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Abstract: Melanoma is widely recognized as one of the most lethal forms of skin cancer, with
its incidence showing an upward trend in recent years. Nonetheless, the timely detection of this
malignancy substantially enhances the likelihood of patients’ long-term survival. Several computer-
based methods have recently been proposed, in the pursuit of diagnosing skin lesions at their early
stages. Despite achieving some level of success, there still remains a margin of error that the machine
learning community considers to be an unresolved research challenge. The primary objective of this
study was to maximize the input feature information by combining multiple deep models in the first
phase, and then to avoid noisy and redundant information by downsampling the feature set, using
a novel evolutionary feature selection technique, in the second phase. By maintaining the integrity
of the original feature space, the proposed idea generated highly discriminant feature information.
Recent deep models, including Darknet53, DenseNet201, InceptionV3, and InceptionResNetV2, were
employed in our study, for the purpose of feature extraction. Additionally, transfer learning was
leveraged, to enhance the performance of our approach. In the subsequent phase, the extracted
feature information from the chosen pre-existing models was combined, with the aim of preserving
maximum information, prior to undergoing the process of feature selection, using a novel entropy-
controlled gray wolf optimization (ECGWO) algorithm. The integration of fusion and selection
techniques was employed, initially to incorporate the feature vector with a high level of information
and, subsequently, to eliminate redundant and irrelevant feature information. The effectiveness of
our concept is supported by an assessment conducted on three benchmark dermoscopic datasets:
PH2, ISIC-MSK, and ISIC-UDA. In order to validate the proposed methodology, a comprehensive
evaluation was conducted, including a rigorous comparison to established techniques in the field.

Keywords: convolutional neural networks; feature selection; transfer learning; feature fusion; gray
wolf optimization; deep learning; skin lesion

1. Introduction

Cancer is caused by the uncontrolled multiplication of abnormal cells. Human cells
frequently possess the capacity to replicate and divide, and abnormally replicated cells can
spread through the lymphatic and vascular systems, wreaking havoc on a healthy body [1].
The five main forms of cancer recognized by Stanford Health Care (SHC) are carcinoma,
sarcoma, lymphoma, leukemia, and myeloma. Most cases of the malignant melanoma
variety belong to the class of carcinoma [2,3]. One of the most lethal and prevalent cancers
in the world is skin cancer [4]. Sunlight has been linked to skin cancer in recent studies,
because radiation is the main source of these rays; however, some artificial light also causes
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DNA damage to skin cells. Skin cancer can also be caused by genetic abnormalities or
diseases that run in families [5].

Skin cancer in any of its forms affects an estimated 9500 people every day in the United
States alone, as reported by the American Cancer Society (ACS) [6]. In the year 2022, a
total of 99,780 incidents of melanoma were identified, with 57,180 cases affecting males and
42,600 cases affecting females [7]. It is anticipated that almost 5080 men and 2570 women
will lose their lives to this disease this year. Incidences of malignant melanoma have been
steadily climbing over the course of the past few decades, with rates varying according to
the ages of the people affected [8]. The percentage of skin cancer caused by sun exposure in
different age categories and the number of cases diagnosed on each continent are presented
in Figure 1.

With a cautious prediction of 17,756 new cases in 2022, the Australian Institute of
Health and Welfare (AIHW) predicts that both melanoma and non-melanoma cases will rise
to the third-most-often diagnosed cancer type in Australia. Diagnosis rates are as follows:
58.5% male and 41.5% female [9,10]. Clinical examinations often involve a practitioner
or dermatologist observing a suspect’s skin in a series of phases. The most common
method is the ABCDE rule, in which the appearance of the lesion (symmetry, border, color,
and diameter) and evolution of the lesion are observed [11]. Assessment of the skin’s
appearance is heavily influenced by the observer’s eyesight, which varies from person to
person. Such observational screening for skin lesions has significant limitations and cannot
provide an accurate diagnosis. Despite the best efforts of dermatologists, a recent study
found that only 80% of cases were correctly diagnosed [12].

Figure 1. Epidemiological data on skin cancer: (a) WHO projections for skin cancer in 2022; (b) aver-
age accumulated sun exposure vs. age groups.

Machine learning methods have been widely implemented in several domains, includ-
ing activity recognition [13], experimental systems [14], embedded systems [13], and public
health care [2], for nearly two decades. The employment of these cutting-edge methods has
simplified the entire process of disease detection and diagnosis [15]. Computer-aided diag-
nostic (CAD) systems [16] have the potential to replace conventional surgical assessment
methods based on auto-generated feature analysis using machine learning approaches [17].
Therefore, scientists are certain that machine learning techniques will eventually replace
conventional approaches to evaluating surgical procedures [18–20]. Computer vision tech-
niques potentially assist medical practitioners in efficiently diagnosing skin cancer within a
reduced time frame. This study primarily focused on the use of feature fusion and selection
methods together. The research presented in this study makes two primary contributions:
firstly, the introduction of a bio-inspired feature selection strategy aimed at addressing
the challenges posed by the "curse of dimensionality" and over-fitting; secondly, to enhance
the efficacy of the extracted features, a fusion mechanism is employed that leverages the
complementary strengths of four pretrained models.

The subsequent sections of the article are structured as follows: Section 2 of the
paper encompasses the literature review, which is subsequently followed by the problem
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statement and the contributions made in Section 3. Section 4 comprises two distinct
subsections, the first of which elucidates the datasets and models employed, while the
latter expounds upon the proposed framework. The final section of the paper elucidates
the simulation and analysis, providing a comprehensive account of the obtained results.
The final section of the article, Section 6, serves as a conclusion and provides an overview
of potential future research directions.

2. Literature Review

In this section, we provide a concise literature assessment of work done on skin lesion
classification using CNNs. In a few cases, the classification frameworks were applied
directly to the provided image samples, while in others, the images were initially pre-
processed before being subjected to the main processing steps. We begin with a discussion
of non-traditional or deep-model approaches to image classification. Several researchers
have approached this issue by considering it as a binary classification problem, where the
images are categorized into two primary classes: malignant and benign. Several image
samples are presented to the readers as references in Figure 2. However, a small number of
researchers even employed seven classes.

The research of [21] employed deep learning models for the automatic categorization
of multi-class skin lesions. Their presented algorithm was based on the deep convolutional
neural network (DCNN), which contains several stacked layers and variable filter sizes. The
authors claimed to have attained 90.1% precision, 93.23% sensitivity, and 91.1% specificity
on the ISIC-17 dataset. The proposed algorithm demonstrated superior performance in
comparison to various alternative methods—particularly in the context of low-resolution
images. Similarly, the authors in [22] proposed a DCNN framework, to categorize skin
lesions images into seven different classes that were subsequently consolidated into two
overarching classes: healthy and cancerous. One limitation of this study was the occa-
sional inability to directly consolidate classes into a smaller number. An evaluation of
different CNN architectures was undertaken in the work by [23], in which the authors
utilized different configurations of 12 CNN models, and set seven different classifiers. The
DenseNet201 combined with the KNN classifier resulted in the best F1-score, accuracy,
recall, and precision values.

Figure 2. Selected skin lesion samples showing the benign class (left) and the malignant class (right).

The methodology proposed by Bi et al. [24] employed a hyper-connected convolu-
tional neural network (HcCNN), to classify skin lesion images. The proposed approach
involved the implementation of a deep hierarchical convolutional neural network (HcCNN)
that incorporated a multi-scale attention block. This integration enabled the model to effec-
tively capture and utilize the visual characteristics present in both dermoscopy and clinical
skin cancer image datasets. The method proposed in this study demonstrated a slightly
reduced level of performance, in terms of accuracy (82.70%), sensitivity (68.18%), specificity
(84.62%), and precision (75.98%). Similarly, the work of [25] addressed the classification
of high-resolution images and class variation present in real datasets. They proposed a
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framework known as patch-based attention architecture (pretrained CNNs). The outlined
algorithm provided a global context in between low- and high-resolution regions. The
mean values of the achieved sensitivity, specificity, and F1-score were 73.3%, 96.3%, and
85.3%, which were quite low, as some of the methods achieved better results compared
to the existing techniques. In [26], the authors outlined a method of accelerating the per-
formance of classifying the skin lesions, by using generated adversarial networks (GANs)
based on data augmentation technology. On the dataset ISIC-2018, the obtained accuracy,
specificity, sensitivity, and average precision were, respectively, 95.25%, 96.61%, 83.21%,
and 83.11%. Despite the authors’ claims that their acquired parameters were better than the
CNN model, improvements are still needed to their multi-class accuracy, specificity, and
sensitivity. The presented algorithm was effective only for skin lesion regions with high
resolution and better diversity.

The proposed framework of [27] combined a skin lesion boundary segmentation (con-
ducted using a full-resolution convolutional network) stage and a multiple skin cancer le-
sions classification stage. Then, a CNN, such as ResNet-50, Inception-v3, DenseNet-201, and
Inception-ResNet-v2, was employed. The maximum achieved values of specificity, sensitiv-
ity, accuracy, true-negative rate (F1-score), and area under the curve were 80.62%, 75.67%,
75.75%, and 81.57%, respectively, on the ISIC 2017 dataset. In their study, Behara et al. [28]
presented a model for categorizing skin lesions, which was founded on the utilization
of deep convolutional generative adversarial networks (DCGAN). The methodology em-
ployed in this study yielded real-time images that were suitable for training purposes.
Furthermore, these generated images were further improved by the application of different
image processing techniques. The classification task was executed by the final layer of
the discriminator, which predicted the desired class. The claimed performance metrics
on the ISIC2017 dataset included accuracy of 99.83%, and precision and recall rates of
99%. While the generated images exhibited a certain degree of resemblance to genuine
images, they were found to be deficient in terms of richness and diversity. The authors
additionally provided a restricted level of control over the hyperparameters. The proposed
method in [29] classified the cancer lesion by using ensembles of CNN models known as
multi-resolution EfficientNets with metadata. Lesion classification was conducted using
EfficientNets, SENet, and ResNet WSI. The achieved values of the area under the curve
were in the range 77.5–96% and those of sensitivity were in the range 0.283–71%, obtained
on the ISIC-2019 dataset. In [30], the authors proposed a cascade knowledge diffusion
network (CKDNet) that transferred and accumulated the information gathered from var-
ious sub-tasks, to increase the efficiency of segmenting and classifying cancer images.
They reported better performance without ensemble approaches or external datasets and
every time neural networks needed to be trained, which took a lot of time: hence, in some
applications, this could be a drawback. On the contrary, the authors in [31] proposed an
approach for multi-label ensemble multi-class classification of skin cancer images. The
efficiency of this method was only compared to that of the specialist’s advice.

The integration of conventional and contemporary frameworks is a subject of interest
among researchers in the field. The work of [32] used a wavelet-based CNN model. The
method decomposed the input image into seven different directional sub-bands. The sub-
band images were fed to eight pretrained CNNs, as an input, to generate eight probabilistic
classifiers. The efficiency of the proposed method was evaluated for seborrheic keratosis
and melanoma classification. The authors concluded that the model I-GR0235 outperformed
other models, in terms of performance. But the achieved values of accuracy (83%), the
receiver operating characteristic curve (91%), and sensitivity (13%) were not convincing.
Similarly, the authors in [33] presented a multi-level, multi-class algorithm implemented by
available machine learning tools and advanced deep learning methods based on the divide
and conquer rule. They achieved specificity, sensitivity, precision, and accuracy of 98.45%,
87.21%, 98.25%, and 92.82%, respectively, for the testing phase.

Researchers are still developing conventional methods for classifying cutaneous le-
sions. The work proposed in [34] was based on sparse representation for classification
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of lesion images. The developed algorithm produced discriminating sparse codes repre-
senting the features in a high-dimensional feature set. The reported values of sensitivity,
accuracy, and specificity were 96.61%, 94.83%, and 93.31%, respectively, on the ISIC 2016
dataset. Similarly, the approach in [35] utilized a network called the self-supervised topol-
ogy clustering network (STCN), to transform an invariant network, using a self-supervised
modularity clustering algorithm based on the principles of topology analysis. The efficacy
of the proposed STCN was compromised, due to its inability to effectively filter nega-
tive sample images, resulting in a decrease in classification performance. Additionally,
the hand-crafted features included in the STCN also suffered from this limitation. There
are some other applications in the medical imaging domain that have adopted hybrid
techniques [36–40].

The literature review is concisely presented in Table 1. The given indices are PRC
(precision), SEN (sensitivity), ACC (accuracy), SPC (specificity), AUC (area under the
curve), F1-S (F1-score), Ppv (+ve predictive value), and Hm (Harmonic Mean).

Table 1. A comparative analysis of performance, techniques, and datasets in the literature, for various
techniques and their evaluations.

Ref. Year Performance
Parameters

Dataset Remarks

[21] 2021 PRC = 94.0%
AUC = 96.4%

ISIC-17,19 The proposed model had multiple layers and filter sizes, but fewer numbers of
filters and parameters to classify the skin lesion images.

[41] 2018 SEN = 89.9%
SPC = 92.1%
F1-S = 90%
Ppv = 91.3%

ISIC-17 An automatic approach to classifying melanoma, with the advantage of transforming
the structural co-occurrence matrix (SCM) in an adaptive feature extractor, which
helped the classification process to depend only on the input image as a parameter.

[25] 2019 SEN = 73.3%
SPC = 96.3%
F1-S = 85%

HAM This research had two contributions: first, the efficient application of a high-
resolution image dataset with pretrained state of the art architecture for classification;
second, the high variation faced in the real image database.

[26] 2020 SEN = 83.2%
ACC = 95.2%
SPC = 96.6%

ISIC-18 A GAN-based data segmentation approach. The original generator’s style, control,
and input noise structures were altered by the model. The classifier was generated
by a pretrained DCNN, using the transfer learning method.

[23] 2020 PRC = 92.6%
ACC = 92.5%
F1-S = 92%

PH2 This work presented skin cancer lesion classification, using transfer learning and
CNNs (as resource extractors). The method combined 12 CNN models with several
different classifiers on PH2 and the ISBI-ISIC dataset.

[22] 2020 SEN = 73.7%
ACC = 92.5%
AUC = 91.2%
Ppv = 74.1%

ISIC-17 A framework divided dermoscopic images in seven classes into two possible classes:
positive/negative. The DCNN was trained, regarding this binary problem. The
parameters regarding classification were later used to adjust for the multi-class
categorization.

[30] 2021 SEN = 70.0%
ACC = 88.1%
SPC = 92.5%
AUC = 90.5%
Ppv = 73.8%

ISIC-17 The proposed framework was a series of coarse-level segmentation, categorization,
and fine-level segmentation networks. Two feature-mixing modules were outlined,
to accommodate the diffused feature set from starting segmentation, and to integrate
the related knowledge learned, to help with fine-level segmentation.

[32] 2019 SEN = 17.0%
ACC = 79.0%
SPC = 95.0%
AUC = 70.0%

ISIC-17 Seven separate directional sub-bands were created from gabor-wavelet-based
DCNN, from input images. Subsequently, the output sub-band and input im-
ages were passed to eight parallel CNNs. To categorize the skin cancer lesion, the
addition rule was used.

[34] 2019 SEN = 96.6%
ACC = 94.8%
SPC = 93.3%

ISIC-16 A kernel-sparse-representation-based method was proposed. A linear classifier
and kernel-based metadata were both jointly adopted by the discriminative kernel
sparse coding technique.
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Table 1. Cont.

Ref. Year Performance
Parameters

Dataset Remarks

[33] 2020 SEN = 87.2%
ACC = 92.8%
ACC = 87.2%

ISIC A multi-class, multi-level classification method focused on “divide and conquer”
was presented. The algorithm was tuned using traditional NN tools and advanced
deep learning methodologies.

[24] 2020 PRC = 75.9%
SEN = 68.2%
SPC = 84.6%

7 Point
Checklist

This method used a hyper-connected CNN, by adding the visual properties of
dermoscopy and clinical skin cancer images, and introducing a deep HcCNN with a
multi-scale attention block.

[27] 2020 SEN = 75.7%
ACC = 81.6%
SPC = 80.6%

ISIC-17 The framework integrated a skin lesion boundary segment and a multiple skin
lesions classification stage. Then, a CNN, such as Inception-v3, was employed.

[29] 2020 SEN = 71.0%
AUC = 96.0%

ISIC-19 This method classified skin lesions with the help of the statistics of multi-resolution
EfficientNets with metadata, using EfficientNets, SENet, and ResNet WSI.

[42] 2020 PRC = 91.3%
ACC = 96.3%
AUC = 98.1%

ISIC-18 The authors investigated the image size effect in classifying skin lesion images using
pretrained CNNs. The performance of EfficientNetB0 &B1, and SetReNetXt50 was
examined.

[35] 2021 ACC = 80.0% ISIC-18 This research used a self-supervised topology clustering network (STCN), by trans-
formation of an invariant model network by a modularity clustering algorithm.

[43] 2019 SEN = 91.7%
ACC = 95.2%
SPC = 97.9%

ISIC 2016 A recursive-feature-rejection-based layered structured multi-class image categoriza-
tion was used. Before the classification, features such as shape and size, border
non-uniformity, color, and texture of the skin lesion region were extracted.

[44] 2020 AUC = 92.1% ISIC-17 The authors proposed a lesion classification method centered on mid-level fea-
tures. Firstly, images were segmented, to identify the regions of interest; then, the
pretrained DenseNet and ResNet were employed, to extract the feature set.

3. Problem Statement and Contributions

Over the past few years, computer-aided detection (CAD) systems have become in-
creasingly important in the detection and assessment of skin lesions. Nevertheless, the
classification process is hindered by various limitations at both the image level—including
low-contrast lesion regions, skin flakes, the presence of hair, and air bubbles—and at the
feature level, such as redundant or missing feature information. Consequently, achieving
accurate classification becomes challenging. The presence of these undesirable charac-
teristics has a direct or indirect impact on the segmentation and classification processes,
leading to a decline in the overall performance of the system. Hence, it is imperative to
tackle these issues at various stages, to establish a resilient framework for detection and
classification. This study primarily examined the impact of feature-level information on
the ultimate classification outcome. Following the feature extraction phase, conventional
feature selection techniques frequently encounter challenges related to increased computa-
tional cost and diminished accuracy. Hence, in order to address the aforementioned issue,
hybrid metaheuristic algorithms were introduced, to enhance performance. Two main
contributions can be drawn from the findings of this study:

• Introduction of a bio-inspired feature selection strategy called the entropy-controlled
gray wolf optimization algorithm, which is designed to resolve the challenges posed by
the “curse of dimensionality” and over-fitting. This technique emphasizes identifying
the most discriminant features, to mitigate these issues.

• Adoption of a fusion method, to combine the strengths of four pretrained models, so
as to improve the efficiency of the extracted features.

Given a database of dermoscopic images, we had to attribute a label to each and every
image, classifying them as either benign or malignant. We let an image I ⊂ R(i×j×k) be a
dermoscopic image for a given database Dκ . The set of images were {(Iκ

1), (Iκ
2), . . . , (Iκ

L)} ⊂
{DK} ∈ R(1×K). For a given image, the number of channels L ⊂ Ip

l were fixed to be three,
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and the number of classes C were provided by the user. Therefore, for each image, the
extracted features, φ ∈ R(r×c), were later subjected to the classifier for the label assignment,
φ̃, against each image. The cascaded system, which consisted of a series of steps, including
feature fusion and selection, was ultimately represented as

φ̃ , (φ
f
m, φ f s, κ̃(φ f s)) ∈ R(r×c), (1)

where φ f denoted the features extracted after employing the transfer learning, φ f s depicted
the fused feature set from fully connected layers of different architectures, and κ̃(φ f s) was
the representation of the selected feature set as the output of a hierarchical structural design.

4. Material and Methods
4.1. Convolutional Neural Networks (CNNs)

CNNs are the most spectacular versions of deep feedforward neural networks used for
feature detecting and classifying [16,45]. Each neuron in a CNN is linked to a group of other
neurons in the higher layer, using a feedforward technique. Convolution, pooling, and
fully linked layers make up the three main sub-blocks of a CNN’s fundamental architecture,
as depicted in Figure 3.

• Convolution layer: In the CNN architecture, this is the most basic and crucial ele-
ment. The primary goal of it is to identify and extract local feature sets from an
input image, Iκ ⊂ Dκ . Let the image database be divided into training (DK1

tr ) and
testing databases DK2

ts , where {DK1, DK2} ⊂ DK. The training samples are repre-
sented as Y = {y1, y2, · · · , yn}, where n denotes the training image database size. For
each given input image, the resulting output image is Z = {z1, z2, · · · , zn}, where
zp ∈ {1, 2, · · · , C}, C signifies the class number. The convolutional layer consists of
a kernel filter that goes through each pixel of the input image as I(i×j×k) ∗ H(i′×j′×k).
The local feature set F ∈ Fl is obtained, based on the following equation:

Fl
i = σ

(
n

∑
i=1

xl−1
i × δl

i + bj
l

)
, (2)

where Fl
i denotes the output feature map for that particular layer, where l; δl

i + bj
l are

the trainable parameters for the layer, and where l; σ(.) is the activation function.

Figure 3. Basic Architecture of a CNN.

4.1.1. Pretrained CNN Models

In this study, we utilized four State-of-the-Art pretrained models for feature extraction,
including DarkNet53, InceptionV3, InceptionResNetV2, and DenseNet201. There are
various proposed sets of CNN architectures for computer vision applications. This decision
was made based on their performance, number of parameters, and Top-1 accuracy.



Diagnostics 2023, 13, 2848 8 of 18

• Inception-V3: The two essential components of Inception-V3 are feature extraction
and classification. It is trained using the ImageNet database. Using inception units,
an Inception-framework V3 can increase a network’s depth and width while also
reducing its computing load.

• Inception-ResNet-V2: As with the development of Inception-V3, Inception-ResNet-V2
is likewise trained using the ImageNet database. It combines the ResNet module and
inception. The other connections enable bypass in the model, which strengthens the
network. The computational prowess of the inception units and the optimization
leverage provided by the residual connections are combined in Inception-ResNet-V2.

• DenseNet-201: The ImageNet database is also used to train DenseNet-201. It is built
on an advanced connectivity scheme that continuously integrates all of the output
properties in a feedforward manner. Furthermore, it strengthens feature propagation,
decreases the number of input and functional parameters, and mitigates the problem
of vanishing gradient.

4.1.2. Datasets

In this study, we carried out our simulations on the three publicly available benchmark
datasets:

• PH2 : consists of 200 RGB images, divided into 160 benign and 40 melanoma image
samples. The database is maintained by the Hospital Pedro Hispano, Matsinhos,
through clinical observation using a dermoscope. The real physician’s response is also
provided, i.e., normal, melanoma, or typical nevus.

• ISIC-MSK: the other database incorporated here is the International Skin Imaging
Collaboration (ISIC). It includes 225 RGB dermoscopic image samples obtained from
different well-reputed international cancer institutes, captured by various modalities.

• ISIC-UDA: is another publicly accessible dataset for the characterization and study
of skin cancer (total images: 2750; training images: 2200; testing samples: 550). It
contains three cancer types: melanoma, keratosis, and benign; but, since keratosis is
a fairly common benign skin indication, the images can be divided into two classes:
malignant and benign.

For evaluation purposes, dermatologists manually labeled all the datasets. Table 2
displays the distribution of images within the previously mentioned datasets.

Table 2. Selected skin lesion image datasets and their respective ratio of training to testing.

Dataset Total Images Training/Validation Set Testing Set

PH2 200 160 40

ISIC MSK-2 287 201 86

ISIC UDA-1 387 271 116

4.2. Proposed Framework

In this study, a conventional hierarchical approach was employed, encompassing
feature extraction, and concluding with the final classification. The proposed framework
employed transfer learning, to extract deep features from pretrained models. Subsequently,
the extracted features were combined in a predetermined order, and these combinations
were then subjected to the proposed feature selection method. The feature vectors obtained
at the end of the process were subsequently employed for classification purposes. Figure 4
demonstrates the detailed flow of the proposed framework, from the image acquisition to
the final classification.
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Figure 4. Detailed illustration of proposed skin lesion classification framework.

4.2.1. Transfer Learning

Convolutional algorithms operate under the assumption that the feature sets of both
the training and testing datasets are nearly identical, allowing for straightforward estima-
tion. Although numerous pretrained models have undergone extensive training on general
image datasets, they may not be optimal for specialized applications. Transfer learning (TL)
is a viable approach, as it effectively classifies images using a limited number of training
instances, even in scenarios where acquiring real-world data poses challenges. The optimal
performance of transfer learning is achieved when the input and output source databases
exhibit a significant degree of dispersion, in terms of their sizes, thereby ensuring a diverse
source domain.

Consider a source domain, Ψs = {(xs
1, ys

1), (xs
2, ys

2), . . . (xs
n, ys

n)}, where
(xs

i , ys
i ) ∈ R2; with particular learning assignments, LS, and target domain

DT = {(xT
1 , yT

1 ), (xT
2 , yT

2 ), . . . (xT
n , yT

n )} having the learning assignment as LS, (xT
i , yT

i ) ∈ R2,
where 1 ≤ i ≤ n.

Let us consider, for a given dataset, the number of image samples are DT
Tl and the

model is trained over a large dataset DLS
s , where DT

Tl � DLS
s , and their labels are yT

Tl and
yLS

s . The primary objective of transfer learning (TL) is to enhance the learning effectiveness
of the target function φ̃, by leveraging the information derived from both the source dataset
DLS

s and the target dataset DTl
T .

4.2.2. Feature Fusion

The availability of highly discriminant information is a crucial factor in enhancing
classification accuracy. The presence of redundancy and irrelevant information not only
diminishes the accuracy of classification but also imposes a greater computational load.
Furthermore, the likelihood of attaining a high level of classification accuracy through the
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sole utilization of a standard feature extraction approach is quite low. Hence, a methodology
for feature fusion has been selected, which not only generates a comprehensive information
vector but also leads to an increase in redundancy [46]. In order to address this issue, the
utilization of feature fusion in conjunction with feature selection algorithms is employed. In
this study, we integrated the extracted set of features obtained from the chosen pretrained
models, following the implementation of transfer learning. It was supposed that for a
given set of features extracted from the selected model after applying transfer learning,
φ

f
m = {φ f

1 , φ
f
2 , φ

f
3 , φ

f
4} ∈ R(r×n). The dimensions for the extracted features were given as

φ
f
m = {(s× 2), (s× 1536), (s× 1026), (s× 1920)}, extracted from the fully connected and

average pooling layers of all the selected models. The fusion process involved a sequential
concatenation of feature vectors, where each new vector was embedded into the existing
one. The resultant feature vectors were generated from the combination of all the extracted
feature vectors. We let FV1 = φ

f
1 , FV2 = φ

f
2 , FV3 = φ

f
3 , and FV4 = φ

f
4 . The concatenated

form followed the property given: φ
f
m := φ

f
1 ⊕ φ

f
2 = Rp ⊕ Rq → Rp+q =⇒ φ

f
m :=

(φ
f
1 , φ

f
2 ) → (u1, . . . , up, v1, . . . , vq), where uk ∈ φ

f
1 ⊂ Rp and vl ∈ φ

f
2 ⊂ Rq. For the rest of

the combinations, the property still held: φ
f s
m,1 = [φ

f
2 , φ

f
3 ], φ

f s
m,2 = [φ

f
3 , φ

f
4 ], φ

f s
m,3 = [φ

f
2 , φ

f
4 ],

φ
f s
m,4 = [φ

f
2 , φ

f
3 , φ

f
4 ], and φ

f s
m,5 = [φ

f
1 , φ

f
2 , φ

f
3 , φ

f
4 ].

4.2.3. Entropy-Controlled Gray Wolf Optimization

We employed entropy-controlled gray wolf optimization (GWO) [47], to achieve the
desired result. In this section, we offer a brief but concise background on the method.

GWO is a metaheuristic optimization technique that imitates the hunting strategy
and social organizational behavior of gray wolves. Like other metaheuristic algorithms,
GWO possesses a distinct array of merits and demerits when compared to alternative
optimization techniques. GWO exhibits several potential advantages in comparison to
alternative evolutionary strategies, encompassing simplicity, efficient exploration and
exploitation capabilities, reduced parameter requirements, and enhanced convergence
speed. It may not exhibit superior performance compared to other optimization strategies,
in all scenarios, but the outcomes achieved by this approach for the given application are
remarkable. This framework counts on three primary steps: skirting the prey, encircling
the prey, and finally attacking and hunting the prey. In GWO, the population is categorized
into alpha (α) wolf, which is the leader of the gang, beta (β) wolf, the second leader, and
delta (δ) wolf, which is the third leader. The beta wolf assists the alpha leader in making
the decisions, and the delta wolf dominates the pack of wolves (ω). The hunting process is
originally guided by three leaders, whereas the ω wolves only follow the leaders. The first
step, i.e., the hunting step of the pack, is given as:

χ(t + 1) = χp(t)− $A · ψD, (3)

where χ is the new position of the wolf, χp is current position, and $A represents the
coefficient vector. The variable ψD depends on the current location of the prey (χP) and is
defined as

ψD = |$c · χp(t)− χ(t)|. (4)

here, $c = 2 · r is a random vector in the range [0, 1]. Other coefficients can be further
explored in the cited article [48]. If we assume that α, β, and δ are the three optimum
solutions, the new position of the other wolves is modified using the following set of rules:

χ(t + 1) =
χ1 + χ2 + χ3

3
. (5)
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here, $co is the leader count—selected to be three. The position vectors are calculated by
Equation (6):

χ1 = |χα − |$1
A · ψα

D||

χ2 = |χβ − |$2
A · ψ

β
D||

χ3 = |χδ − |$3
A · ψδ

D||.

(6)

The parameters χα, χβ, and χγ are the positions of α, β, and δ at t iteration. Other sets of
parameters, including $1

A, $2
A and $3

A, are calculated using the reference article [48], such as

ψα
D = |$1

c · χα − χ|

ψ
β
D = |$2

c · χα − χ|
ψδ

D = |$3
c · χα − χ|,

(7)

where $1
c , $2

c , and $3
c are calculated as in [48]. GWO, in general, is utilized, to solve the

continuous optimization problem. It optimizes by considering a set of random solutions;
for each solution there is a vector that keeps the parameters’ values of the problem. The
first step is to estimate the objective function value for each solution. For the current
solution, the entropy-based fitness value is calculated on the basis of the total amount of
information in an entire probability distribution. The population vector subjected to the
entropy calculation offers a maximum information range. The fitness is therefore calculated
using Shannon entropy:

f iti = −
n

∑
p=1

ηp log2 ηp, (8)

where ηp is the selected vector. Hence, each solution has one variable, to keep its objective
value. There are vectors and parameters other than the aforementioned. These vectors and
parameters store the objective function and location values of α, β, and δ wolves. These
values are updated before updating the position of the wolves. The GWO algorithm keeps
updating the solutions, using Equations (5)–(7).

As mentioned above, we utilized GWO to solve the continuous optimization problem,
but in the case of feature selection, we extended the work of [48] and embedded the concept
of the entropy fitness function. A detailed flow of the proposed entropy-controlled gray
wolf optimization algorithm is given in Figure 5.

Figure 5. Detailed flow diagram of proposed entropy-controlled gray wolf optimization.
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5. Results and Analysis

The simulations awere carried out on three publicly available datasets, as shown in
Table 2. Three families of contemporary classifiers—including support vector machines
(SVM), k-nearest neighbors (KNN), and ensemble (ES)—were used for classification. The
proposed framework was evaluated utilizing two configurations. In the initial configu-
ration, the classification results were obtained without feature selection. In the second
simulation setup, the proposed feature selection step was incorporated, to obtain the clas-
sification results. In order to make a fair comparison, we also evaluated the proposed
framework alongside other classifiers. The training/testing ratio of 70:30 was selected, and
hold-out cross-validation was chosen as the cross-validation technique. Table 3 provides
all the necessary base parameters for the chosen classifiers. The selected parameters were
selected based on the default values for all the Matlab sessions. In this study, we endeav-
ored to employ a diverse range of classifiers, encompassing SVM, KNN, and ensemble
methods. This selection was predicated on the previous empirical evidence of consistently
achieving superior outcomes in comparison to alternative sets of classifiers for this specific
application.

Table 3. Selected classifiers and their functional parameters.

Classifier (Selected) Base Parameters

Linear SVM Kernel function: linear.
Multi-class method: one-vs-one.

Efficient L-SVM Kernel function: linear.
Multi-class method: one-vs-one.

Cubic SVM Kernel function: cubic.
Multi-class method: one-vs-one.

Fine KNN
Number of neighbors: 1.
Distance metric: Euclidean.
Weight: equal.

Medium KNN
Number of neighbors: 10.
Distance metric: Euclidean.
Weight: equal.

Weighted KNN
Number of neighbors: 10.
Distance metric: Euclidean.
Weight: squared inverse.

Ensemble-BT

Ensemble method: AdaBoost.
Learner type: decision tree.
Max. split: 20.
Number of learners: 30.

Ensemble S-KNN
Ensemble method: subspace.
Learner type: nearest neighbor.
Number of learners: 30.

Ensemble RUSB

Ensemble method: RUBoost.
Learner type: decision tree.
Number of learners: 30.
Max. split: 20.

In the results section, we will discuss the impact of the feature vectors produced by
applying transfer learning to four pretrained models. The flow was designed to take into
account the feature combination vectors, their initial sizes, and the reduction percentage
obtained after implementing the proposed feature selection algorithm.
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The findings presented in Table 4 demonstrate that the greatest reduction percentage
was observed when all the extracted feature vectors (FV1–FV2–FV3–FV4) were combined.
This suggests a high likelihood of redundant information. Despite the extent of the reduc-
tion achieved, the classification accuracy remained satisfactory. The average reduction
percentage for the last feature combination, which included all feature vectors, was at
its maximum value of 91.33%. By contrast, the average reduction percentages for the
remaining feature combinations were 74.33%, 82.33%, 90.66%, and 88.66%, respectively.
Additionally, an alternative manifestation of the impact can be observed in Figure 6, which
illustrates that the greatest level of reduction was attained on the ISIC-MSK dataset. Based
on the obtained results, we strongly believe that our proposed algorithm exhibits superior
performance in handling large feature vectors, primarily due to its notable capability of
effectively detecting and eliminating redundant information.

Table 4. The chosen set of feature vectors and their respective dimensions, along with the percentage
of reduction achieved.

Vector Fusion Input Dimension Output Dimension Reduction Percentage (%)

PH2

FV2–FV3 140 × 2562 140 × 948 63

FV3–FV4 140 × 2946 140 × 884 70

FV2–FV4 140 × 3456 140 × 380 89

FV2–FV3–FV4 140 × 4482 140 × 583 87

FV1–FV2–FV3–FV4 140 × 4484 140 × 628 88

ISIC–MSK

FV2–FV3 201 × 2562 201 × 589 77

FV3–FV4 201 × 2946 201 × 295 90

FV2–FV4 201 × 3456 201 × 242 93

FV2–FV3–FV4 201 × 4482 201 × 403 91

FV1–FV2–FV3–FV4 201 × 4484 201 × 179 96 *

ISIC–UDA

FV2–FV3 271 × 2562 271 × 436 83

FV3–FV4 271 × 2946 271 × 383 87

FV2–FV4 271 × 3456 271 × 346 90

FV2–FV3–FV4 271 × 4482 271 × 538 88

FV1–FV2–FV3–FV4 271 × 4484 271 × 448 90

*: maximum accuracy achieved.

Figure 6. Comparison of reduction percentage for each selected dataset.
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Based on the findings presented in Table 4, it can be inferred that the final combination
exhibited the highest reduction rate. Building upon this observation, we proceeded to
generate the testing accuracies, as well as other relevant parameters, such as sensitivity,
specificity, false negative rate (FNR), false positive rate (FPR), and F1-score, in Table 5. We
took accuracy as the primary measure, and we compared the performance specifically on
this measure in addition to other measures. The FNR and the FPR of all the classifiers with
greater accuracy and sensitivity were at their lowest, which clearly indicates the superior
performance of these classifiers, including Fine KNN, Q-SVM, and ES-KNN. We focused
primarily on accuracy in our comparisons, and we used this and other metrics to evaluate
performance. Classifiers like Fine KNN, Q-SVM, and ES-KNN that had a high level of
accuracy and sensitivity also had low levels of FNR and FPR, respectively, demonstrating
their superior performance.

Table 5. Performance comparison of various classifiers over selected datasets.

Classifier
Dataset Performance Measures

I II III Accuracy (%) Sensitivity Specificity FNR FPR F1 Score

Linear SVM
X 88.13 0.833 0.941 0.167 0.058 0.888

X 85.11 0.801 0.916 0.198 0.083 0.861
X 83.71 0.795 0.885 0.203 0.115 0.845

Q-SVM
X 87.21 0.843 0.907 0.156 0.092 0.877

X 97.12 0.952 0.992 0.048 0.009 0.971
X 96.54 0.951 0.979 0.048 0.021 0.965

Cubic SVM
X 88.52 0.923 0.853 0.076 0.146 0.879

X 88.27 0.905 0.866 0.094 0.133 0.882
X 87.14 0.893 0.849 0.106 0.154 0.866

Fine KNN
X 98.89 * 0.98 0.989 0.019 0.012 0.985

X 99.01 * 0.985 0.994 0.014 0.005 0.994
X 97.71 0.974 0.984 0.029 0.015 0.977

Medium KNN
X 94.34 0.931 0.949 0.068 0.051 0.941

X 93.18 0.921 0.938 0.078 0.061 0.930
X 90.55 0.885 0.926 0.114 0.073 0.907

Weighted KNN
X 87.15 0.862 0.876 0.137 0.124 0.871

X 81.39 0.803 0.816 0.196 0.183 0.811
X 79.64 0.792 0.798 0.207 0.202 0.796

Ensemble- BT
X 73.89 0.728 0.742 0.271 0.257 0.738

X 75.24 0.745 0.755 0.254 0.244 0.752
X 77.38 0.777 0.772 0.222 0.227 0.773

Ensemble S-KNN
X 97.58 0.978 0.979 0.029 0.025 0.975

X 95.46 0.959 0.954 0.04 0.049 0.095
X 99.09 * 0.986 0.994 0.013 0.006 0.993

Ensemble RUSB
X 95.76 0.952 0.961 0.047 0.038 0.957

X 94.89 0.945 0.951 0.054 0.048 0.948
X 93.57 0.932 0.939 0.069 0.063 0.935

*: maximum accuracy achieved.

To provide a better insight, a fair comparison of the feature fusion approach with
and without applying feature selection is also provided in Table 6. Three classifiers were
employed, due to their superior accuracy and computational efficiency. The results demon-
strate a noticeable enhancement in performance, following the implementation of the
feature selection technique. When comparing the classification accuracy obtained using
Fine KNN with and without feature selection, it is important to evaluate the impact of
feature selection on the accuracy of the classification model. In the case of PH2, the max-
imum achieved accuracy was 98.89%, while the accuracy without feature selection was
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85.22%. A discernible disparity of approximately 13% could be observed. Similar patterns
were observed in other datasets. When considering the ISIC-MSK dataset, the accuracy
rate was observed to be 99.01%. However, when utilizing Fine KNN with the same dataset,
the accuracy rate decreased to 81.23%, although the classification accuracy achieved with
other classifiers was 83.73%. Regarding ISIC-UDA, ES-KNN demonstrated an accuracy of
99.09%. Conversely, the maximum accuracy attained for the original fused feature vector
was 89.74%. Additionally, in order to ensure a comprehensive evaluation, the classifica-
tion accuracy of several established algorithms is also presented in Table 7. It is evident
that our proposed method surpasses these existing algorithms, by exhibiting enhanced
classification accuracy. Based on the statistical data, we hold the firm belief that our pro-
posed feature selection techniques have the potential to yield exceptional results in various
other applications.

Table 6. Overall accuracy comparison of simple fusion approach with the proposed framework.

Vector Fusion

OA (%)

Feature Fusion Approach Proposed Feature Selection Approach

Q-SVM Fine KNN ES-KNN Q-SVM Fine KNN ES-KNN

PH2

FV2–FV3 84.31 74.27 74.13 86.23 88.21 81.37
FV3–FV4 79.23 78.34 81.20 88.76 86.33 88.90
FV2–FV4 81.23 81.29 79.45 84.01 88.69 87.54
FV2–FV3–FV4 83.71 79.36 84.56 86.66 92.27 87.43
FV1–FV2–FV3–FV4 83.21 85.22 87.69 87.21 98.89 * 97.58

ISIC–MSK

FV2–FV3 74.63 82.27 78.27 79.21 81.89 87.23
FV3–FV4 76.38 83.27 81.17 83.34 81.44 89.28
FV2–FV4 76.31 79.28 76.84 81.23 87.38 84.38
FV2–FV3–FV4 79.48 80.14 79.28 84.27 88.27 90.29
FV1–FV2–FV3–FV4 81.29 81.23 83.73 97.12 99.01 * 95.46

ISIC–UDA

FV2–FV3 77.94 79.54 81.24 85.23 85.27 87.07
FV3–FV4 76.28 81.88 82.13 84.36 88.34 89.69
FV2–FV4 81.56 83.29 84.63 88.28 91.26 84.26
FV2–FV3–FV4 83.16 81.83 87.76 89.31 94.18 94.61
FV1–FV2–FV3–FV4 89.74 86.47 87.90 96.54 97.71 99.09 *

*: maximum accuracy achieved.

Table 7. Performance comparison of existing algorithms.

Author Accuracy

Attique et al. [49] 98.70%
El-Khatib et al. [50] 96.00%
Alizadeh et al. [51] 97.50%
Akram et al. [3] 98.80%
Chatterjee et al. [52] 97.86%
Hameed et al. [33] 97.50%
Khan et al. [53] 98.46%
Proposed 98.89%

6. Conclusions

Melanoma is widely acknowledged to be a highly fatal variant of skin cancer, with
its occurrence demonstrating an increasing pattern in recent times [54]. Also in recent
times, a number of computer-based methodologies have been put forth, with the aim of
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early detection and diagnosis of skin lesions. Despite having attained a certain degree
of accomplishment, there persists a margin of error that is regarded as an unresolved
research challenge within the machine learning community. The present study introduces
an innovative framework for the categorization of skin lesions. The framework integrates
deep features, in order to produce a feature vector that is highly discriminative, while
simultaneously preserving the integrity of the original feature space. Our study utilized a
selection of contemporary deep models—namely, Darknet53, DenseNet201, InceptionV3,
and InceptionResNetV2—to perform feature extraction. Furthermore, the utilization of
transfer learning was employed, to augment the efficacy of our methodology and, subse-
quently, feature selection was employed, to identify the most discriminant information.
The approach demonstrated satisfactory performance in the majority of cases. However,
it is important to note that the feature selection method may not be effective for feature
vectors exhibiting maximum correlation. Furthermore, the inclusion of a pre-processing
step has the potential to enhance accuracy even further.

There is room for improvement in a number of areas that could be investigated in
further studies. Contrast enhancement, vision transformers (ViT), and feature selection
are a few examples. Improved segmentation and classification accuracy could be achieved
with the use of contrast enhancement techniques, by providing more refined pictures to the
CNN/ViT models. Additionally, a dedicated CNN/ViT model may improve the system’s
accuracy. As the feature selection mechanism is crucial in discarding superfluous data,
other evolutionary methods and hybrid evolutionary methods could be proposed.
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49. Khan, M.A.; Sharif, M.; Akram, T.; Damaševičius, R.; Maskeliūnas, R. Skin Lesion Segmentation and Multiclass Classification

Using Deep Learning Features and Improved Moth Flame Optimization. Diagnostics 2021, 11, 811. [CrossRef] [PubMed]
50. El-Khatib, H.; Popescu, D.; Ichim, L. Deep learning–based methods for automatic diagnosis of skin lesions. Sensors 2020, 20, 1753.

[CrossRef] [PubMed]
51. Alizadeh, S.M.; Mahloojifar, A. Automatic skin cancer detection in dermoscopy images by combining convolutional neural

networks and texture features. Int. J. Imaging Syst. Technol. 2021, 31, 695–707. [CrossRef]
52. Chatterjee, S.; Dey, D.; Munshi, S.; Gorai, S. Dermatological expert system implementing the ABCD rule of dermoscopy for skin

disease identification. Expert Syst. Appl. 2021, 167, 114204. [CrossRef]
53. Khan, M.A.; Zhang, Y.D.; Sharif, M.; Akram, T. Pixels to classes: Intelligent learning framework for multiclass skin lesion

localization and classification. Comput. Electr. Eng. 2021, 90, 106956. [CrossRef]
54. Oliveira, R.B.; Papa, J.P.; Pereira, A.S.; Tavares, J.M.R. Computational methods for pigmented skin lesion classification in images:

Review and future trends. Neural Comput. Appl. 2018, 29, 613–636. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.bspc.2021.102428
http://dx.doi.org/10.1016/j.eswa.2022.119162
http://dx.doi.org/10.1016/j.bspc.2023.105027
http://dx.doi.org/10.1016/j.aeue.2023.154723
http://dx.doi.org/10.32604/csse.2023.036985
http://dx.doi.org/10.3390/diagnostics13152501
http://dx.doi.org/10.1016/j.compmedimag.2018.05.004
http://dx.doi.org/10.1016/j.cmpb.2020.105475
http://dx.doi.org/10.1016/j.cmpb.2019.06.018
http://dx.doi.org/10.1016/j.compmedimag.2020.101765
http://dx.doi.org/10.1080/01431161.2021.1954261
http://dx.doi.org/10.1016/j.advengsoft.2013.12.007
http://dx.doi.org/10.1007/s00521-017-3272-5
http://dx.doi.org/10.3390/diagnostics11050811
http://www.ncbi.nlm.nih.gov/pubmed/33947117
http://dx.doi.org/10.3390/s20061753
http://www.ncbi.nlm.nih.gov/pubmed/32245258
http://dx.doi.org/10.1002/ima.22490
http://dx.doi.org/10.1016/j.eswa.2020.114204
http://dx.doi.org/10.1016/j.compeleceng.2020.106956
http://dx.doi.org/10.1007/s00521-016-2482-6

	Introduction
	Literature Review
	Problem Statement and Contributions
	Material and Methods
	Convolutional Neural Networks (CNNs)
	Pretrained CNN Models
	Datasets

	Proposed Framework
	Transfer Learning
	Feature Fusion
	Entropy-Controlled Gray Wolf Optimization


	Results and Analysis
	Conclusions
	References

