non-invasive tests (urea breath test, stool antigen test, serology
and molecular methods). For the histopathological diagnosis of H. pylori-positive gastritis,
biopsies are used according to the updated Sidney protocol [15]. It involves taking two
biopsies from the antrum, two biopsies from the gastric corpus and one biopsy from the
angulus. If biopsies are taken only for the diagnosis of H. pylori infection, 1–2 biopsies from
the antrum are sufficient [15].

AI systems can improve the optical diagnosis of H. pylori infection based on pattern
recognition applied to endoscopic images [62]. Further refinement and development of the
AI system would help in much faster and more accurate diagnosis, but also in avoiding
unnecessary gastric biopsies in order to detect H. pylori infection.

Shischijo et al. developed an AI system, which they applied to a total of 397 patients,
of which 72% were H. pylori-positive [63]. To develop this detection system, they used
GooGLeNet, a 22-layer CNN [63]. This system showed an accuracy of 87.7%, a sensitivity
of 88.9% and a specificity of 87.4% [63]. By comparing the performance of the AI system
and the endoscopist, the authors concluded that the accuracy of the AI system was higher,
with a shorter detection time, while the sensitivity and specificity were comparable [63].

An improvement in the performance of AI in the detection of H. pylori infection can be
achieved if multiple endoscopic images are used, as well as if advanced endoscopy tech-
niques are used. In a pilot study by Zheng et al., it was found that the application of multiple
stomach images improves the accuracy (93.8% vs. 84.5%), sensitivity (91.6% vs. 81.4%) and
specificity (98.6% vs. 90.1%) of endoscopy compared to the analysis of one image [64].

The use of advanced endoscopy techniques, primarily NBI, BLI, LCI and ME, leads
to the improved detection of H. pylori infection [60,65]. Nakashima et al. showed that the
use of advanced endoscopic methods is superior to classical WLI in the detection of H.
pylori-positive gastritis [66]. In this study, which was conducted on a sample of 222 patients,
it was concluded that the AUC was significantly higher for BLI-bright (0.96) and LCI (0.95)
compared to WLI (0.66) [66]. The advantage of LCI endoscopy in the detection of H. pylori
infection was confirmed by the same author in a subsequent study [67].

Based on the results of the meta-analysis, the pooled sensitivity of the AI method in
the detection of H. pylori infection was 83.9% (95% CI, 70.8–92.9%), while the specificity
was 89.7% (95% CI, 79.4–95.9%) and the AUC was 0.92 (95% CI, 0.88–0.97) [22].

The summary of the results of selected studies in the use of AI for the detection of H.
pylori infection are shown in Table 4 [63,64,66–71].
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Table 4. Summary of selected studies on the application of artificial intelligence in the diagnosis of H. pylori.

Authors
(Reference) Year Country Design Dichotomous Variable Endoscopic

Methods AI Method Performance

Accuracy (%) Sensitivity (%) Specificity (%)

Shichijo
[63] 2017 Japan Retrospective Presence/absence H. pylori WLI CNN 87.7 88.9 87.4

Zheng
[64] 2019 China Retrospective Presence/absence H. pylori WLI CNN (Res-Net 50) 93.8 * 91.6 * 98.6 *

Seo
[68] 2023 Korea

Retrospective
(multicentric)

Presence/absence H. pylori WLI CNN
94.0 ** 96.0 ** 90.0 **
88.0 *** 92.0 *** 79.0 ***

Nakashima
[67] 2020 Japan Prospective Presence/absence H. pylori WLI CNN 77.5 60.0 86.2

LCI 82.5 62.5 92.5

Li
[69] 2023 China Retrospective Presence/absence H. pylori WLI CNN 84.0 82.0 86.0

Yasuda
[70] 2019 Japan Retrospective Presence/absence H. pylori LCI SVM 87.6 90.5 85.7

Itoh
[71] 2019 Japan Prospective Presence/absence H. pylori WLI CNN N/A 86.7 86.7

Nakashima
[66] 2018 Japan Prospective Presence/absence H. pylori WLI CNN N/A 66.7 60.0

BLI-bright N/A 96.7 86.7

LCI N/A 96.7 83.3

* For multiple images; ** for Korean; *** for non-Korean. AI—artificial intelligence; WLI—white-light imaging; CNN—convolutional neural network; LCI—linked color imaging;
SVM—support vector machine; BLI—blue laser imaging.
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6. Conclusions

Artificial intelligence reduces the workload of endoscopists, is not influenced by
human factors (e.g., fatigue, stress, etc.) and contributes to increasing the diagnostic
accuracy and quality of endoscopic methods. These systems are very effective in the
diagnosis of neoplastic Barrett’s esophagus, esophageal squamous cell carcinoma, early
gastric cancer and H. pylori infection. AI methods are effective with the use of different
endoscopy modalities. Given that the lack of time is a significant enemy of endoscopy,
computerized data processing can speed up the detection time, because it processes more
data at a higher speed than a human being.

However, these systems also have their weaknesses. Given that AI systems, after
development, do not include constant human supervision and correction, purely technical
errors are possible. Namely, during the application of AI methods, false-negative and
false-positive findings may occur. More important are false-negative results, which most
often occur due to visualization and technical errors.

The question often arises whether AI will replace doctors. At this stage of the devel-
opment of science and technology, it is unlikely. Namely, for an expert endoscopist, in
addition to endoscopy knowledge, significant clinical experience is also necessary. This has
been proven in studies where the performance of expert endoscopists is comparable to the
performance of AI. Also, the opinion of experts was used as the “gold standard” in studies
for the application of AI. Further improvement of these techniques will provide significant
help in diagnosis and facilitate the learning of endoscopy for all endoscopists, especially
less experienced ones. Therefore, endoscopists should not only rely on such systems, but
these systems should serve as their assistants.

Future Directions

Most of the previous research in this area has been conducted using WLE, while studies
using advanced endoscopic techniques are sporadic. Therefore, future directions should be
focused on the use of advanced endoscopic techniques, primarily virtual chromoendoscopy.
Unfortunately, the main limiting factor is the unavailability of this technique and trained
endoscopists in a large number of hospitals. For an adequate assessment of the clinical
application of AI methods, a larger number of prospective studies are needed, as well as a
larger number of studies that include the analysis of real-time images and videos. Also,
we believe that it would be interesting to develop models that include certain clinical,
laboratory and radiological data.
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