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Abstract: This study aims to compare the effectiveness of using discrete heartbeats versus an entire
12-lead electrocardiogram (ECG) as the input for predicting future occurrences of arrhythmia and
atrial fibrillation using deep learning models. Experiments were conducted using two types of inputs:
a combination of discrete heartbeats extracted from 12-lead ECG and an entire 12-lead ECG signal
of 10 s. This study utilized 326,904 ECG signals from 134,447 patients and categorized them into
three groups: true–normal sinus rhythm (T-NSR), atrial fibrillation–normal sinus rhythm (AF-NSR),
and clinically important arrhythmia–normal sinus rhythm (CIA-NSR). The T-NSR group comprised
patients with at least three normal rhythms in a year and no atrial fibrillation or arrhythmias history.
Clinically important arrhythmia included atrial fibrillation, atrial flutter, atrial premature contraction,
atrial tachycardia, ventricular premature contraction, ventricular tachycardia, right and left bundle
branch block, and atrioventricular block over the second degree. The AF-NSR group included normal
sinus rhythm paired with atrial fibrillation or atrial flutter within 14 days, and the CIA-NSR group
comprised normal sinus rhythm paired with CIA occurring within 14 days. Three deep learning
models, ResNet-18, LSTM, and Transformer-based models, were utilized to distinguish T-NSR from
AF-NSR and T-NSR from CIA-NSR. The experiments demonstrated the potential of using discrete
heartbeats in predicting future arrhythmia and atrial fibrillation incidences extracted from 12-lead
electrocardiogram (ECG) signals alone, without any additional patient information. The analysis
reveals that these discrete heartbeats contain subtle patterns that deep learning models can identify.
Focusing on discrete heartbeats may lead to more timely and accurate diagnoses of these conditions,
improving patient outcomes and enabling automated diagnosis using ECG signals as a biomarker.

Keywords: arrhythmia risk prediction; atrial fibrillation risk prediction; artificial intelligence

1. Introduction

Cardiac arrhythmias, encompassing conditions such as atrial fibrillation, are among the
leading causes of concern in cardiovascular health. The insidious nature of these conditions,
often manifesting asymptomatically or with minimal symptoms, renders them particularly
elusive to standard detection methods [1–3]. The stakes of such undetected irregularities
are alarmingly high, with potential outcomes ranging from debilitating strokes to heart
failures and, in the most severe instances, culminating in sudden cardiac death [4].

The gravity of atrial fibrillation, a prominent subtype of arrhythmias, lies in its strong
correlation with intensified risks of both stroke and heart failure [5–9]. This association

Diagnostics 2023, 13, 2849. https://doi.org/10.3390/diagnostics13172849 https://www.mdpi.com/journal/diagnostics

https://doi.org/10.3390/diagnostics13172849
https://doi.org/10.3390/diagnostics13172849
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com
https://orcid.org/0009-0000-8860-3276
https://orcid.org/0009-0005-4185-9342
https://orcid.org/0000-0002-7435-7884
https://doi.org/10.3390/diagnostics13172849
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com/article/10.3390/diagnostics13172849?type=check_update&version=1


Diagnostics 2023, 13, 2849 2 of 15

highlights the pressing need for effective early detection mechanisms and prompt inter-
ventions. Despite the profound clinical implications, these conditions often go undetected,
only becoming evident when they result in more severe outcomes.

The motivation behind our study is to bridge this detection gap. Recognizing the
challenges faced in identifying these conditions early, we delved into innovative methods
aimed at enhancing the screening process. By refining the current diagnostic paradigms,
we believe we can bring a robust solution that aids in the proactive management of atrial
fibrillation and other arrhythmias [10,11]. Through this endeavor, our motivation is clear:
to mitigate the potential complications and enhance the quality of life for patients across
the globe.

Electrocardiogram (ECG) recording includes 1-dimensional time series data that mea-
sure the heart’s electrical activity, and it is a valuable tool for diagnosing and monitoring
arrhythmias and atrial fibrillation. Recent studies have demonstrated the potential of deep
learning techniques in predicting the future incidence of arrhythmias and atrial fibrillation
using ECG signals [12–16]. Previous approaches to ECG analysis have mainly concentrated
on using whole 12-lead EKG recordings as the input for deep learning models due to the
popularity of two-dimensional CNNs in analyzing various data types, such as auditory sig-
nals that were transformed into two-dimensional image data. However, applying the same
approach to ECG signals may not be optimal due to the challenges posed by the complex
and noisy nature of the electrical signals generated by the heart, which are superimposed
on various noise sources, such as muscle movement, respiration, and electrical interference
from other equipment.

The utilization of discrete heartbeats as input data has been identified as a more
optimal approach for detecting subtle abnormalities indicating future incidences of atrial
fibrillation and other arrhythmias [17,18], compared to using whole 12-lead ECG recordings
as the input. This approach enables the detection of critical temporal events, improving the
performance of predictive models. Compared to using complete 12-lead ECG recordings
as the input data, this approach allows for more focused analysis and reduces the need
for larger datasets (Figure 1). Adopting this method facilitates the identification of the key
indicators of potential cardiac issues, enhancing the accuracy of predictions.
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Figure 1. Conventional and proposed input approach for ECG analysis.

To further optimize the approach for identifying subtle abnormalities in ECG signals,
our methodology for predicting future cardiac events from normal sinus rhythm relies
exclusively on the ECG signal, without using additional patient data, such as electronic
medical records, that contain potentially sensitive or private information, such as age,
gender, medical history, family history of heart disease, medication use, lifestyle factors
(smoking and alcohol consumption), and comorbid conditions (hypertension or diabetes).
While utilizing such data could enhance the accuracy of ECG prediction algorithms, deep
learning models may focus more on medical records than ECG signals, leading to biased
prediction results.
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The primary aim of our study is to demonstrate that utilizing discrete heartbeats
extracted from 10-s 12-lead sinus rhythm ECGs as inputs yields superior results compared
to using an entire 12-lead heartbeat as the input for predicting future incidences of cardiac
arrhythmias and atrial fibrillation. We conducted two distinct experiments: one for pre-
dicting the future incidence of atrial fibrillation, and another for predicting arrhythmias
with prediction windows of 14 days. The reason for conducting separate experiments for
arrhythmia and atrial fibrillation, despite atrial fibrillation being a type of arrhythmia, is
to precisely analyze and understand the distinct characteristics and patterns associated
with each condition. Isolating atrial fibrillation as a separate experiment allows for a more
focused investigation into the unique features and predictive factors specific to it. The
chosen prediction windows were aligned with the typical duration of wearing cardiac
event monitors, which ranged up to 14 days. Evaluating the effectiveness of our approach
in predicting clinically important arrhythmias within these windows provides insight into
its potential usefulness in clinical practice. Moreover, our approach’s reliance on the ECG
signal makes it a practical and feasible solution for clinical implementation, given that ECGs
are routinely performed in clinical settings. Our study results indicate that using discrete
heartbeats as the input yielded superior results compared to the conventional approach and
could be a valuable tool for healthcare providers in predicting future cardiac arrhythmias
from normal sinus rhythm and improving patient care and disease management.

2. Materials and Methods
2.1. Data Information and Study Population

We included 134,447 patients with 326,904 ECGs acquired from two Ewha Womans
University Hospitals in Mokdong and Seoul, Republic of Korea, between May 2017 and
May 2022. Raw ECGs were obtained from Philips (236,645 ECGs) and General Electric
(90,259 ECGs) ECG machines in XML format. Philips ECGs are standard 10-s, 12-lead ECGs
with a sampling rate of 500 Hz. GE ECGs are 10-s, 8- or 12-lead ECGs with a sampling rate
of 500 Hz. The 8-lead ECGs from the General Electric ECG machine were reconstructed to
12 leads using Einthoven’s law and Goldberger’s equations [19].

2.2. Study Group Selection

We categorized 326,904 ECG datasets into three groups: true–normal sinus rhythm
(“T-NSR”), atrial fibrillation–normal sinus rhythm (“AF-NSR”), and clinically important
arrhythmia–normal sinus rhythm (“CIA-NSR”). We defined arrhythmias based on sev-
eral criteria, which included atrial fibrillation, atrial flutter, atrial arrhythmia, premature
ventricular contraction, right and left bundle branch block, and any atrioventricular block
exceeding the second degree. Each of these conditions holds clinical significance and
necessitates medical intervention.

2.2.1. Study Group Selection with Automated Labels

For the T-NSR group, we considered patients who recorded a minimum of three ECGs
displaying normal sinus rhythm over 12 months and who had no documented history
of atrial fibrillation or other arrhythmias. From this pool of T-NSR ECGs, we randomly
selected one ECG per patient. The AF-NSR group comprised ECGs explicitly labeled as
normal sinus rhythm and which had a corresponding ECG showing atrial fibrillation or
atrial flutter within the subsequent 14 days. The CIA-NSR group included normal sinus
rhythm paired with ECGs that showed CIA occurring within 14 days after the initial normal
sinus rhythm reading, as illustrated in Figure 2.

To ensure the integrity of our dataset, we omitted any ECGs that were flawed or had
missing or inconclusive interpretations from the T-NSR, AF-NSR, and CIA-NSR groups. To
uphold consistency in our findings and focus on the adult demographic, we also excluded
the ECG records of individuals younger than 18.
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Figure 2. Normal sinus rhythm ECGs labeled by automatic symptom analysis reports were selected
if AF or CIA occurred within 14 days after the respective normal sinus rhythm ECGs. Trained
practitioners validated and relabeled the selected normal sinus rhythm as AF-NSR or CIA-NSR.

2.2.2. Study Group Selection with Manual Labels

Each ECG interpretation, thus far, was determined by automatic symptom analysis
reports from the Philips and GE ECG machines. To ensure the accuracy of our data, we
converted all selected ECGs into waveform images. We asked trained practitioners with
more than five years of experience in cardiology to manually annotate them. Any ECGs
with discrepancies between the automatic diagnosis and manual annotations were excluded
from the study. To ensure robust model evaluation and simulate real-world scenarios, we
partitioned the dataset based on the dates of the ECG scans and the patients who underwent
them. The training and validation set spanned from 23 May 2017 to 10 June 2021, while
the test set covered 11 June 2021 to 23 May 2022. For convenience in the learning context,
train and validation set separation was performed on the ECG scan level. Following these
selection processes, we obtained each group’s final number of ECGs, as shown in Figure 3.
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2.3. Signal Data Preprocessing

We employed several preprocessing techniques on our 10-s 12-lead ECG signal data
to obtain accurate and reliable data (Figure 4). First, we decoded the data from Base
64 encryption and then passed it through an IIR Butterworth SOS and powerline noise
filters with a moving average kernel for denoising and cleansing. Next, we segmented the
denoised lead signals into individual heartbeats using a QRS peak detection algorithm, and
this resulted in approximately 130 individual heartbeats for a 10-s 12-lead ECG, representing
the PQRST complex per single ECG signal data. Any unrecognizable heartbeats were
omitted from the data to ensure accuracy and consistency. The denoising, cleansing, and
PQRST complex segmentation using peak detection algorithm were handled using the
NeuroKit2 library [20], allowing for efficient and standardized data processing. After the
individual data preprocessing, we inherited the 12-lead EKG’s annotation to the individual
heartbeats to train with the individual heartbeats.
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Figure 4. The 10-s 12-lead ECG signals were decoded from Base 64 and denoised using IIR But-
terworth SOS and powerline noise filters. The clean signals were then segmented into individual
heartbeats using a QRS peak detection algorithm via the NeuroKit2 library.

2.4. Overview of the Model Development

Tables 1 and 2 shows ECGs and discrete heartbeat statistics used for training, vali-
dating, and testing the model. For the analysis of the one-dimensional discrete heartbeats
and the whole 12-lead ECG signals, we employed popular deep learning architectures,
which are ResNet-18, Conv1D with long short-term memory (LSTM), and Conv1D with
transformer [21–25].

Table 1. Data overview. Training, validation, and test data for T-NSR and AF-NSR.

AF-NSR/T-NSR Number of Heartbeats Number of ECGs

T-NSR
Training 3,177,263 21,028

Validation 1,058,107 6972
Testing 977,875 6514

AF-NSR
Training 604,700 3225

Validation 198,672 1073
Testing 228,708 1385
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Table 2. Data overview. Training, validation, and testing data for T-NSR and CIA-NSR.

CIA-NSR/T-NSR Number of Heartbeats Number of ECGs

T-NSR
Training 3,177,263 21,028

Validation 1,058,107 6972
Testing 977,875 6514

CIA-NSR
Training 1,113,089 6855

Validation 375,700 2329
Testing 423,581 2543

2.4.1. Model Input Length

Given that every architecture integrates a convolutional layer as its initial layer, we
standardized the length of individual heartbeats to match the mean length across all
observed discrete heartbeats, set at 700. Heartbeats exceeding this length were truncated
accordingly, whereas shorter ones were zero-padded. For the 12-lead ECG signal, we
established a consistent signal length of 5000. We consciously abstained from utilizing
interpolation techniques to resize the signals, as this could potentially introduce undue
signal distortion.

2.4.2. Model Architectures

ResNet-18 extracts essential features of the input using convolution operations like
various convolutional neural networks. To solve the vanishing gradient problem of CNN
architectures [26], ResNet-18 utilizes residual learning with skip connection, as shown in
Figure 5a.
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Combining Conv1D and LSTM layers (Figure 5b) in a neural network architecture
can capture local and long-range temporal patterns in sequential data. Conv1D layers are
adept at detecting local patterns, while LSTM layers excel at modeling longer-term depen-
dencies [27]. Alternatively, a combination of Conv1D and transformer layers (Figure 5c)
can capture both local and global dependencies in the input data, with transformer layers
being well-suited for modeling global dependencies [28] and Conv1D layers being effective
for detecting local patterns.

2.4.3. Model Parameters and Thresholds

During the training phase (Figure 6a), we used binary cross-entropy with logits loss
and AdamW optimizer with an initial learning rate of 0.0001 to optimize the model’s
parameters. The output of the fully connected layer was passed through a sigmoid function
to obtain a probability value for each class, ranging from 0 to 1. For the discrete heartbeat
input in the validation phase, we gathered the probability scores for discrete heartbeats that
were separated from the same ECG; then we averaged all the probability scores of discrete
heartbeats to represent the final probability score for the ECG. Using the final probability
scores of the ECGs, we searched for an optimal threshold [29] of each class. The optimal
thresholds were obtained by applying thresholds between 0 and 1 in increments of 0.01 to
achieve the best F1 scores in the validation dataset for each T-NSR and AF-NSR class or
T-NSR and CIA-NSR class. The optimal thresholds of each class were saved along with
the model weights in the validation phases. The procedures for training and validating
with entire 12-lead ECG signals were conducted consistently, using discrete heartbeats as
an input, excluding the step of gathering discrete heartbeats.
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were used to train AI Models with different architectures. All logit values from discrete heartbeats
were averaged to represent the final logit value for the 12-lead ECG. Optimal thresholds were
determined in the validation phase and then were saved along with the model weights; (b) test phase
loaded model weights and threshold value that were saved in the training phase, then evaluated the
ECG as T-NSR or CIA-NSR by comparing the threshold value and the final logit value.
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2.4.4. Ensemble Model for Generalizability

For each architecture, we trained five different models using five different fixed
seeds that control random variables for weight initialization, data shuffling, and dropout.
Experimenting with five different seeds and ensembling them can be helpful in several
ways. First, it can reduce the variance in the model’s performance caused by randomness
in the training process. By training the model with different random seeds, we can obtain
several different versions of the model, each with its own biases and strengths. Ensembling
these models can help to reduce the impact of individual biases and improve the overall
performance of the model. Secondly, ensembling models trained with different seeds can
provide a more robust estimate of the model’s performance. By combining the outputs of
several different models, we can reduce the impact of outliers and obtain a more accurate
estimate of the model’s true performance [30].

In the testing phase (Figure 6b), we ensembled the probability value of all five models
by averaging the probability values for each class of an ECG. Then, we evaluated those
probability values with the averaged thresholds of five models.

2.4.5. Metrics for Model Performance Evaluation

The F1 score, AUC of the ROC (AUROC), precision (positive predictive value), recall,
and negative predictive value (NPV) for each T-NSR, AF-NSR pair, and T-NSR, CIA-NSR
pair were used to evaluate the performance of our model. The F1 score in Equation (3) is
the harmonic mean of the precision (Equation (1)) and recall (Equation (2)). The F1 score is
often used as an evaluation metric in various medical AI fields, along with the AUC of the
ROC. The AUC of the ROC is a performance metric ranging from 0.5 to 1 that shows the
discriminatory ability of the model. The AUC of the ROC alone is not suitable to validate a
model’s performance since the AUC of the ROC is sensitive to class-imbalanced datasets,
such as our datasets (6.6446 NSR to 1 AF-NSR). In other words, the AUC of the ROC will
be biased towards evaluating the majority class: T-NSR ECGs. The NPV in Equation (4)
measures the proportion of true negative predictions among all the negative predictions.
To carefully evaluate our model to the class-imbalanced dataset, we propose F1, AUROC,
precision, recall, and NPV for model evaluation.

Precision = (True Positive)/(True Positive + False Positive) (1)

Recall = (True Positive)/(True Positive + False Negative) (2)

F1 Score = 2/((1/Precision) + (1/Recall)) (3)

NPV = (True Negative)/(True Negative + False Negative) (4)

3. Results
3.1. Results for Different Architectures

The Conv1D+LSTM model exhibited the best performance for T-NSR/AF-NSR, achiev-
ing an average AUC of 0.9419, as illustrated in Figure 7a. Meanwhile, the ResNet-18 model
stood out for T-NSR/CIA-NSR, with an average AUC of 0.9272, depicted in Figure 7b.

The findings from our study indicate that utilizing discrete heartbeats from normal
sinus rhythm ECG signals as the input in deep learning models demonstrated higher
efficacy in predicting future occurrences of arrhythmia and atrial fibrillation, as evident
from the outcomes presented in Tables 3–6. Specifically, for the analysis of T-NSR and
CIA-NSR in Table 4, the LSTM model trained with discrete heartbeats achieved an AUC
score of 0.9222, outperforming the LSTM model trained with entire 12-lead ECG signals,
which achieved an AUC score of 0.8909. Similarly, for the analysis of T-NSR and AF-NSR,
the LSTM model utilizing discrete heartbeats achieved an average AUC score of 0.9419,
surpassing the AUC score of 0.9124 obtained by the LSTM model trained with entire 12-lead
ECG signals.
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Table 3. Test dataset performance evaluation for AF-NSR and T-NSR.

AF-NSR/T-NSR Input ResNet-18 Conv1D+
LSTM

Conv1D+
Transformer

Average F1 Heartbeat 0.8468 0.8499 0.8371
12-Lead 0.8302 0.8078 0.7837

Average AUC Heartbeat 0.9392 0.9419 0.9318
12-Lead 0.9278 0.9124 0.8982

T-NSR F1
Heartbeat 0.9580 0.9596 0.9570
12-Lead 0.9564 0.9499 0.9440

AF-NSR F1
Heartbeat 0.7357 0.7402 0.7171
12-Lead 0.7039 0.6656 0.6234

T-NSR Precision
Heartbeat 0.9276 0.9367 0.9408
12-Lead 0.9302 0.9131 0.9070

AF-NSR Precision
Heartbeat 0.7981 0.8108 0.8232
12-Lead 0.7947 0.7343 0.6618

T-NSR Recall
Heartbeat 0.9904 0.9837 0.9738
12-Lead 0.9841 0.9898 0.9841

AF-NSR Recall
Heartbeat 0.6823 0.6809 0.6352
12-Lead 0.6318 0.6087 0.5892

T-NSR NPV
Heartbeat 0.9105 0.8693 0.8124
12-Lead 0.8639 0.8875 0.8230

AF-NSR NPV
Heartbeat 0.9458 0.9457 0.9382
12-Lead 0.9378 0.9336 0.9295

Table 4. Test dataset performance evaluation for CIA-NSR and T-NSR.

CIA-NSR/T-NSR Input ResNet-18 Conv1D+
LSTM

Conv1D+
Transformer

Average F1 Heartbeat 0.8361 0.8365 0.8392
12-Lead 0.8317 0.8049 0.7903

Average AUC Heartbeat 0.9272 0.9222 0.9248
12-Lead 0.9184 0.8909 0.8789

T-NSR F1
Heartbeat 0.9149 0.9131 0.9161
12-Lead 0.9130 0.8975 0.8904

CIA-NSR F1
Heartbeat 0.7570 0.7601 0.7623
12-Lead 0.7505 0.7122 0.6902

T-NSR Precision
Heartbeat 0.8675 0.8753 0.8719
12-Lead 0.8604 0.8425 0.8407
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Table 4. Cont.

CIA-NSR/T-NSR Input ResNet-18 Conv1D+
LSTM

Conv1D+
Transformer

CIA-NSR Precision
Heartbeat 0.8056 0.7731 0.8070
12-Lead 0.7941 0.6990 0.6682

T-NSR Recall
Heartbeat 0.9678 0.9539 0.9669
12-Lead 0.9725 0.9602 0.9464

CIA-NSR Recall
Heartbeat 0.7137 0.7475 0.7324
12-Lead 0.7114 0.7259 0.7137

T-NSR NPV
Heartbeat 0.8827 0.8468 0.8026
12-Lead 0.8943 0.8414 0.7975

CIA-NSR NPV
Heartbeat 0.8930 0.9027 0.8927
12-Lead 0.8917 0.8914 0.8852

Table 5. Validation dataset performance evaluation for AF-NSR and T-NSR.

AF-NSR/T-NSR Input ResNet-18 Conv1D+
LSTM

Conv1D+
Transformer

Average F1 Heartbeat 0.8480 0.8650 0.8373
12-Lead 0.8502 0.8118 0.7984

Average AUC Heartbeat 0.9451 0.9523 0.9134
12-Lead 0.9314 0.9136 0.8842

T-NSR F1
Heartbeat 0.9661 0.9692 0.9242
12-Lead 0.9674 0.9596 0.9068

AF-NSR F1
Heartbeat 0.7300 0.7607 0.7503
12-Lead 0.7330 0.6641 0.6900

T-NSR Precision
Heartbeat 0.9469 0.9547 0.8826
12-Lead 0.9462 0.9309 0.8621

AF-NSR Precision
Heartbeat 0.7520 0.8044 0.7524
12-Lead 0.8083 0.6978 0.6771

T-NSR Recall
Heartbeat 0.9861 0.9842 0.9699
12-Lead 0.9895 0.9901 0.9571

AF-NSR Recall
Heartbeat 0.7092 0.7216 0.7482
12-Lead 0.6705 0.6334 0.7033

T-NSR NPV
Heartbeat 0.8585 0.8550 0.7928
12-Lead 0.8885 0.8701 0.8078

AF-NSR NPV
Heartbeat 0.9597 0.9616 0.9084
12-Lead 0.9550 0.9494 0.8996

Table 6. Validation dataset performance evaluation for CIA-NSR and T-NSR.

CIA-NSR/T-NSR Input ResNet-18 Conv1D+
LSTM

Conv1D+
Transformer

Average F1 Heartbeat 0.8320 0.8268 0.817
12-Lead 0.8259 0.8064 0.7984

Average AUC Heartbeat 0.9196 0.9105 0.9108
12-Lead 0.9144 0.8847 0.8842

T-NSR F1
Heartbeat 0.9223 0.9202 0.9136
12-Lead 0.9188 0.9117 0.9068

CIA-NSR F1
Heartbeat 0.7417 0.7334 0.7204
12-Lead 0.7330 0.7011 0.6900

T-NSR Precision
Heartbeat 0.8827 0.8827 0.8845
12-Lead 0.8742 0.8631 0.8616

CIA-NSR Precision
Heartbeat 0.7676 0.7572 0.7634
12-Lead 0.7574 0.6938 0.6771
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Table 6. Cont.

CIA-NSR/T-NSR Input ResNet-18 Conv1D+
LSTM

Conv1D+
Transformer

T-NSR Recall
Heartbeat 0.9656 0.9610 0.9447
12-Lead 0.9682 0.9662 0.9571

CIA-NSR Recall
Heartbeat 0.7175 0.7110 0.6820
12-Lead 0.7101 0.7085 0.7033

T-NSR NPV
Heartbeat 0.8566 0.8410 0.8024
12-Lead 0.8674 0.8424 0.8078

CIA-NSR NPV
Heartbeat 0.9076 0.9054 0.9014
12-Lead 0.9028 0.9019 0.8996

3.2. Paired t-Test for Discrete Heartbeat and 12-Lead Input

We sought to statistically compare the performance of two modeling methods using
a paired t-test. A paired t-test is suitable in this context because it evaluates if there’s a
significant difference between two paired groups. The “pairing” in our case came from
evaluating the two input methods on the same dataset across five different seed models.
The null hypothesis (H0) for our test was set as: “There is no significant difference between
the performance metrics of the two input methods”. Conversely, the alternative hypothesis
(H1) was set as: “There is a significant difference between the performance metrics of the
two input methods.” The metrics of interest in our study were the F1 score and AUROC.
The results consistently indicate p-values less than the significance level of 0.05 for both the
F1 and AUROC across all models, as shown in Tables 7–10.

Table 7. p-values for test dataset between heartbeat and 12-lead inputs for AF-NSR/T-NSR.

AF-NSR/T-NSR ResNet-18 Conv1D+
LSTM

Conv1D+
Transformer

p-value Avg. F1 0.0119 0.0081 0.0230
p-value Avg. AUC 0.0393 0.0042 0.0104

Table 8. p-values for test dataset between heartbeat and 12-lead inputs for CIA-NSR / T-NSR.

CIA-NSR/T-NSR ResNet-18 Conv1D+
LSTM

Conv1D+
Transformer

p-value Avg. F1 0.0434 0.0092 0.009
p-value Avg. AUC 0.0253 0.0132 0.0126

Table 9. p-values for valid. dataset between heartbeat and 12-lead inputs for AF-NSR / T-NSR.

AF-NSR/T-NSR ResNet-18 Conv1D+
LSTM

Conv1D+
Transformer

p-value Avg. F1 0.0089 0.0083 0.015
p-value Avg. AUC 0.0165 0.0048 0.0091

Table 10. p-values for valid. dataset between heartbeat and 12-lead inputs for CIA-NSR / T-NSR.

CIA-NSR/T-NSR ResNet-18 Conv1D+
LSTM

Conv1D+
Transformer

p-value Avg. F1 0.0233 0.0075 0.0106
p-value Avg. AUC 0.0212 0.0094 0.0107

A p-value below the 0.05 threshold is typically interpreted as strong evidence against
the null hypothesis in many scientific disciplines. It suggests that the observed data (in
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our case, the differences in the performance metrics between the two methods) would be
unlikely if the null hypothesis were true. Therefore, we reject the null hypothesis in favor
of the alternative hypothesis, suggesting that there was a significant difference between the
performance metrics of the two input methods.

4. Discussion

This study presents evidence of the effectiveness of using discrete heartbeats extracted
from normal sinus rhythm ECGs in predicting future arrhythmia and atrial fibrillation
incidences with deep learning methods. The results of the study also suggest that a specific
biomarker for future incidences of arrhythmia and atrial fibrillation may be present in the
normal sinus rhythm ECG signal.

It is worth noting that the study only utilized signals from ECG recordings and did
not incorporate additional patient information, such as electronic medical records, which
may raise concerns about privacy and the potential compromise of patient confidentiality.
Despite relying on limited data, the study still demonstrates high performance in predict-
ing future arrhythmia and atrial fibrillation incidences from normal sinus rhythm ECGs,
suggesting that ECG signals alone may be sufficient for accurate prediction. This finding is
promising, as it indicates that analyzing discrete heartbeats extracted from normal sinus
rhythm ECGs may facilitate efficient and precise diagnosis and treatment without requiring
extensive patient information.

Our dataset observed a pronounced proportion of CIA-NSR to T-NSR, with a ratio
of 11,929 to 35,455, equating to approximately 33.6%. This stands in contrast to general
population statistics, where the prevalence of arrhythmias is around 5% [31]. People
typically seek hospital care for distinct health concerns, especially those related to cardiac
issues. Consequently, the dataset may naturally represent a heightened occurrence of CIA,
mirroring a patient group more prone to cardiac irregularities. While this offers insight into
real-world situations, it may not accurately reflect the distribution in the wider community.

In artificial intelligence research using ECGs, there have been studies that predict
the clinical data of patients. Several studies have successfully indicated patients’ clinical
data, such as gender classification, age prediction, and heart failure prognosis [32–34].
These endeavors have been recognized for their accuracy, highlighting that the clinical
information is already present in the ECG signals. Even without the help of artificial
intelligence, anatomical and electrophysiological remodeling of the heart is reflected in the
ECGs of patients with arrhythmias, including atrial fibrillation [35].

There are several limitations to the study that should be taken into consideration.
Firstly, the research relied on data from only two hospitals, an aspect that inherently needs
broader external validation. Broadening our data sources to encompass more hospitals
or diverse patient groups would enhance the robustness and generalizability of our con-
clusions. Secondly, it is essential to acknowledge that the T-NSR ECGs examined in this
study might inadvertently encompass instances of AF-NSR or CIA-NSR due to the absence
of continuous data for labeling. This potential overlap exists despite our rigorous data
collection from patients who had three or more T-NSR ECGs within a year and exhibited
no clinical symptoms of AF or CIA during medical evaluations by physicians. Such chal-
lenges persist in intermittent electrocardiogram research unless continuous monitoring
is employed, like long-term implantable loop recorders [36]. To overcome this limitation,
we are exploring incorporating data from wearable devices for 24 and 74 h immediately
following the 12-lead electrocardiogram recording as a follow-up study. Lastly, our research
was retrospective, and it is recognized that a prospective study would offer a more rigorous
evaluation of our findings. Recognizing this need, we initiated the “PROVISION-AF trial”
in February 2023, a prospective, multicenter study registered with ClinicalTrials.gov under
NCT05725187. This forward-looking approach aims to validate and potentially refine our
model in real-time scenarios, enhancing its reliability and adaptability across a broader
range of healthcare contexts.

ClinicalTrials.gov
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For future research, it would be beneficial to investigate the specific heartbeats within
individual electrocardiogram signals that predict the future incidence of atrial fibrillation
and arrhythmia. By identifying these heartbeats, we can determine which components or
features of discrete heartbeats act as potential biomarkers. Additionally, we could group
study participants based on relevant demographic and medical factors and assign dis-
tinct threshold values to each subgroup to gain more nuanced insights into the predictive
value of specific discrete heartbeat features for arrhythmia and atrial fibrillation. These ap-
proaches could provide greater insight into the underlying mechanisms and physiological
factors contributing to the development of arrhythmia and atrial fibrillation and potentially
develop more personalized diagnostics.

Based on the study presented in this paper, we obtained approval (Approval No.
2023000086) from the Ministry of Food and Drug Safety in South Korea for our exploratory
clinical trials. Leveraging the deep learning-based cardiac arrhythmia prediction, we
have developed SYN-MAC, a software-as-a-service (SaaS) product in Figure 8 offered by
Synergy A.I. Co., Ltd., Seoul, Republic of Korea. This software is designed to predict future
incidences of clinically significant arrhythmias and categorize them as “high risk” or “low
risk” based on the threshold value of combined discrete heartbeats. With this software,
we will conduct additional confirmatory clinical trials in live environments, focusing on
enhancing the prediction accuracy of clinically important arrhythmias and advancing
AI-based medical technologies for the early detection of diverse heart diseases.
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5. Conclusions

This study’s results suggest that using discrete heartbeats extracted from normal sinus
rhythm ECG signals to predict future clinically important arrhythmia and atrial fibrillation
incidences rather than using entire 12-lead ECG signals with deep learning models is a
promising approach. The LSTM models for both atrial fibrillation and clinically important
arrhythmia prediction using discrete heartbeat showed strong performance compared to
using entire 12-lead ECG signals. The study demonstrated that ECG signals alone were
sufficient for accurate prediction, and a potential biomarker may be present in the normal
sinus rhythm ECG signal. This suggests that using discrete heartbeats with deep learning
models may enable the detection of subtle patterns in ECG signals, which could lead to a
more accurate and earlier diagnosis of clinically important arrhythmia and atrial fibrillation.
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