
Citation: Rangel, G.; Cuevas-Tello,

J.C.; Rivera, M.; Renteria, O. A Deep

Learning Model Based on Capsule

Networks for COVID Diagnostics

through X-ray Images. Diagnostics

2023, 13, 2858. https://doi.org/

10.3390/diagnostics13172858

Academic Editor: Mohammad

Khishe

Received: 26 July 2023

Revised: 22 August 2023

Accepted: 24 August 2023

Published: 4 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

diagnostics

Article

A Deep Learning Model Based on Capsule Networks for
COVID Diagnostics through X-ray Images
Gabriela Rangel 1,2 , Juan C. Cuevas-Tello 1,* , Mariano Rivera 3 and Octavio Renteria 3

1 Facultad de Ingeniería, Universidad Autonoma de San Luis Potosi, San Luis Potosi 78290, Mexico;
gabriela.rangel@tecsuperiorslp.edu.mx

2 Tecnologico Nacional de Mexico/ITSSLPC, San Luis Potosi 78421, Mexico
3 Centro de Investigacion en Matematicas, Guanajuato 36000, Mexico; mrivera@cimat.mx (M.R.);

octavio.renteria@cimat.mx (O.R.)
* Correspondence: cuevas@uaslp.mx

Abstract: X-ray diagnostics are widely used to detect various diseases, such as bone fracture, pneu-
monia, or intracranial hemorrhage. This method is simple and accessible in most hospitals, but
requires an expert who is sometimes unavailable. Today, some diagnoses are made with the help of
deep learning algorithms based on Convolutional Neural Networks (CNN), but these algorithms
show limitations. Recently, Capsule Networks (CapsNet) have been proposed to overcome these
problems. In our work, CapsNet is used to detect whether a chest X-ray image has disease (COVID or
pneumonia) or is healthy. An improved model called DRCaps is proposed, which combines the ad-
vantage of CapsNet and the dilation rate (dr) parameter to manage images with 226 × 226 resolution.
We performed experiments with 16,669 chest images, in which our model achieved an accuracy of
90%. Furthermore, the model size is 11M with a reconstruction stage, which helps to avoid overfitting.
Experiments show how the reconstruction stage works and how we can avoid the max-pooling
operation for networks with a stride and dilation rate to downsampling the convolution layers. In
this paper, DRCaps is superior to other comparable models in terms of accuracy, parameters, and
image size handling. The main idea is to keep the model as simple as possible without using data
augmentation or a complex preprocessing stage.

Keywords: deep learning; capsule network; dilation rate; convolution; COVID-19

1. Introduction

The year 2019 was a turning point worldwide due to COVID-19 (coronavirus disease),
which paralyzed the world. Because the Severe Acute Respiratory Syndrome (SARS-CoV-2)
was a new virus, no vaccines were available. At that time, an early and reliable diagnosis
was vital to (i) isolate the infected persons and prevent further infections and (ii) give the
proper treatment to reduce the mortality.

At that time, Reverse Transcription-Polymerase Chain Reaction (RT-PCR) testing was
the most widely used approach to correctly diagnose a COVID patient. The test consists
of specimens usually collected from their noses or throats and then sent to laboratories to
generate a diagnosis.

On the other hand, there are some examples where computed tomography (CT) is
used in emergency radiology for a reliable diagnosis: strokes, bone fractures, abdominal
emergencies (trauma, small bowel occlusion, intussusception), or chest emergencies [1].
Chest imaging is a critical part of emergency radiology; most studies have focused on two
topics: pulmonary embolism and pneumonia.

For these reasons, CT and X-ray images were the other approaches used for the early
diagnosis and treatment of COVID-19 disease [2–5]. X-ray images are cheaper and faster
than CT. In addition, patients are exposed to lower radiation levels on X-rays than on CT
images. However, the diagnosis based on this approach has some issues to be improved.

Diagnostics 2023, 13, 2858. https://doi.org/10.3390/diagnostics13172858 https://www.mdpi.com/journal/diagnostics

https://doi.org/10.3390/diagnostics13172858
https://doi.org/10.3390/diagnostics13172858
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com
https://orcid.org/0000-0001-7282-8913
https://orcid.org/0000-0002-7566-0412
https://orcid.org/0000-0002-3211-2467
https://orcid.org/0000-0003-0316-6543
https://doi.org/10.3390/diagnostics13172858
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com/article/10.3390/diagnostics13172858?type=check_update&version=1

Diagnostics 2023, 13, 2858 2 of 20

For example, expert radiologists must interpret these medical images in detail, which slows
the process [6]. Additionally, the images can overlap other lung infections (pneumonia,
tuberculosis, or bronchitis), making the diagnosis of COVID-19 challenging. Another
problem is the limited number of images available with the disease to train more people.

These problems have motivated scientists from different areas to contribute their
knowledge to help in their branch of expertise. The Deep Learning (DL) field was not
the exception. Convolutional neural networks (CNN) are the core of DL because their
algorithms specialize in obtaining and understanding complex patterns in images. Once
the CNN is trained, the inference is in real-time. These skills are essential in medical
image classification. There are several publications that use CNN for image diagnostics;
e.g., detection of lung cancer [7], brain tumors [8], and Alzheimer’s disease [9]. In particular,
Refs. [10–12] reports a procedure for the detection of breast cancer based on computerized
tomography scans and [13] reports a method for identifying genetic disorders by analyzing
facial gestures. So researchers are making efforts to develop new CNN-based image
classification algorithms to detect COVID based on chest X-rays.

Despite their extensive use, CNN have some limitations. For example, CNN require
large labeled datasets during training [14,15]. A commonly used solution is the data aug-
mentation technique, which consists of artificially increasing the number of images in the
dataset by using different augmentation techniques, such as geometric transformations
(e.g., flipping, rotation, scaling, cropping, translation, Gaussian noise addition) or advanced
augmentation techniques based on deep learning [16]. However, the data augmentation
process requires a great amount of computational effort; this can be translated into addi-
tional memory and computational constraints. Also, it is important to note that, for some
problems, data augmentation should not be performed because it may significantly change
the content of the information (e.g., voice data, disease images, among others), which is the
case for COVID X-rays images. Additionally, CNN are prone to losing spatial information
among features due to the max-pooling operation. Several researchers argue that the use of
this operation presents some disadvantages, such as: (i) if the object to be detected is very
small, after the max-pooling operation, the size of the pixel will be further reduced, making
it more difficult to be detected [17], (ii) by reducing the number of parameters from one
layer to another, important information about the spatial relationship of the components is
lost, and the focus will only be on the presence or absence of features [18], (iii) losing the
spatial relationship of objects requires more training images and will force the network
to use tools such as data augmentation to improve its performance [19], (iv) the pooling
operation can provide a little translation invariance, but it will lose the precise location
information of the features [20]. In addition, researchers have discovered an intriguing
phenomenon called an adversarial example. This phenomenon consists of CNN easily
cheating with a slightly modified test image (known as adversarial example) [21], which
forces the architecture to misclassify with high accuracy [22].

A novel approach that addresses all of these limitations is called Capsule Networks
(CapsNets). These networks were introduced by Sabourn et al. in 2017 [23], to improve how
the network passes information through their layers. CapsNets try to mimic the inverse
graphics process in the brain; thus, it is necessary to encode a large amount of information.
These networks analyze images more complexly by switching from scalar operations to
vector operations. This complex analysis allows us to obtain good classification results
with few training images. In addition to classifying correctly, the CapsNet approach
includes a stage in its architecture responsible for reconstructing the input image. In this
way, the algorithm verifies that the values obtained in its training learn the most crucial
image patterns.

In addition, the CapsNets approach offers promising results in several areas, such as
robustness to affine transformations, the ability to segment highly overlapping digits [23],
the ability to generate new data already labeled [24,25], better resistance to adversarial
attacks [26,27]. Furthermore, CapsNets achieve state-of-the-art accuracy in the MNIST data
set without the need for data augmentation and use fewer parameters than CNN [25,28].

Diagnostics 2023, 13, 2858 3 of 20

According to the literature, the promising results previously mentioned were obtained
with simple image data sets. However, CapsNets are limited when analyzing complex
images. The architecture struggles to understand the entire context of the image, generat-
ing a large number of parameters, which results in substantial computational effort [20].
For these reasons, researchers have focused on combining the advantages of CNN with
those of CapsNets, as shown in Table 1. For example, Yang et al. propose the RS-CapsNet
network [20], which uses some ideas from the ResNet architecture and the Squeeze and
Excitation block, both of which were ILSVRC winners [20,29]. The experimental results
show that RS-CapsNet performs better on the CIFAR10, CIFAR100, SVHN, FashionMNIST
and AffNIST datasets. It can also provide better translation equivariance, with fewer
trainable parameters (65.11%) compared to the baseline CapsNets architecture. Despite the
optimistic preliminary results of the CapsNets approach, there is still work to be done to
achieve state-of-the-art results on complex datasets.

Table 1. Examples combining CNN with CapsNets.

Network Dataset Combination Ref.

DA-CapsNet MNIST, CIFAR10, FashionMNIST, SVHN,
smallNORB and COIL-20 Attention layers + CapsNet [18]

FSSCaps-DetCountNet The aerial elephant and The livestock FSS classifier + CapsNet [17]
DE-CapsNet CIFAR-10, Fashion MNIST SGE + CapsNet + DCNet++ [30]

RS-CapsNet CIFAR10, CIFAR100, SVHN, FashionMNIST,
and AffNIST Res2Net + SE + CapsNet [20]

ResCapsNet LiDAR ResNet + CapsNet [31]

Recently, some papers used CapsNets combined with CNN for medical diagnostics.
Mobiny and Van Nguyen [7] used CT chest scans for diagnostic lung cancer, using images
of 32 × 32 pixels, and considered two classes: nodule and non-nodule obtaining. Their
network achieves an accuracy of 88.55% with only 226 images and struggles with the
reconstruction stage; for that reason, they add a convolutional decoder. Afshar et al. [8]
used CapsNets to diagnose the type of brain tumor; they trained with 3064 MRI images
with a small resolution (64 × 64 pixels) and obtained a classification accuracy of 78% with
three tumor classes: Meningioma, Pituitary, and Glioma. Kruthika et al. [9] proposed a
CBIR system using 3D capsule network, 3D convolutional neural network, and pretrained
3D autoencoder technology for early detection of Alzheimer’s. They used MRI images
with a size of 64 × 64 pixels for Alzheimer’s diagnosis with a classification accuracy of
94.06%. Xiang et al. [32] used a combination of CapsNet and ResNet for automated breast
ultrasound tumor diagnosis. Their dataset contains 444 images of 128 × 128 pixels. They
managed two classes (malignant or benign), achieving and obtaining an accuracy of 84.9%.

Respiratory diseases can also be detected by analyzing radiological images. Mit-
tal et al. [33] used convolutions and dynamic capsule routing to diagnose pneumonia on
5857 chest radiographs with 100 × 100 resolution and obtained an accuracy of 95.9% to
classify normal or pneumonia. Khanna et al. [4] developed the Detail Oriented Capsule
Networks (DECAPS) model for the automatic diagnosis of COVID-19 using 746 chest CT
images with a size of 448 × 448 pixels. In addition, they used GANs for data augmentation.
Their model achieved 87.6% accuracy in detecting two classes: Patients with COVID-19
and non-COVID-19. Afshar et al. [34] achieved a detection accuracy of 95.7% in two classes
using their COVID-CAPS model. They used training images of 224 × 224 pixels, and a
transfer learning approach tuned with a new dataset constructed from an external dataset
of X-ray images. Toraman et al. [35] proposed a convolutional CapsNet approach to detect
COVID-19 disease from X-ray images using capsule networks. They used CT scan images
with a size of 128 × 128 to detect three classes: COVID-19, no findings, and pneumonia.
Also, they used the max-pooling operation and data augmentation. Their model achieved
an accuracy of 84.22%.

Diagnostics 2023, 13, 2858 4 of 20

In this paper, we present the design of a computational model called DRCaps for med-
ical image diagnostics; i.e., detection of three classes: COVID-19, pneumonia, and healthy.
We obtain the accuracy in the classification of 90%. The model is based on the CapsNet
approach combined with a convolution stage and uses the stride and the dilation rate
hyperparameters to avoid the max-pooling operation. Unlike the models mentioned above
that use low-resolution images, our model handles images with larger resolution and uses
the reconstruction stage as a regularization method. Furthermore, our model does not
require data augmentation or any complex preprocessing tasks, keeping the architecture as
simple as possible.

This paper is organized as follows. Section 2 explains the computational model
architecture in detail, along with the dataset and all the adjustments involved in the
model. Section 3 lists the results obtained by the models described in Section 2 and
compares the performance of this model with other models based on CapsNets and CNN
on image diagnostics. Finally, the paper shows a discussion of the results obtained, and the
conclusions mention the general contributions of the study.

2. Materials and Methods

This section presents the dataset used, data preprocessing, describes the CapsNets
original model and the proposed DRCaps model, the training and the hyperparameter
selection procedures, and the experimental platforms.

2.1. COVIDx Dataset

We use the open-source COVIDx dataset [36], which is composed of different datasets
such as: COVID-Chestxray dataset [37], COVID-19 Chest X-ray Dataset Initiative [38],
COVID-19 Radiography Database [39], RSNA Pneumonia Detection Challenge [40], RSNA
International COVID-19 Open Radiology Database (RICORD) [41], among others.

The version used for the experiments was COVIDx7A, which contains 16,690 images
with three classes: pneumonia, healthy, and covid. Each image has a 1024 × 1024 size and,
for simplicity, is represented in the RGB format with replicated channels. Figure 1 shows
an example of each class in the COVIDx dataset.

Figure 1. Examples of each class in COVIDx dataset: covid, pneumonia and healthy.

Diagnostics 2023, 13, 2858 5 of 20

The COVIDx dataset contains real images with high resolution, so the challenge in
deep learning models is the training stage because it requires great memory capacity.
For example, memory usage is minimal if we use the MNIST dataset [42]. Because MNIST
has 60,000 training images and each image has a dimension of 28× 28 pixels, it needs about
47 million data space. However, the COVIDx dataset, despite having only 15,000 training
images, they have a resolution of 1024 × 1024, which requires a space of a little more than a
million parameters per image, making it very difficult to load the entire dataset in memory.
For these reasons, we decided to use an image size of 256× 256 for images. Also, we decide
to use the Tf.data API [43]. This API allows us to handle large amounts of data, read from
different data formats, and perform complex transformations in a fast and scalable way.
However, it requires us to organize the dataset so the API can handle it.

The original version of the COVIDx V7A dataset contained only two image folders
called train and test; with two additional text files with the following information: patient
id, filename, class, and data source for each image. However, the API used for the proposed
model requires that each folder contain three subfolders with each class’s name and the
corresponding images. Figure 2 shows the organization of the data set so that it can be
used by the Tf.data API.

Figure 2. COVIDx dataset organization for Tf.data API.

Finally, Table 2 shows the distribution of the data set in terms of classes (training
and testing). For training, we have 15,111 images spread over 5474 cases of pneumonia,
7966 cases of healthy images, and 1670 COVID images. The training data set is split into
80% training (12,089 images) and 20% for validation (3022 images). In the case of testing,
we have 1579 images: 594 with pneumonia, 885 healthy, and 100 with COVID.

Table 2. COVIDx7A dataset classes.

Folder Pneumonia Healthy COVID Total

train 5474 7966 1670 15,111
test 594 885 100 1579

2.2. Capsnet Baseline

The original CapsNets architecture is shown in Figure 3, and this architecture has only
three layers: Conv layer, PrimaryCaps layer, and DigitCaps layer. Moreover, CapsNets have
a Reconstruction stage formed by three FC layers. According to Sabourn [23], the input
dataset used was the MNNIST dataset, which has ten classes and handles images of size
28 × 28 as we can see in Figure 3.

The Conv layer is used to extract the main features of the input image. The original
Sabour architecture selects 256 channels, or filters, with a kernel of 9 × 9, with a stride of 1
and the ReLU function as shown in Figure 3.

Diagnostics 2023, 13, 2858 6 of 20

Figure 3. A simple CapsNet architecture with 3 layers, adapted from [23].

So, given the 256 channels with the size of 20× 20 from the conv layer, as shown
in Figure 3, a kernel of 9 × 9 with a depth of 256 and a stride of 2 is applied, result-
ing in 32 PrimaryCaps layers each of size 6× 6× 8, where each PrimaryCap has eight
dimensions (8D). These operations generate 1152 capsules. Each capsule has two com-
ponents: magnitude and orientation. The magnitude represents the probability that the
entity exists, while the orientation represents the instantiating parameters or properties of
the entity.

Once the capsules are computed, the network decides which information will pass
to the next layer. Due to the capsule approach, Sabour et al. propose new tools capable of
handling data in vector form [23]. These tools are the nonlinear squashing function and the
routing by agreement method.

As mentioned above, each entry of an output vector in a capsule represents the
probability that the associated entity is present in the current input. So, it is necessary to
use the nonlinear squashing function because only the length of the vector changes, not the
orientation. Also, the squashing function obtains a vector with values 0 and 1; ensuring
that small vectors take values close to 0 and large vectors get values below 1. Equation (1)
shows the squashing function proposed by Sabour et al. [23], where vj is the vector output
of the capsule j and sj is its total input.

vj = squash(sj) =

∥∥sj
∥∥2

1 +
∥∥sj

∥∥2

sj∥∥sj
∥∥ (1)

According to Sabour et al. [23], for all but the first capsule layer, the total input to a
capsule sj is a weighted sum over all prediction vectors ûj|i from the capsules in the layer
below by multiplying the output ui of a capsule in the layer below by a weight matrix Wij,
which means ûj|i = Wijui and sj = ∑i cijûj|i. This operation uses a weight transform matrix
as shown in Figure 3, which encodes the spatial importance and other relations among
the characteristics of the low-level capsules and the current one. If one of the calculated
prediction vectors has a high value with a possible parent, then there is a downward
feedback where the values of the coupling coefficients (cij) are adjusted to select the correct
connection path by the iterative dynamic routing process, as explained in Algorithm 1. This
results in a more intelligent selection than just choosing the most significant number, like
in max-pooling.

Diagnostics 2023, 13, 2858 7 of 20

Algorithm 1 Routing Algorithm, according to Sabour et al. [23]

1: procedure ROUTING (ûj|i, r, l)
2: for all capsule i in layer l and capsule j in layer (l + 1): bij ← 0.
3: for r iterations do
4: for all capsule i in layer l : cij ← so f tmax(bi) . so f tmax computes Equation (2)
5: for all capsule j in layer (l + 1): sj ← ∑i cijûj|i
6: for all capsule i in layer (l + 1): vj ← squash(sj) . squash computes Equation (1)
7: for all capsule i in layer l and capsule j in layer (l + 1): bij ← bij + ûj|i vj
8: return vj

The coupling coefficients between the capsule i and all the capsules in the layer above
sum up to 1 and are determined by a routing softmax function, whose initial logits bij are
the log prior probabilities that the capsule i should be coupled to the capsule j as shown as
follows:

cij = so f tmax(bi) =
exp(bij)

∑k exp(bik)
. (2)

We detail the complete dynamic routing by agreement process in Algorithm 1, where
the parameter r is the selected iteration number and the value l is the number of the
current layer.

Finally, the DigitCaps layer ends with ten 16-dimensional vectors, as shown in Figure 3,
one vector for each digit. This layer is the final prediction and can produce two outputs.
The first output consists of ten vectors produced by the DigitCaps Layer, where each vector
corresponds to each class in the network. Then, this output uses the norm L2 to calculate the
length of each vector. Finally, the vector values are the confidence to detect the associated
class, i.e., the prediction. The second output is the reconstruction stage.

2.3. DRCaps Model

Figure 4 describes the architecture of the proposed DRCaps model. Note that it
combines convolution layers with capsule layers with three stages: (1) Convolutional,
(2) Capsule, and (3) Reconstruction.

Figure 4. DRCaps model.

Diagnostics 2023, 13, 2858 8 of 20

The Convolutional Stage aims to extract features in complex images using the dilation
rate hyperparameter. The dilation rate with the stride hyperameters allows the omission of
a max-pooling operation and improves the spatial relationship problem. The second stage
includes PrimaryCaps and ClassCaps. At this stage, the agreement algorithm implements a
dynamic routing [23]. The last Reconstruction Stage evaluates how the model encodes the
input features; i.e., reconstructs the input image. Also, this stage works as a regularization
parameter in the training. In the end, the model combines the ClassCaps output and the
Reconstruction Stage for the optimization weights. The following subsections describe in
detail how each stage is formed.

2.3.1. Convolution Stage

The Convolutional Stage (CS) converts the intensity of the pixels into activity detectors
of local features and uses them as input for the next stage. The CS is formed by seven
convolutional layers, as shown in Figure 5. The layers conv1, conv3, and conv5 use the
dilation rate. Dilation modifies the convolutional kernel by introducing spaces between
the elements.

Figure 5. The Convolutional Stage in the DRCaps model.

Figure 6 illustrates how the dilation operates: a 3 × 3 kernel with a dilation rate of
(2,2) will have the same field of view as a 5 × 5 kernel while only using nine parameters.
Imagine taking a 5 × 5 kernel and deleting every second column and row, resulting in a
broader field of view at the same computational cost. So, the same number of parameters of
a 3 × 3 kernel can cover the same region of a 9 × 9 kernel or a 17 × 17 kernel with different
dilation rates. Kernel dilation is particularly popular in real-time segmentation, where it
is needed to cover a wide field of view and cannot afford multiple convolutions or larger
kernels [44].

Figure 6. Examples of the space that covers different values of dilation rate used in this model.

Diagnostics 2023, 13, 2858 9 of 20

In the DRCaps model, the conv1 layer applies 128 filters to an input image of
256× 256 pixels, using kernels of 3× 3 with stride equal to 1 and with a dilation rate
equal to (8,8). This configuration generates an output size of 240× 240. As the original
goal is to reduce the size of the feature maps, the next convolutional layer (conv2) uses a
bigger stride value and only 64 filters. This reduces the features maps size to 119× 119.
So, next layers change the stride or dilation rate value for better feature extraction. Finally,
CS ends with 64 filters with a size of 12× 12. In addition, all the convolutional layers
use ReLU activation function. Table 3 summarizes the hyperparameter selection on each
convolutional layer.

Table 3. Hyperparameter selection on each convolutional layers at the CS.

Layer Filters Kernel Size Stride Dilation Rate Output Size Parameters

conv1 128 3 × 3 1 (8,8) 240 × 240 1280
conv2 64 3 × 3 2 (1,1) 119 × 119 73,792
conv3 128 3 × 3 1 (4,4) 111 × 111 73,856
conv4 64 3 × 3 2 (1,1) 55 × 55 73,792
conv5 64 3 × 3 1 (2,2) 51 × 51 36,928
conv6 64 3 × 3 2 (1,1) 25 × 25 36,928
conv7 64 3 × 3 2 (1,1) 12 × 12 36,928

2.3.2. Capsule Stage

The Capsule Stage (CaS) consists of two layers: PrimaryCaps Layer and ClassCaps
Layer. The PrimaryCaps Layer is the lowest level of multidimensional entities from an
inverse graph perspective. This corresponds to a reverse rendering process. Given the
64 filters with the size of 12× 12 from the last convolutional layer, a kernel of 9× 9 with a
depth of 64 and a stride equals 2, yielding 32 PrimaryCaps layers each of size 2× 2× 8,
where each PrimaryCap has eight dimensions (8D), as shown in Figure 7. These operations
generate 128 capsules. Each capsule is a group of neurons that code the probabilities of
feature detection in an output vector. This output vector has two components: magnitude
and orientation. The magnitude represents the probability that the entity exists, while the
orientation represents the instantiating parameters such as pose (position, size, orientation),
deformation, and texture, among others.

Figure 7. The Capsule Stage in the DRCaps model.

The ClassCaps layer follows the PrimaryCaps layer. Thus the network ends up with
three vectors of 16 elements each, one vector for each dataset class. This matrix works to
get two outputs, as shown in Figure 4. The first output consists of three vectors produced
by the ClassCap layer, where each vector corresponds to each class in the network. Then,
this output uses the norm L2 to calculate the length of each vector. Finally, the values of the
vector are the confidence of detecting the associated class, i.e., the prediction. The second
output is the reconstruction stage, which we will explain in the next section.

2.3.3. Reconstruction Stage

Finally, the Reconstruction Stage (RS) uses the output of the ClassCap Layer as input
for recreating the original input image. Then the model minimizes the distance (loss)

Diagnostics 2023, 13, 2858 10 of 20

between the reconstructed and original images. Note that, whereas a traditional CNN only
cares about whether or not the model predicts the correct classification, CapsNets use the
reconstruction stage as a regularization method to improve the results. In our architecture,
this stage is formed by four fully connected layers with 64, 128, 128, and 65,536, as shown
in Figure 8. It is also important to note that, in the reconstruction stage, specifically,
the decoder is part of the network that could generate more parameters due to their fully
connected layers. In the DRCaps model, this stage generates a total parameter of 8,482,112.
For these reasons, some models prefer to leave this stage out of their architectures, mainly
if they handle RGB complex images.

Figure 8. Decoder structure of the DRCaps model.

Table 4 summarizes the hyperparameters used in the DRCaps model. The table
explains all the hyperparameters necessary to replicate the model.

Table 4. Summary of hyperparameters of the DRCaps model.

Layer Hyperparameters

Input Image size = (256, 256)
channels = 1

Convolutional

Layers = 7
Channels = 64,128
filters = 7
filter size = 3,3
parameters = 333, 504

stride = 1,2
padding = valid
dilation rate = (8,8),(4,4),(2,2)
activation = ReLU

PrimaryCaps

Capsules = 128
Capsule depth = 8
Caps Layers = 32
parameters = 1, 327, 360

stride = 2
padding = valid
filter size = 9

ClassCaps
clases = 3
Instantiation parameters = 16
parameters = 49, 152

Reconstruction

layers = 3
layer sizes = 64,128,128,65536
activation = ReLU
parameters = 8, 482, 112,

2.3.4. Loss Functions

We train the DRCaps model by minimizing a total loss that includes two loss functions.
According to Sabour, the first loss is the margin loss that represents the probability that a
capsule entity exists based on the length of the instantiation vector [23]. The second loss
(RS) promotes correct reconstructions of the input data. We use this function to encourage
the capsules to encode the instantiation parameters of the input class; this loss acts as a
regularizer. Following, we present the details of the particular losses.

Diagnostics 2023, 13, 2858 11 of 20

Margin Loss

The margin loss function, Equation (3), was proposed by Sabour in the original
CapsNet paper. According to Sabour [23], Tk is equal to one if the diagnostic of class k is
present and m+ = 0.9 and m− = 0.1. We use ε = 0.5. The total margin loss is the sum of the
losses of all class capsules.

Lk = Tkmax(0, m+− ‖ vk ‖)2 + ε(1− Tk)max(0, ‖ vk ‖ −m−)2 (3)

Reconstruction Loss

The reconstruction loss corresponds to the mae, see Equation (4). This loss function
takes the difference between the model prediction and the ground truth, applies the absolute
value to that difference, and then averages it across the entire dataset. Therefore, all errors
will be weighted on the same linear scale.

mae =
1
n

n

∑
i=1
|yi − xi| (4)

2.4. Training the DRCaps Model

Figure 9 describes the DRCaps model training process. First, the input image is
passed through the DRCaps model and generates the ClassCap layer, as shown in Figure 4.
The model then uses a total loss function formed by two different functions: margin loss and
reconstruction loss. The first is the function obtained from the model’s prediction and the
actual target. The model’s prediction corresponds to the vector with the highest magnitude
in the ClassCap layer. The second loss compares the image reconstruction (decoder output)
and the original input. The reconstruction loss is multiplied by a λ hyper-parameter that
weights the relative contribution of each term. Hence, it is summed with the margin loss to
obtain the total loss, Figure 9.

Figure 9. Training a CapsNet model.

Our implementation uses images to a size of 256× 256 and normalize, λ = 40, a batch
size equal to 32, and the Adam optimizer with the default parameters: a learning rate,
lr = 0.001, and a lr decay = 0.9. Table 5 summarizes the hyperparameters

Diagnostics 2023, 13, 2858 12 of 20

Table 5. Training of the hyperparameters of the DRCaps model.

Arguments Compile Train

epochs = 50 optimizer = Adam train images = 12,089 (80%)
learning rate = 0.001 learning rate = 0.001 validation images = 3022 (20%)
img width = 256 prediction loss = margin loss batch size = 32
img height = 256 reconstruction loss = mae steps per epoch = 378
lr decay = 0.9 metrics = accuracy test images = 1579
routings = 3
λ recon = 32.768

2.5. Experimental Platform

The experiments were carried out on a server at CIMAT called Tinieblas. The inte-
grated development environment is JupyterHub. The Tinieblas server has three GPU cards:
two GeForce RTX 2080 Ti with 11 GB VRAM and a GeForce RTX 2080 with 8 GB VRAM,
which has a Compute capability (CC) equal to 7.5. The deep learning framework used was
Keras 2.5.0 with TensorFlow 2.5.0 as a backend, as shown in Table 6.

Table 6. Experimental platform.

Server OS TensorFlow Keras GPU CC

Tinieblas Linux 2.5.0 2.5.0 RTX 2080 Ti 7.5

3. Results

We started replicating the CapsNet baseline on the MNIST dataset. As shown in the
first row in Table 7. Then, we decided to probe two different configurations (CapsNet
V2 and V3) with the dilation rate parameter on the same MNIST dataset. With these
experiments we can observe how the dilation rate reduces the capsule number and the
total parameters. Whereas, the accuracy is increased.

Then, we decided to use the CaspsNet V3 on the COVIDx dataset. However, since we
used a complex image with a depth of 3, the number of capsules and parameters increases
significantly. Even when we decided to use only a depht of 1. These increases in the number
of capsules and the number of parameters generate great computational complexity in the
dynamc routing by agreement method. This results in computer memory saturation and
makes it impossible to complete training, as shown in the four and five rows in Table 7.

So, it was necessary to reduce the number of capsules and parameters in order to
train the model successfully. We reduce the FC layers in the reconstruction stage and
remove the dilation rate. The new model (CapsNet V4) has three convolutional layers
with a stride equal to 2 in each layer. Then we decided to change the λ hyperparameter,
which had favorable results. In addition, we decided to use only one channel in the input
images (CapsNet V5). This small change allows us to reduce the number of parameters and
improve the accuracy, as shown in Figure 7. Also, we decided to try different configurations
in the CS, such as kernel sizes, added the dilation rate hyperparameter, and changed the
stride value. One thing that caught our attention was that as we increased the number of
capsules, the training time per period increased, while the accuracy decreased. For example,
we designed a configuration that generated 3200 capsules and used a training time of two
and a half minutes per epoch, achieving an accuracy of 77%, while the other configuration
with only 288 capsules achieved an accuracy of 81%.

Finally, we come up with the final DRCaps model; see Figure 4. Table 4 summarizes
this model. This model generates only 128 capsules and handles 10,192,128 parameters,
achieving an accuracy of 88%, as shown in the second column of Table 7. Finally, we tested
four different versions, Table 7 summarizes the model results. The first version (V1) kept
the parameters mentioned afterward. In the second version (V2), we used λ = 40. In the
third version (V3), we increase λ = 80, and the last version uses λ = 0.328. As shown in
Table 7, the second version is the configuration that offers the best result.

Diagnostics 2023, 13, 2858 13 of 20

Table 7. Accuracy (acc) results at different hyperparameters configurations.

Network Dataset Image Size Depth Dilation Rate Stride Capsules λ RS Parameters Acc.

CapsNet baseline MNIST 28 × 28 1 no 2 1152 0.392 5,121,024 8,215,568 98.5
CapsNet V2 MNIST 28 × 28 1 (2,2) no 128 0.392 5,121,024 6,904,848 99.2
CapsNet V3 MNIST 28 × 28 1 (2,2), (4,4) no 288 0.392 5,121,024 7,458,320 99.6
CapsNet V3 COVIDx 256 × 256 3 (2,2), (4,4) no 438,048 0.392 5,121,024 375,963,520 -
CapsNet V3 COVIDx 256 × 256 1 (2,2), (4,4) no 438,048 0.392 5,121,024 241,613,568 -
CapsNet V4 COVIDx 256 × 256 3 no 2 512 0.392 64,128,128 28,612,288 80.0
CapsNet V4 COVIDx 256 × 256 3 no 2 512 32.768 64,128,128 28,612,288 82.5
CapsNet V5 COVIDx 256 × 256 1 no 2 512 0.392 64,128,128 11,702,848 78.0
CapsNet V5 COVIDx 256 × 256 1 no 2 512 32.768 64,128,128 11,702,848 86.2
DRCaps V1 COVIDx 256 × 256 1 (8,8), (4,4), (2,2) 1,2 128 32.768 64,128,128 10,192,128 88.0
DRCaps V2 COVIDx 256 × 256 1 (8,8), (4,4), (2,2) 1,2 128 40 64,128,128 10,192,128 90.0
DRCaps V3 COVIDx 256 × 256 1 (8,8), (4,4), (2,2) 1,2 128 80 64,128,128 10,192,128 85.0
DRCaps V4 COVIDx 256 × 256 1 (8,8), (4,4), (2,2) 1,2 128 0.392 64,128,128 10,192,128 10.0

Diagnostics 2023, 13, 2858 14 of 20

Figure 10 shows the training loss functions of the DRCaps model up to 50 epochs.
However, we can observe that only 20 are enough to obtain a good performance. The red
line is the decoder loss (mae), the green line allows the loss of CapsNet (margin loss),
and the blue line shows the total loss function, which is formed by adding the loss of
CapsNet and the loss of the decoder increased by the reconstruction value of λ.

Figure 10. Reconstruction loss of the DRCapsModel.

Figure 11 shows some examples of the output of the reconstruction stage in DRCaps
V2. These results correspond to λ = 40, which produced an accuracy of 90%. The first four
rows of Figure 11 are random examples of the images inputted into the model, and the last
four rows show how the network attempts to reconstruct them. As can be seen, the network
focuses on the chest section and attempts to recover the size, position, and shape of
the lungs. On the other hand, Figure 12 shows the output of DRCaps V4. In this case,
the regularization parameter λ is small and does not enforce a correct reconstruction of the
input images.

Figure 11. Reconstructed COVIDx images from RS in the DRCaps model with λ = 40. The first four
rows are random examples of the images inputted into the model, and the last four rows show how
the network attempts to reconstruct them.

Diagnostics 2023, 13, 2858 15 of 20

Figure 12. Reconstructed COVIDx images from RS in the DRCaps model with λ = 0.328. The first
four rows are random examples of the images inputted into the model, and the last four rows show
how the network attempts to reconstruct them.

4. Discussion

One of the main problems with CapsNets is that they struggle when handling complex
images because the network wants to understand everything about the input image. Often,
the region of interest in the input image to analyze to produce a correct classification is a
small fraction. This results in very time-consuming training and a decrease in accuracy.

For these reasons, convolutional networks continue to be used as the first stage of
the model for feature extraction, as they have demonstrated their efficient performance in
image management. The selection of parameters in each convolutional layer is essential
because the information obtained is the one that will form the capsules in the next stage.
For example, if we do not reduce the size of the feature maps resulting from the CS, when
entering the CaS, the number of capsules will be very large. Some articles that work with
large images use the max-pooling operation to do this size reduction, even though it causes
a loss of information. In our model, instead of using this operation, we decided to use
dilation convolution (controlled by the dilation rate parameter) to cover a broad field of the
image at a lower computational cost, in addition to using the stride parameter to reduce
the size of the feature maps.

At the beginning of our experiments, we only used the dilation rate parameter, which
generated large feature maps in the last convolutional layer; this caused the network to
have many capsules, which caused slow training and low accuracy. The reason may be
that the capsules tried to codify and reconstruct all the details of the image, but much
of that information is irrelevant to our task. According to the experiments, there is a
relationship between the number of capsules and the complexity of the images to analyze.
For example, for the original CapsNet architecture, which uses a 28× 28 image size, their
model can handle 1152 capsules with reasonable accuracy. However, when we tried to use
an excessive number of capsules (18,432; 2000; 67,712) the accuracy dropped to 60%, 71%,

Diagnostics 2023, 13, 2858 16 of 20

and 10%, respectively. For these reasons, we reduced the capsule number by manipulating
the convolutional kernel stride to improve accuracy. Figure 5 and Table 3 show how the
dilation rate and the stride reduce the size of the filters in the CS. This results in creating a
smaller number of capsules and a smaller number of total parameters in the network.

In the CaS, we maintain the same arbitrary parameters as the original paper, such as
the dimension of the capsules equal to eight, the size of the ClassCap layer as 16D capsule
per class, and three dynamic routing iterations. We tried to adjust this parameter by hand
with no significant results.

Finally, we observed that RS requires a larger number of parameters (weights) in the
network, and some implementations (reported works) prefer to omit this stage. However,
this stage is essential for regularizing the process; it enforced to feature extractor to codify
all the information in the original image. Our observation is consistent with reported works
that modified RS to improve accuracy [23–25,45,46]. We noted that the weight λ of the
reconstruction loss significantly affects the result of our model and prevents overfitting.
Furthermore, the experiments show a correlation between the input image size and the
value λ: we set it equal to the proposed value of 0.0005 (original paper) multiplied by
the size of the images used. Once you have this reference value, you can play with the
values up or down, observing the behavior of the network. From Table 7, we can see that,
in our case, the reference value with which we started was 32,768, we tried to increase
such a value a little to 40 observing good results, so we decided to double the value to 80
and produced a decrease in the accuracy obtained. We trained our model with a modest
number of examples that rely on the experimental evidence that CapsNets can generate
new labeled data from existing data in a more realistic way than the data augmentation
process [24].

Table 8 shows the advantages obtained with the DRCaps model and compares the
model with similar architectures. The architectures in Table 8 are ordered with greater
accuracy. Although our model did not reach the first place in Table 8, we can say that it offers
a more robust architecture. For example, the first place in the table uses only two classes
and uses noise-removal methods as image preprocessing. The second place in the table
uses images smaller than ours and only has two classes, simplifying the task’s complexity.
The third place at the table handles similar image sizes, but they use only two classes and
do not include a reconstruction stage because they use color images. Also, they still use the
max pooling operation on the CS. Despite the Kruthika et al. model achieving an accuracy
of 94.06% using three classes, their input images have smaller sizes and can such a larger
number of capsules than ours. That is a limitation for implementing a detector of other
diseases where the features would present high spatial frequency characteristics or more
classes need be detected.

The articles that follow our architecture in Table 8 mention that data augmentation
results in an acceptable accuracy, and others still use the max-pooling operation. Also,
some articles say that with their computing resources, it is impossible to use CaspsNets
for high-quality images. For the same reason, other papers skip the reconstruction stage to
design a lighter model. In addition, few publications use CapsNet with image sizes greater
than 128 × 128 pixels.

Diagnostics 2023, 13, 2858 17 of 20

Table 8. Accuracy results of different CapsNets-based models in medical imaging. Some models do not have defined some parameter and are listed as not
mentioned (nm).

Study Model Data Input Channels Capsules Classes Decoder Recons. Max-Pooling Data Aug. Accuracy (%)

Ali et al. [47] 19-layers CNN X-ray 227 × 227 3 nm 2 nm no yes no 98.5
Mittal et al. [33] ECC X-ray 100 × 100 1 36,864 2 2 yes no no 95.9
Afshar et al. [34] COVID-CAPS X-ray 224 × 224 3 nm 2 nm no yes no 95.7
Kruthika et al. [9] CapsNets MRI 64 × 64 1 18,432 3 3 yes no no 94.0

this DR CapsNet CT 226 × 226 1 128 3 3 yes no no 90.0
Mobiny and Van Nguyen [7] Fast CapsNet CT 32 × 32 1 2048 2 nm yes no no 88.5

Khanna et al. [4] DECAPS CT 448 × 448 nm nm 2 nm no no yes 87.6
Sarki et al. [48] VGG-16 CNN X-ray 224 × 224 3 nm 3 nm no yes no 87.5
Afshar et al. [8] CapsNets MRI 64 × 64 1 18,432 3 3 yes no no 86.5
Xiang et al. [32] 3-D ResCapsNet ABUS 128 × 128 nm nm 2 nm no no nm 84.9

Toraman et al. [35] CapsNets CT 128 × 128 1 8192 3 4 yes yes yes 84.2

Diagnostics 2023, 13, 2858 18 of 20

5. Conclusions

Computed tomography and radiography play a vital role in early diagnosis and
treatment. There are many AI applications in medical diagnostics with image processing.
Most of these are based on CNN. However, CNN has limitations, and nowadays there are
more options to improve these models. For example, the CapsNet architecture is more
robust to affine transformation, works well for a small dataset, and retains the spatial
relationship between features. Additionally, the model uses the reconstruction stage as a
regularization method to avoid overfitting.

Therefore, we propose the DRCaps model to classify chest X-ray for different medical
diagnoses: healthy, pneumonia, and COVID. We improved the original CapsNet approach
and proposed the DRCaps model, which combines the advantages of kernel dilation and
CaspNets. Also, the proposed model uses fewer parameters, less data pre-processing,
avoids the max-pool operation, and manages complex images. DRCaps model is verified
through experiments obtaining and improving accuracy. The proposed model is simple,
with low complexity and better results. According to the results, the number of capsules and
the correct weighting of the reconstruction loss are critical factors to avoid overfitting and
obtain good results with complex images. In addition, there are still many opportunities to
improve the model. AI has the potential to improve medical image classification, so the
proposed approach should be considered for the medical diagnosis of other diseases.

Author Contributions: Conceptualization, G.R., J.C.C.-T. and M.R.; methodology, G.R., J.C.C.-T. and
M.R.; software, G.R. and O.R.; data curation, G.R. and O.R.; writing—original draft preparation, G.R.;
writing—review and editing, J.C.C.-T. and M.R.; supervision, J.C.C.-T. and M.R.; funding acquisition,
J.C.C.-T. and M.R. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported in part by the Consejo Nacional de Ciencia y Tecnologia (CONA-
CYT) under grants 331896 and A1-S-43858.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: We thank the Laboratorio de Supercomputo del Bajio (No. 300832) at the CIMAT
(Guanajuato, Mexico) the collaboration in the computer resources and technical support for training
the models.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

CNN Convolutional Neural Networks
CapsNets Capsule Networks
CT Computed Tomography
CC Compute Capability
MRI Magnetic Resonance Imaging
CS Convolutional Stage
CaS Capsule Stage
RS Reconstruction Stage
PCR Polymerase chain reaction
DL The Deep Learning
COVID Coronavirus Disease
GAN Generative Adversarial Networks
ReLU Rectified Linear Unit

Diagnostics 2023, 13, 2858 19 of 20

References
1. Cellina, M.; Cè, M.; Irmici, G.; Ascenti, V.; Caloro, E.; Bianchi, L.; Pellegrino, G.; D’Amico, N.; Papa, S.; Carrafiello, G. Artificial

Intelligence in Emergency Radiology: Where Are We Going? Diagnostics 2022, 12, 3223. [CrossRef] [PubMed]
2. Ozturk, T.; Talo, M.; Yildirim, E.A.; Baloglu, U.B.; Yildirim, O.; Acharya, U.R. Automated detection of COVID-19 cases using deep

neural networks with X-ray images. Comput. Biol. Med. 2020, 121, 103792. [CrossRef] [PubMed]
3. Aboughazala, L.M. Automated detection of COVID-19 coronavirus cases using deep neural networks with X-ray images.

Al-Azhar Univ. J. Virus Res. Stud. 2020, 2, 1–12.
4. Khanna, M.; Agarwal, A.; Singh, L.K.; Thawkar, S.; Khanna, A.; Gupta, D. Radiologist-level two novel and robust automated

computer-aided prediction models for early detection of COVID-19 infection from chest X-ray images. Arab. J. Sci. Eng. 2023, 48,
11051–11083. [CrossRef] [PubMed]

5. Aljawarneh, S.A.; Al-Quraan, R. Pneumonia Detection Using Enhanced Convolutional Neural Network Model on Chest X-Ray
Images. Big Data 2023, online ahead of print. [CrossRef] [PubMed]

6. Mobiny, A.; Cicalese, P.A.; Zare, S.; Yuan, P.; Abavisani, M.; Wu, C.C.; Ahuja, J.; de Groot, P.M.; Van Nguyen, H. Radiologist-level
COVID-19 detection using ct scans with detail-oriented capsule networks. arXiv 2020, arXiv:2004.07407.

7. Mobiny, A.; Van Nguyen, H. Fast capsnet for lung cancer screening. In Proceedings of the Medical Image Computing
and Computer Assisted Intervention—MICCAI 2018: 21st International Conference, Granada, Spain, 16–20 September 2018;
Proceedings, Part II 11; Springer: Berlin/Heidelberg, Germany, 2018; pp. 741–749.

8. Afshar , P.; Mohammadi, A.; Plataniotis, K.N. Brain tumor type classification via capsule networks. In Proceedings of the 2018
25th IEEE International Conference on Image Processing (ICIP), Athens, Greece, 7–10 October 2018 ; IEEE: New York, NY, USA,
2018; pp. 3129–3133.

9. Kruthika, K.; Maheshappa, H.; Alzheimer’s Disease Neuroimaging Initiative. CBIR system using Capsule Networks and 3D
CNN for Alzheimer’s disease diagnosis. Inf. Med. Unlocked 2019, 14, 59–68. [CrossRef]

10. Dammu, H.; Ren, T.; Duong, T.Q. Deep learning prediction of pathological complete response, residual cancer burden, and
progression-free survival in breast cancer patients. PLoS ONE 2023, 18, e0280148. [CrossRef]

11. Nasser, M.; Yusof, U.K. Deep Learning Based Methods for Breast Cancer Diagnosis: A Systematic Review and Future Direction.
Diagnostics 2023, 13, 161. [CrossRef]

12. Stumpe, M.; Mermel, C. Applying Deep Learning to Metastatic Breast Cancer Detection. Available online : https://ai.googleblog.
com/2018/10/applying-deep-learning-to-metastatic.html (accessed on 26 July 2023).

13. Gurovich, Y.; Hanani, Y.; Bar, O.; Nadav, G.; Fleischer, N.; Gelbman, D.; Basel-Salmon, L.; Krawitz, P.M.; Kamphausen, S.B.;
Zenker, M.; et al. Identifying facial phenotypes of genetic disorders using deep learning. Nat. Med. 2019, 25, 60–64. [CrossRef]

14. DARPA. Learning with Less Labels (LwLL); Technical Report; Defense Advanced Research Projects Agency: Arlington, VI,
USA, 2018.

15. Mitchell, T.M. Machine Learning, 1st ed.; McGraw-Hill, Inc.: New York, NY, USA, 1997.
16. Shorten, C.; Khoshgoftaar, T.M. A survey on image data augmentation for deep learning. J. Big Data 2019, 6, 60. [CrossRef]
17. Sundaram, D.M.; Loganathan, A. FSSCaps-DetCountNet: Fuzzy soft sets and CapsNet-based detection and counting network for

monitoring animals from aerial images. J. Appl. Remote Sens. 2020, 14, 026521. [CrossRef]
18. Huang, W.; Zhou, F. DA-CapsNet: Dual attention mechanism capsule network. Sci. Rep. 2020, 10, 11383. [CrossRef] [PubMed]
19. Phaye, S.S.R.; Sikka, A.; Dhall, A.; Bathula, D. Dense and diverse capsule networks: Making the capsules learn better. arXiv 2018,

arXiv:1805.04001.
20. Yang, S.; Lee, F.; Miao, R.; Cai, J.; Chen, L.; Yao, W.; Kotani, K.; Chen, Q. RS-CapsNet: An Advanced Capsule Network. IEEE

Access 2020, 8, 85007–85018. [CrossRef]
21. Szegedy, C.; Zaremba, W.; Sutskever, I.; Bruna, J.; Erhan, D.; Goodfellow, I.; Fergus, R. Intriguing properties of neural networks.

arXiv 2013, arXiv:1312.6199.
22. Ren, K.; Zheng, T.; Qin, Z.; Liu, X. Adversarial attacks and defenses in deep learning. Engineering 2020, 6, 346–360. [CrossRef]
23. Sabour, S.; Frosst, N.; Hinton, G.E. Dynamic routing between capsules. In Proceedings of the 31st International Conference on

Neural Information Processing Systems (NIPS), Long Beach, California, USA, 4–9 December 2017; Curran Associates Inc.: Red
Hook, NY, USA 2017; pp. 3856–3866.

24. Rajasegaran, J.; Jayasundara, V.; Jayasekara, S.; Jayasekara, H.; Seneviratne, S.; Rodrigo, R. DeepCaps: Going Deeper with
Capsule Networks. arXiv 2019, arXiv:1904.09546.

25. Jayasundara, V.; Jayasekara, S.; Jayasekara, H.; Rajasegaran, J.; Seneviratne, S.; Rodrigo, R. TextCaps: Handwritten Character
Recognition With Very Small Datasets. In Proceedings of the 2019 IEEE Winter Conference on Applications of Computer Vision
(WACV), Waikoloa Village, HI, USA, 7–11 January 2019; IEEE: New York, NY, USA, 2019; pp. 254–262.

26. Frosst, N.; Sabour, S.; Hinton, G. DARCCC: Detecting adversaries by reconstruction from class conditional capsules. arXiv 2018,
arXiv:1811.06969.

27. Hinton, G.; Sabour, S.; Frosst, N. Matrix capsules with EM routing. In Proceedings of the Sixth International Conference on
Learning Representations, Vancouver, CO, Canada, 30 April–3 May 2018.

28. Jaiswal, A.; AbdAlmageed, W.; Wu, Y.; Natarajan, P. Capsulegan: Generative adversarial capsule network. In Proceedings of the
European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018.

http://doi.org/10.3390/diagnostics12123223
http://www.ncbi.nlm.nih.gov/pubmed/36553230
http://dx.doi.org/10.1016/j.compbiomed.2020.103792
http://www.ncbi.nlm.nih.gov/pubmed/32568675
http://dx.doi.org/10.1007/s13369-021-05880-5
http://www.ncbi.nlm.nih.gov/pubmed/34395156
http://dx.doi.org/10.1089/big.2022.0261
http://www.ncbi.nlm.nih.gov/pubmed/37074075
http://dx.doi.org/10.1016/j.imu.2018.12.001
http://dx.doi.org/10.1371/journal.pone.0280148
http://dx.doi.org/10.3390/diagnostics13010161
https://ai.googleblog.com/2018/10/applying-deep-learning-to-metastatic.html
https://ai.googleblog.com/2018/10/applying-deep-learning-to-metastatic.html
http://dx.doi.org/10.1038/s41591-018-0279-0
http://dx.doi.org/10.1186/s40537-019-0197-0
http://dx.doi.org/10.1117/1.JRS.14.026521
http://dx.doi.org/10.1038/s41598-020-68453-w
http://www.ncbi.nlm.nih.gov/pubmed/32647347
http://dx.doi.org/10.1109/ACCESS.2020.2992655
http://dx.doi.org/10.1016/j.eng.2019.12.012

Diagnostics 2023, 13, 2858 20 of 20

29. Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.; et al.
Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. 2015, 115, 211–252. [CrossRef]

30. Jia, B.; Huang, Q. DE-CapsNet: A Diverse Enhanced Capsule Network with Disperse Dynamic Routing. Appl. Sci. 2020, 10, 884.
[CrossRef]

31. Wang, A.; Wang, M.; Wu, H.; Jiang, K.; Iwahori, Y. A Novel LiDAR Data Classification Algorithm Combined CapsNet with
ResNet. Sensors 2020, 20, 1151. [CrossRef] [PubMed]

32. Xiang, H.; Huang, Y.S.; Lee, C.H.; Chien, T.Y.C.; Lee, C.K.; Liu, L.; Li, A.; Lin, X.; Chang, R.F. 3-D Res-CapsNet convolutional
neural network on automated breast ultrasound tumor diagnosis. Eur. J. Radiol. 2021, 138, 109608. [CrossRef] [PubMed]

33. Mittal, A.; Kumar, D.; Mittal, M.; Saba, T.; Abunadi, I.; Rehman, A.; Roy, S. Detecting pneumonia using convolutions and dynamic
capsule routing for chest X-ray images. Sensors 2020, 20, 1068. [CrossRef] [PubMed]

34. Afshar, P.; Heidarian, S.; Naderkhani, F.; Oikonomou, A.; Plataniotis, K.N.; Mohammadi, A. Covid-caps: A capsule network-
based framework for identification of COVID-19 cases from X-ray images. Pattern Recognit. Lett. 2020, 138, 638–643. [CrossRef]
[PubMed]

35. Toraman, S.; Alakus, T.B.; Turkoglu, I. Convolutional capsnet: A novel artificial neural network approach to detect COVID-19
disease from X-ray images using capsule networks. Chaos Solitons Fractals 2020, 140, 110122. [CrossRef] [PubMed]

36. Wang, L.; Lin, Z.Q.; Wong, A. COVID-Net: A tailored deep convolutional neural network design for detection of COVID-19 cases
from chest X-ray images. Sci. Rep. 2020, 10, 19549. [CrossRef] [PubMed]

37. Cohen, J.P.; Morrison, P.; Dao, L. COVID-19 image data collection. arXiv 2020, arXiv:2003.11597.
38. Rahman, T.; Khandakar, A.; Qiblawey, Y.; Tahir, A.; Kiranyaz, S.; Kashem, S.B.A.; Islam, M.T.; Al Maadeed, S.; Zughaier, S.M.;

Khan, M.S.; et al. Exploring the effect of image enhancement techniques on COVID-19 detection using chest X-ray images.
Comput. Biol. Med. 2021, 132, 104319. [CrossRef]

39. Chowdhury, M.E.; Rahman, T.; Khandakar, A.; Mazhar, R.; Kadir, M.A.; Mahbub, Z.B.; Islam, K.R.; Khan, M.S.; Iqbal, A.; Al Emadi,
N.; et al. Can AI help in screening viral and COVID-19 pneumonia? IEEE Access 2020, 8, 132665–132676. [CrossRef]

40. Wang, X.; Peng, Y.; Lu, L.; Lu, Z.; Bagheri, M.; Summers, R.M. Chestx-ray8: Hospital-scale chest x-ray database and benchmarks
on weakly-supervised classification and localization of common thorax diseases. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2097–2106.

41. Tsai, E.B.; Simpson, S.; Lungren, M.P.; Hershman, M.; Roshkovan, L.; Colak, E.; Erickson, B.J.; Shih, G.; Stein, A.; Kalpathy-Cramer,
J.; et al. The RSNA International COVID-19 Open Radiology Database (RICORD). Radiology 2021, 299, e204–e213. [CrossRef]
[PubMed]

42. LeCun, Y.; Cortes, C.; Yann, C.J.B. The MNIST Database of Handwritten Digits. 1998. Available online: http://yann.lecun.com/
exdb/mnist (accessed on 26 July 2023).

43. TensorFlow Datasets. A Collection of Ready-to-Use Datasets. Available online: https://www.tensorflow.org/datasets
(accessed on 26 July 2023).

44. Filippas, D.; Nicopoulos, C.; Dimitrakopoulos, G. Streaming Dilated Convolution Engine. IEEE Trans. Very Large Scale Integr. Syst.
2023, 31, 401–405. [CrossRef]

45. Rosario, V.M.D.; Borin, E.; Breternitz, M., Jr. The Multi-Lane Capsule Network (MLCN). arXiv 2019, arXiv:1902.08431.
46. LaLonde, R.; Bagci, U. Capsules for object segmentation. arXiv 2018, arXiv:1804.04241.
47. Ali, M.U.; Kallu, K.D.; Masood, H.; Tahir, U.; Gopi, C.V.; Zafar, A.; Lee, S.W. A CNN-Based Chest Infection Diagnostic Model: A

Multistage Multiclass Isolated and Developed Transfer Learning Framework. Int. J. Intell. Syst. 2023, 2023, 6850772. [CrossRef]
48. Sarki, R.; Ahmed, K.; Wang, H.; Zhang, Y.; Wang, K. Automated detection of COVID-19 through convolutional neural network

using chest x-ray images. PLoS ONE 2022, 17, e0262052. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/s11263-015-0816-y
http://dx.doi.org/10.3390/app10030884
http://dx.doi.org/10.3390/s20041151
http://www.ncbi.nlm.nih.gov/pubmed/32093132
http://dx.doi.org/10.1016/j.ejrad.2021.109608
http://www.ncbi.nlm.nih.gov/pubmed/33711572
http://dx.doi.org/10.3390/s20041068
http://www.ncbi.nlm.nih.gov/pubmed/32075339
http://dx.doi.org/10.1016/j.patrec.2020.09.010
http://www.ncbi.nlm.nih.gov/pubmed/32958971
http://dx.doi.org/10.1016/j.chaos.2020.110122
http://www.ncbi.nlm.nih.gov/pubmed/32834634
http://dx.doi.org/10.1038/s41598-020-76550-z
http://www.ncbi.nlm.nih.gov/pubmed/33177550
http://dx.doi.org/10.1016/j.compbiomed.2021.104319
http://dx.doi.org/10.1109/ACCESS.2020.3010287
http://dx.doi.org/10.1148/radiol.2021203957
http://www.ncbi.nlm.nih.gov/pubmed/33399506
http://yann.lecun.com/exdb/mnist
http://yann.lecun.com/exdb/mnist
https://www.tensorflow.org/datasets
http://dx.doi.org/10.1109/TVLSI.2022.3233882
http://dx.doi.org/10.1155/2023/6850772
http://dx.doi.org/10.1371/journal.pone.0262052

	Introduction
	Materials and Methods
	COVIDx Dataset
	Capsnet Baseline
	DRCaps Model
	Convolution Stage
	Capsule Stage
	Reconstruction Stage
	Loss Functions

	Training the DRCaps Model
	Experimental Platform

	Results
	Discussion
	Conclusions
	References

