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Abstract: Diagnosing normal-pressure hydrocephalus (NPH) via non-contrast computed tomography
(CT) brain scans is presently a formidable task due to the lack of universally agreed-upon standards
for radiographic parameter measurement. A variety of radiological parameters, such as Evans’ index,
narrow sulci at high parietal convexity, Sylvian fissures’ dilation, focally enlarged sulci, and more,
are currently measured by radiologists. This study aimed to enhance NPH diagnosis by comparing
the accuracy, sensitivity, specificity, and predictive values of radiological parameters, as evaluated by
radiologists and AI methods, utilizing cerebrospinal fluid volumetry. Results revealed a sensitivity
of 77.14% for radiologists and 99.05% for AI, with specificities of 98.21% and 57.14%, respectively,
in diagnosing NPH. Radiologists demonstrated NPV, PPV, and an accuracy of 82.09%, 97.59%, and
88.02%, while AI reported 98.46%, 68.42%, and 77.42%, respectively. ROC curves exhibited an
area under the curve of 0.954 for radiologists and 0.784 for AI, signifying the diagnostic index for
NPH. In conclusion, although radiologists exhibited superior sensitivity, specificity, and accuracy
in diagnosing NPH, AI served as an effective initial screening mechanism for potential NPH cases,
potentially easing the radiologists’ burden. Given the ongoing AI advancements, it is plausible that
AI could eventually match or exceed radiologists’ diagnostic prowess in identifying hydrocephalus.

Keywords: NPH; radiologic markers; hydrocephalus; AI

1. Introduction

Hydrocephalus is a condition where there is an abnormal accumulation of cere-
brospinal fluid (CSF) within the brain’s ventricles, resulting in an increased intracranial
pressure. It is classified into two types; obstructive hydrocephalus, which occurs when there
is a physical blockage in the cerebrospinal fluid (CSF) flow pathway, and communicating
hydrocephalus, which is characterized by abnormal CSF accumulation in the ventricles
and subarachnoid spaces due to defects in reabsorption. Normal-pressure hydrocephalus
(NPH) is a subtype of communicating hydrocephalus, which is typically seen in older
adults and can present with symptoms such as gait disturbance, urinary incontinence, and
memory impairment. These symptoms can be mistaken for Alzheimer’s disease or other
types of dementia, making NPH a challenging diagnosis [1].

NPH is categorized into two types. The first is idiopathic NPH (iNPH), which is
caused by an unknown reason that affects the reabsorption of cerebrospinal fluid back
into the venous system. The second type is secondary NPH, which results from various
factors such as bleeding in the brain’s cerebrospinal fluid, head trauma, infection, tumor, or
complications of surgery. These factors can cause the accumulation of cerebrospinal fluid
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in the brain’s ventricles and subarachnoid spaces, leading to NPH symptoms such as gait
disturbance, urinary incontinence, and memory impairment.

Several studies have investigated the use of radiological parameters from non-contrast
computed tomography (NCCT) of the brain for the diagnosis of hydrocephalus. Nev-
ertheless, diagnosing NPH based on radiographic imaging remains challenging due to
the lack of standardized measurement methods for these radiographic parameters [2].
Various radiological parameters, which are used to diagnose NPH in our study, included
Evans’ index, narrow sulci at high parietal convexity, the dilatation of the Sylvian fissures,
focally enlarged sulci, the widening of temporal horns, callosal angle, and periventricular
hypodensities [3].

With the increasing application of technology in the medical field, artificial intelligence
(AI) has emerged as a promising tool for improving diagnostic accuracy and reducing errors
in radiology. AI can quickly analyze large amounts of medical data, such as imaging studies,
and identify abnormalities that might be missed by human radiologists. By utilizing deep
learning algorithms, AI can recognize patterns and anomalies in medical images, providing
more accurate and efficient diagnoses [4].

A typical pipeline for applying AI in NPH diagnosis involves three key steps. Firstly,
it involves the identification of distinct regions, with a specific focus on the CSF and ven-
tricular system in MRI [5] and CT [6] scans via medical imaging software or segmentation
models. Secondly, the pipeline entails determining essential volumetric features extracted
from brain regions, such as CSF and ventricles. Finally, machine learning algorithms are
trained on the extracted features to establish relationships between NPH and non-NPH
groups. Another potential biomarker for diagnosing NPH is the pattern of hypometabolism
detected through positron emission tomography (PET) scans [7,8]. However, it has not
been widely explored due to its invasive nature.

Siriraj Hospital of Mahidol University is utilizing AI innovations for screening pul-
monary tuberculosis in chest radiographs and ASPECT in patients with clinically suspected
acute cerebrovascular ischemia. Currently, the hospital is conducting research to compare
the sensitivity, specificity, positive predictive value, negative predictive value, and accuracy
of AI to radiological parameters measured by radiologists in normal and NPH-diagnosed
groups. This study aims to investigate how the typical AI pipeline can improve NPH
diagnosis, and gain valuable insights into the potential benefits and limitations of using AI.

2. Materials and Methods
2.1. Patient Selection

A retrospective study carried out between December 2012 and August 2022, which
included all patients over the age of 18 who had both clinical data and imaging available.
NPH was confirmed in patients via the gold standard method for diagnosis: cerebrospinal
fluid (CSF) tap test. Patients with intracranial mass, cerebral hemorrhage, and large cerebral
infarction leading to anatomical distortion of the brain were excluded from the study.

2.2. Imaging Review

CT imaging was assessed for all patients at the time of initial diagnosis. The images
were reviewed by two senior neuroradiologists with more than 20 and 10 years of working
experience and a third-year radiology resident, who were blinded to the patients’ clinical
status, using the department’s Picture Archiving and Communication System (PACS). Inter-
observer agreement was evaluated between the two neuroradiologists and the resident. In
cases of disagreement, the final judgement was made by consensus. The AI was also used
to evaluate the same groups of patients and identify cases of NPH.

Seven radiological parameters were used in this study, including Evans’ index, narrow
sulci at high parietal convexity, dilatation of the Sylvian fissures, focally enlarged sulci,
widening of temporal horns, callosal angle, and periventricular hypodensities. Each
radiological parameter was separately converted into a point system with cut-off values
based on earlier studies [3] and total scores were calculated, ranging from 0 to 12 points.
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The study also compared the reliability of each imaging feature alone with that of the
overall iNPH Radscale score. To standardize measurements of each radiologic parameters,
the planes were carefully aligned with anatomical landmarks in both axial and coronal
planes. The axial plane was positioned parallel to the pituitary–fastigium (of the fourth
ventricle) axis, while the coronal plane was angulated perpendicular to the transverse
plane for all measurements except for the callosal angle, which required a coronal plane
perpendicular to the intercommissural plane [3].

2.3. Radiologic Parameters

The following radiological parameters were evaluated by two radiologists and a
third-year radiology resident (Figure 1 for atlas of measurements and scoring levels [3]).

• Evans’ index: The ratio between the maximal width of the frontal horns of the lateral
ventricles (B–C) by the maximal width of the inner table of the cranium in the same
axial image [9].

• Narrow parietal sulci: At high-convexity and parafalcine region assessed in both axial
planes in the most superior slices and coronal plane [10].

• Dilation of the Sylvian fissures: Reported as present or not present in the coronal plane
compared with surrounding sulci [11].

• Focally enlarged sulci: Compared with surrounding sulci, usually found in coronal or
axial planes [12].

• Temporal horns: Reported as mean width of the right and left side, measuring in the
axial plane [11].

• Callosal angle: Angle between the lateral ventricles in the coronal plane through the
posterior commissure perpendicular to the intercommissural plane [13].

• Periventricular hypodensities: Along the lateral ventricles graded as not present,
present as a cap around frontal horns or confluently extending around the lateral
ventricles [14].
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2.4. AI Evaluation

Our AI method comprises three main steps. Firstly, we trained a modified 2D U-Net
model [15] for CSF segmentation using a noisy dataset generated from a medical imaging
software, named SPM12 [16]. The use of such noisy dataset is to facilitate the model training
without asking experienced radiologists to annotate the CT scans. The use of such weakly
supervised segmentation model demonstrated a better CSF segmentation performance in
our initial experiment than directly using the outputs from SPM12. Secondly, the outputs
from the segmentation model were used to extract volumetric features. Finally, the extracted
features were used to train a NPH classification model.

The modified 2D U-Net model consists of four encoder blocks, a bottleneck, and four
decoder blocks. It was trained using the sigmoid focal cross-entropy loss function [17] and
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was initialized with weights using He normalization [18]. The Adam optimizer [19] with
an initial learning rate of 0.001 was used to train the model for up to 200 epochs with an
early stopping based on the performance on the validation set.

The extracted features were classified into two categories, namely global features
representing entire brain region characteristics and local features representing entire brain
region characteristics. The study aimed to analyze the impact of both global whole-brain
volume metrics and local partition-brain metrics on NPH classification.

The parameters for each feature in cerebrospinal fluid (CSF), White and Grey (WG)
ratio, and standard deviation (Std) are shown below:
CSF ratio all = NCSF

NCSF+ Nwhite&grey

CSF/WG ratio = NCSF
Nwhite&grey

CSF size = NCSF
image_size

Brain size =
Nwhite&grey
image_size

Mean CSF ratio = ∑n
i=0 Xi

n ; Xi = NCSF
NCSF+ Nwhite&grey

Min CSF ratio = Min of NCSF
NCSF+ Nwhite&grey

Max CSF ratio = Max of NCSF
NCSF+ Nwhite&grey

Std CSF ratio =
√

∑|x− x|2
n

; x = NCSF
NCSF+ Nwhite&grey

Mean CSF/WG ratio = ∑n
i=0 Xi

n ; Xi = NCSF
Nwhite&grey

Min CSF/WG ratio = Min of NCSF
Nwhite&grey

Max CSF/WG ratio = Max of NCSF
Nwhite&grey

Std CSF/WG ratio =
√

∑|x− x|2
n

; x = NCSF
Nwhite&grey

This evaluation utilizes NCSF and Nwhite&grey to represent the number of CSF and
white/gray matter pixels within the segmentation masks. Meanwhile, image_size indicates
the overall number of pixels in a brain slice.

The extracted global and local volumetric features were used to train an NPH classi-
fication model. In particular, a logistic regression model was trained to perform a binary
classification (1 = NPH and 0 = non-NPH) using stratified 5-fold cross-validation on
227 NPH and 110 normal data. The model was used a regularization parameter c = 10,
and feature selection was performed using the chi-squared (chi2) method, resulting in
the selection of 10 features: ‘CSF ratio_5’, ‘CSF ratio_4’, ‘CSF ratio_6’, ‘CSF ratio_9’, ‘Std
CSF ratio_9’, ‘CSF ratio_3’, ‘CSF ratio_2’, ‘CSF ratio_1’, ‘CSF ratio_8’, ‘CSF_ratio_all’. The
partitions 0–9 indicate different levels of the brain, with 0 being the lowest (closest to the
neck) and 9 being the highest (at the top of the head).

To gain insights into the features that predominantly influenced our AI model’s
predictions, we utilized the SHAP library [https://github.com/slundberg/shap accessed
on 12 April 2023]. This allowed us to assess the impact of each feature when predicting the
probability of NPH for each CT scan. Our analysis revealed that the three most influential
features were CSF ratio_8, CSF ratio_5, and CSF ratio_4 (refer to Figure 2). CSF ratio_8
captures changes in focal sulcal enlargement, while CSF ratio_5 and CSF ratio_4 correspond
to enlarged ventricular regions (see Figure 3). This finding indicates that our AI model
focuses on the key areas commonly examined by neuroradiologists during NPH diagnosis,
underscoring its alignment with expert practices.

2.5. Statistical Analysis

Clinical data and radiological findings are presented with descriptive statistics. Cat-
egorical data are present as numbers and percentages and compared using Pearson’s
chi-squared test. Continuous data are reported as mean ± standard deviation (SD) and
compared using independent t-test. A p-value of <0.05 was considered statistically signifi-
cant. Both the normal and NPH groups were compared to assess the sensitivity, specificity,

https://github.com/slundberg/shap
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accuracy, PPV, NPV, and area under the receiving operating characteristic (ROC) curve
between radiologists and AI. A binary logistic regression was used to determine the cut-off
value for predicting whether the patient was normal, borderline, or had NPH.

Diagnostics 2023, 13, x FOR PEER REVIEW 6 of 12 
 

 

 
Figure 2. The SHAP values suggest that our AI model predictions were significantly influenced by 
the CSF ratio_8, CSF ratio_5, and CSF ratio_4, which are regions that neuroradiologists commonly 
focus on during the diagnosis process. 

   

Figure 3. Samples of brain slice images from partitions 8, 5, and 4, arranged from left to right that 
visually demonstrate the specific brain regions associated with the CSF ratios that play a crucial role 
in NPH prediction. 

2.5. Statistical Analysis 
Clinical data and radiological findings are presented with descriptive statistics. Cate-

gorical data are present as numbers and percentages and compared using Pearson’s chi-
squared test. Continuous data are reported as mean ± standard deviation (SD) and com-
pared using independent t-test. A p-value of <0.05 was considered statistically significant. 
Both the normal and NPH groups were compared to assess the sensitivity, specificity, accu-
racy, PPV, NPV, and area under the receiving operating characteristic (ROC) curve be-
tween radiologists and AI. A binary logistic regression was used to determine the cut-off 
value for predicting whether the patient was normal, borderline, or had NPH. 

3. Results 
This study retrospectively enrolled 217 subjects, including 112 patients clinically con-

firmed with NPH who underwent the gold standard CSF closing pressure-guided tap test, 
and 105 normal patients. Among the NPH group, 108 patients were classified as iNPH, 
while only four patients are secondary NPH. The median age at the time of the clinical 
diagnosis was 76 years (range, 68–84 years); and 60 (57.1%) were men and 45 (42.9%) were 

Figure 2. The SHAP values suggest that our AI model predictions were significantly influenced by
the CSF ratio_8, CSF ratio_5, and CSF ratio_4, which are regions that neuroradiologists commonly
focus on during the diagnosis process.

Diagnostics 2023, 13, x FOR PEER REVIEW 6 of 12 
 

 

 
Figure 2. The SHAP values suggest that our AI model predictions were significantly influenced by 
the CSF ratio_8, CSF ratio_5, and CSF ratio_4, which are regions that neuroradiologists commonly 
focus on during the diagnosis process. 

   

Figure 3. Samples of brain slice images from partitions 8, 5, and 4, arranged from left to right that 
visually demonstrate the specific brain regions associated with the CSF ratios that play a crucial role 
in NPH prediction. 

2.5. Statistical Analysis 
Clinical data and radiological findings are presented with descriptive statistics. Cate-

gorical data are present as numbers and percentages and compared using Pearson’s chi-
squared test. Continuous data are reported as mean ± standard deviation (SD) and com-
pared using independent t-test. A p-value of <0.05 was considered statistically significant. 
Both the normal and NPH groups were compared to assess the sensitivity, specificity, accu-
racy, PPV, NPV, and area under the receiving operating characteristic (ROC) curve be-
tween radiologists and AI. A binary logistic regression was used to determine the cut-off 
value for predicting whether the patient was normal, borderline, or had NPH. 

3. Results 
This study retrospectively enrolled 217 subjects, including 112 patients clinically con-

firmed with NPH who underwent the gold standard CSF closing pressure-guided tap test, 
and 105 normal patients. Among the NPH group, 108 patients were classified as iNPH, 
while only four patients are secondary NPH. The median age at the time of the clinical 
diagnosis was 76 years (range, 68–84 years); and 60 (57.1%) were men and 45 (42.9%) were 

Figure 3. Samples of brain slice images from partitions 8, 5, and 4, arranged from left to right that
visually demonstrate the specific brain regions associated with the CSF ratios that play a crucial role
in NPH prediction.

3. Results

This study retrospectively enrolled 217 subjects, including 112 patients clinically
confirmed with NPH who underwent the gold standard CSF closing pressure-guided tap
test, and 105 normal patients. Among the NPH group, 108 patients were classified as iNPH,
while only four patients are secondary NPH. The median age at the time of the clinical
diagnosis was 76 years (range, 68–84 years); and 60 (57.1%) were men and 45 (42.9%) were
women (Table 1). Clinical symptoms, including gait disturbance, urinary incontinence, and
memory impairment, are statistically significant (p < 0.001) in the NPH group (Table 1).
Univariate and multivariate analyses found that four radiological parameters (Evans’ index,
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dilated Sylvian fissures, focally enlarged sulci, widening temporal horns) and percentage of
the total scores of radiologic parameter between normal and NPH groups were significantly
associated with clinical symptoms with p-value < 0.0001 (Tables 2 and 3). Binary logistic
regression analysis indicated that total scores of <3 points, 3–4 points, and ≥5 points were
likely to be considered normal, borderline, or patients with NPH (Table 4).

Table 1. Basic characteristics and demographic data between groups of normal and patients
with NPH.

Variables All (n = 217) Normal (n = 112) NPH (n = 105) p-Value

Gender (M:F) 105 (48.4%):112
(51.6%)

55 (49.1%):57
(50.9%)

60 (57.1%):45
(42.9%) 0.236

Age (years) 65.4 ± 17.8 55.7 ± 19.2 75.7 ± 8.0 <0.001
Gait disturbance 99 (45.6%) 0 (0%) 99 (94.3%) <0.001

Urinary incontinence 77 (35.5%) 0 (0%) 77 (73.3%) <0.001
Memory impairment 61 (28.1%) 0 (0%) 61 (58.1%) <0.001

HT * 122 (56.2%) 49 (43.8%) 73 (69.5%) <0.001
T2DM 72 (33.2%) 26 (23.2%) 46 (43.8%) <0.001
DLP 80 (36.9%) 42 (37.5%) 38 (36.2%) 0.842

Old CVA 42 (19.4%) 21 (18.8%) 21 (20.0%) 0.816
CKD 21 (9.7%) 1 (0.9%) 10 (9.5%) 0.941
CAD 20 (9.2%) 8 (7.1%) 12 (11.4%) 0.275

Parkinson’s disease 23 (10.6%) 0 (0%) 23 (21.9%) <0.001
Dementia 20 (9.2%) 3 (2.7%) 17 (16.2%) <0.001
OA knee 11 (5.1%) 6 (5.4%) 5 (4.8%) 0.842

* HT, hypertension; T2DM, type 2 diabetes mellitus; DLP, dyslipidemia; Old CVA, old cerebrovascular accident;
CKD, chronic kidney disease; CAD, coronary artery disease; OA knee, osteoarthritis of the knee.

Table 2. Relationship of radiologic parameters to predict the likelihood of NPH.

Variable
1 Crude OR *
(95% CI) **

p-Value
2 Adjusted OR
(95% CI)

p-Value

Evans’ index <0.0001 <0.0001
0 Ref. *** Ref.
1 12.77 (4.68–34.88) 3.49 (1.07–11.42)

2 395.3
(73.91–2114.10) 38.37 (6.04–243.56)

Dilatation of Sylvian fissures <0.0001 <0.0001
0 Ref. Ref.
1 23.25 (11.12–48.62) 3.07 (1.04–9.08)

Focally enlarged sulci <0.0001 <0.0001
0 Ref. Ref.

1 25.499
(0.762–85.30) 7.88 (1.28–48.25)

Widening temporal horns <0.0001 <0.0001
0 Ref. Ref.
1 30 (12.83–70.13) 5.35 (1.88–15.16)
2 132 (28.86–603.79) 12.55 (2.15–73.31)

* OR, odds ratio; ** CI, confidence interval; *** Ref, reference. 1 Univariate analysis by Pearson’s chi-squared. 2

Multivariate analysis.

The sensitivity for radiologists and AI was 77.14% and 99.05%, respectively, with a
specificity of 98.21% and 57.14%, respectively, under the cut-off value of 5. NPV, PPV,
and accuracy for radiologists were 82.09%, 97.59%, and 88.02%, respectively, while for AI,
these values were 98.46%, 68.42%, 77.42%, respectively (Table 5). The receiver operating
characteristic (ROC) curve of the diagnostic index of radiological parameters, measured by
radiologists for the diagnosis of NPH (Figure 4), demonstrated an area under the curve
of 0.954 (p < 0.001), and the ROC AI (Figure 5) was 0.784 (p < 0.001). The narrow sulci of
high parietal convexity, callosal angle, and periventricular hypodensities were omitted due
to collinearity.
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Table 3. Percentage of the total scores of radiologic parameters between normal and NPH groups.

Total Score Normal NPH p-Value

0 46 (100%) 0 <0.0001
1 30 (96.8%) 1 (3.2%) <0.0001
2 15 (75%) 5 (25%) 0.028
3 12 (63.2%) 7 (36.8%) 0.292
4 7 (38.9%) 11 (61.1%) 0.259
5 1 (5.6%) 17 (94.4%) <0.0001
6 1 (5%) 19 (95%) <0.0001
7 0 19 (100%) <0.0001
8 0 11 (100%) <0.0001
9 0 9 (100%) 0.002
10 0 4 (100%) 0.037
11 0 2 (100%) 0.142
12 0 0 N/A

Table 4. Scoring levels used for NPH prediction.

Score Result of Predicted NPH

0–2 Negative
3–4 Borderline
≥5 Positive

Table 5. Comparison of sensitivity, specificity, NPV, PPV, and accuracy between radiologists and AI
using score ≥ 5 as the cut-off value.

Variables Radiologists AI ***

Sensitivity 77.14% 99.05%
Specificity 98.21% 57.14%

NPV * 82.09% 98.46%
PPV ** 97.59% 68.42%

Accuracy 88.02% 77.42%
* NPV, negative predictive value. ** PPV, positive predictive value. *** AI, artificial intelligence.
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The odds ratios (ORs) for Evans’ index, dilated sylvian fissures, focally enlarged sulci,
and widening temporal horns were found to be statistically significant. Multivariate analy-
sis revealed ORs of 3.49 (1.07–11.42) and 38.37 (6.04–243.56) for Evans’ indexes of 1 and 2,
respectively. The OR for dilated Sylvian fissures was 3.07 (1.04–9.08), while for focally
enlarged sulci was 7.88 (1.28–48.25), for widening temporal horn was 5.35 (1.88–15.16), and
12.55 (2.15–73.31) for the first and second grades, respectively (Table 2).



Diagnostics 2023, 13, 2840 9 of 12

Diagnostics 2023, 13, x FOR PEER REVIEW 9 of 12 
 

 

 
Figure 4. Receiver operating characteristic (ROC) curve of radiological parameters by radiologists. 

 
Figure 5. Receiver operating characteristic (ROC) curve of AI. 

4. Discussion 
The study findings suggest that NPH is increasingly being diagnosed in elderly pa-

tients undergoing brain imaging for other reasons. This is consistent with recent epidemio-
logical surveys in Sweden that reported a 3.7% prevalence of iNPH among individuals aged 
65 years old [20]. NPH is more likely to occur in the elderly and is often associated with other 
age-related diseases such as hypertension, T2DM, Parkinson’s disease, and dementia [21]. The 
clinical symptoms showed that gait disturbance, urinary incontinence, and memory impair-
ment are statistically significant (p < 0.001) in the NPH group. It should be noted that our 
study mainly focused on iNPH cases due to the small number of secondary NPH.  

Although various radiological parameters are used to help confirm the diagnosis, the 
cut-off values of each parameter are not well established. The morphologic features indicat-
ing the likelihood of morphologic features of NPH remain undefined. Furthermore, NPH 
commonly affects the elderly, who may have associated age-related brain atrophy. There-
fore, the differential diagnosis between iNPH and cortical brain atrophy or small vessel 
disease is difficult [22]. Our study investigated the radiologic parameters in both NPH and 
normal groups of patients and compared the results found in AI.  

There is no united agreement in standardized measurement for each radiologic param-
eter. For example, there are no specific images used in the measurements of Evans’ index, 
which is the most widely used parameter in ventricular width. Because CT of the brain pro-
vides numerous axial images, the maximal width of the frontal horns can be measured on 
the same or different images by each radiologist [23]. Moreover, some radiologists measure 
the maximal width of the frontal horns and maximal inner diameter on the same axial image 
[24], while some measure maximal width in the separate planes [25]. Temporal width in our 

Figure 5. Receiver operating characteristic (ROC) curve of AI.

4. Discussion

The study findings suggest that NPH is increasingly being diagnosed in elderly
patients undergoing brain imaging for other reasons. This is consistent with recent epidemi-
ological surveys in Sweden that reported a 3.7% prevalence of iNPH among individuals
aged 65 years old [20]. NPH is more likely to occur in the elderly and is often associated
with other age-related diseases such as hypertension, T2DM, Parkinson’s disease, and
dementia [21]. The clinical symptoms showed that gait disturbance, urinary incontinence,
and memory impairment are statistically significant (p < 0.001) in the NPH group. It
should be noted that our study mainly focused on iNPH cases due to the small number of
secondary NPH.

Although various radiological parameters are used to help confirm the diagnosis,
the cut-off values of each parameter are not well established. The morphologic features
indicating the likelihood of morphologic features of NPH remain undefined. Furthermore,
NPH commonly affects the elderly, who may have associated age-related brain atrophy.
Therefore, the differential diagnosis between iNPH and cortical brain atrophy or small
vessel disease is difficult [22]. Our study investigated the radiologic parameters in both
NPH and normal groups of patients and compared the results found in AI.

There is no united agreement in standardized measurement for each radiologic param-
eter. For example, there are no specific images used in the measurements of Evans’ index,
which is the most widely used parameter in ventricular width. Because CT of the brain
provides numerous axial images, the maximal width of the frontal horns can be measured
on the same or different images by each radiologist [23]. Moreover, some radiologists
measure the maximal width of the frontal horns and maximal inner diameter on the same
axial image [24], while some measure maximal width in the separate planes [25]. Temporal
width in our study is assessed in the axial plane and reported as mean width of the right
and left side [11]. The measurement of its values may differ depending on the selection
of images by each radiologist. Some of the radiologic parameters such as narrow sulci at
high parietal convexity, the dilatation of the Sylvian fissures, focally enlarged sulci, and
periventricular hypodensities are evaluated by using subjective methods, namely the visual
rating score [26]. Dilated Sylvian fissures and focally enlarged sulci are frequently misinter-
preted for cerebral atrophy [12]. However, the interobserver analysis was consistent in our
study. The assessment of the callosal angle should ideally be measured on a coronal image
perpendicular to anterior commissure–posterior commissure (AC-PC) plane at the level of
the posterior commissure. However, minor differences in angular malrotations of the true
coronal plane could affect the accurate measurement of the callosal angle [27].

Although periventricular hypodensities are a supporting feature of NPH, it is difficult
to separate between white matter ischemia, which is commonly found in elderly patients
with small vascular disease and subependymal effusion resulting from NPH, and results in
the exclusion of patients from further NPH evaluation [28]. It can be seen that radiological
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parameters performed via different methods may have the different results [29]. Nowadays,
the volumetric segmentation of CT brain scan methods are considered more accurate and
are increasingly used in many studies [30,31].

The use of our AI method presents a new paradigm compared to the existing NPH
diagnosis methods. Bianco et al. [5] employed Freesurfer software to extract volumetric
features from MRI scans. This study, on the other hand, focuses on a more cost-effective
imaging option: CT scan. Several recent studies have started to look at the potential use
of CT scanning for building automated NPH classification models. Zhang et al. propose
an automated method of predicting NPH using the volumetric segmentation of CT brain
scans, which is the first method that automatically predicts NPH from CT scans using AI.
The connectome data to compute features, which capture the impact of enlarged ventricles
and regions of interest segmented from CT scans using AI, provide the fast and accurate
volumetric segmentation of CT brain scans, which can thus improve the NPH diagnosis
accuracy [32]. However, their approach relies on a 3D U-Net model for segmentation,
which is more computationally expensive compared to our study. Additionally, their
segmentation process necessitates training with manually annotated brain CT scans by
radiologists. In contrast, our AI method relies on a noisy dataset generated from existing
medical imaging tools, requiring zero annotation effort. In another study by Duan et al. [6],
they developed a model for diagnosing hydrocephalus that incorporates clinical features
such as Evan’s index and age along with CT images. Although their model demonstrated
promising performance, the reliance on Evan’s index determined by radiologists could
be a drawback. In contrast, our approach is more appealing, as it solely relies on CT
images and is independent of radiologists during the segmentation model training and
NPH prediction process.

Our study found that radiologists had a better diagnostic specificity, PPV, and overall
accuracy than AI. However, AI volumetric segmentation demonstrated higher sensitivity
in detecting ventricular enlargement, indicating its potential as a screening tool. Moreover,
the accuracy of AI can be improved through a learning process that involves measuring
brain volumes in an increasing number of patients. As AI technology continues to advance,
it may become a valuable tool for diagnosing and managing NPH.

5. Limitation

As our study is a retrospective review of 10 years’ worth of data, there is a risk of
chronological bias. Furthermore, certain radiological parameters such as narrow sulci at the
high parietal convexity, callosal angle, and periventricular hypodensities were omitted due
to collinearity. Therefore, a large-scale prospective study is needed to further investigate
these parameters and confirm our findings.

Although our AI model did not perform as well as the consensus from three radiolo-
gists, it showed promise in the screening process by exhibiting higher sensitivity (recall).
This potential use case could lead to a reduction in the number of patients requiring
confirmation by radiologists.

Another aspect that this study has yet to explore is multicollinearity, which could
impact the model’s interpretability, as indicated by the SHAP value. In our future research,
we aim to address this issue by investigating more advanced models, like deep learning [33],
that are less susceptible to multicollinearity.

6. Conclusions

Our study found that radiologists exhibited higher diagnostic sensitivity, specificity,
PPV, and accuracy than AI. However, AI can serve as a screening tool in patients suspected
of having NPH, reducing the workload on radiologists. Furthermore, AI’s accuracy can
be enhanced through machine learning on an increasing number of brain volumetric
measurements. In the future, AI may attain capabilities that are equivalent to or surpass
those of radiologists in diagnosing hydrocephalus.
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