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Abstract: This study aimed to develop a noninvasive Machine Learning (ML) model to identify
clinically significant prostate cancer (csPCa) according to Gleason Score (GS) based on biparametric
MRI (bpMRI) radiomic features and clinical information. Methods: This retrospective study included
86 adult Hispanic men (60 ± 8.2 years, median prostate-specific antigen density (PSA-D) 0.15 ng/mL2)
with PCa who underwent prebiopsy 3T MRI followed by targeted MRI–ultrasound fusion and
systematic biopsy. Two observers performed 2D segmentation of lesions in T2WI/ADC images.
We classified csPCa (GS ≥ 7) vs. non-csPCa (GS = 6). Univariate statistical tests were performed
for different parameters, including prostate volume (PV), PSA-D, PI-RADS, and radiomic features.
Multivariate models were built using the automatic feature selection algorithm Recursive Feature
Elimination (RFE) and different classifiers. A stratified split separated the train/test (80%) and
validation (20%) sets. Results: Radiomic features derived from T2WI/ADC are associated with GS in
patients with PCa. The best model found was multivariate, including image (T2WI/ADC) and clinical
(PV and PSA-D) information. The validation area under the curve (AUC) was 0.80 for differentiating
csPCa from non-csPCa, exhibiting better performance than PI-RADS (AUC: 0.71) and PSA-D (AUC:
0.78). Conclusion: Our multivariate ML model outperforms PI-RADS v2.1 and established clinical
indicators like PSA-D in classifying csPCa accurately. This underscores MRI-derived radiomics’
(T2WI/ADC) potential as a robust biomarker for assessing PCa aggressiveness in Hispanic patients.

Keywords: prostate cancer; Gleason score; texture analysis; bpMRI; machine learning; radiomics

1. Introduction

Prostate cancer (PCa) is the most common noncutaneous malignancy and the second
leading cause of cancer death in men in the United States, and its incidence is expected
to double by the year 2030 [1]. PCa is a heterogeneous disease with various clinical
and biological presentations [2]. Patients with PCa are classified according to their level
of prostate-specific antigen (PSA), pathological evaluation (Gleason Score (GS)) [3], and
clinical stage (i.e., T stage) [4], guiding treatment and prognosis.

PCa risk patient stratification still constitutes a challenge due to the limitations of
the current management algorithm. These include the low specificity of PSA and the
overdetection of clinically nonsignificant low-grade neoplastic lesions by transrectal ul-
trasound (TRUS) guided biopsy, leading to overtreatment [5]. This has led to the search
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for new noninvasive methods that allow a better classification of these patients, including
prebiopsy multiparametric magnetic resonance imaging (mpMRI), which has become an
essential tool in PCa assessment [6,7], increasing the worldwide demand for prostate MRI.
In clinical practice, evaluation of PCa on MRI is performed qualitatively by radiologists
using the Prostate Imaging Data and Reporting System (PI-RADS v2.1) [8], which has
shown an adequate diagnostic performance for predicting clinically significant PCa (csPCa)
with areas under the curve (AUC) of 0.79–0.80 [9], with moderate inter-reader agreement
(pooled k of 0.61, 95% CI 0.55–0.67) in a recent meta-analysis [10].

Extensive evidence supports the role of quantitative MRI-derived biomarkers in
the risk stratification assessment of PCa patients. This strategy may improve diagnostic
accuracy for imaging PCa diagnosis and reduce interobserver variability [11]. Among these,
diffusion-weighted imaging (DWI) with derived apparent diffusion coefficient (ADC)
maps [12,13] and T2-weighted imaging (T2WI) [14] have proven to be useful, showing a
correlation with histopathology-based aggressiveness. Nevertheless, these quantitative
MRI parameters’ discriminatory abilities are only moderate due to considerable overlaps
between different GS, technical variations in image acquisition, and reproducibility, among
other factors [15] limiting clinical application.

Quantitative analysis of MRI-derived parameters using radiomics and Machine Learn-
ing (ML) methods is a field of active research in PCa, with promising preliminary results
for the detection of clinically significant PCa and the potential to overcome the limitations
mentioned above, improving the MRI-driven diagnostic pathway [16,17]. Recent meta-
analyses and systematic reviews have reported adequate performance and accuracy for
PCa diagnosis and classification [18,19]. Furthermore, previous studies have indicated a
significant correlation between T2WI/ADC textural features and GS [20,21].

PCa radiomics is a continuously evolving field of research with a high potential
to offer noninvasive personalized biomarkers for risk stratification. This study aims to
develop a noninvasive ML model to identify csPCa according to GS classification based on
bpMRI radiomic features (T2WI/ADC) combined with clinical information (PSA, PSA-D,
prostate volume) in a cohort of Hispanic patients, a population usually underrepresented
in previously reported data. The study focuses on classifying csPCa (GS ≥ 7) vs. non-csPCa
(GS = 6).

2. Materials and Methods
2.1. Patients

This single-center retrospective study was HIPAA compliant. Our local institutional
ethical review board approved this study and waived the requirement for informed con-
sent. Our urology database was queried to identify adult male patients with clinical
suspicion of PCa who underwent a transrectal prostate biopsy with fusion technique (target
MRI–ultrasound biopsy) between January 2017 and May 2021. All patients had a clinical
indication for prostate biopsy based on elevated PSA levels or suspicious clinical examina-
tion. The search yielded 210 consecutive patients. The inclusion criteria were as follows:
(a) patients aged ≥18 years at risk of PCa and (b) 3T multiparametric MRI (mpMRI) con-
ducted before the biopsy procedure at our institution. Exclusion criteria comprised (a) a
history of PCa treatment (surgery, radiotherapy, or hormonal therapy); (b) small tumor
volume observed in bpMRI (maximum diameter ≤ 5 mm); (c) MRI performed outside the
institution, incomplete sequences, or MRI images with artifacts that hindered adequate
analysis; and (d) absence of malignancy in the pathology sample, as illustrated in Figure 1.
Demographic data, biochemical tests, and pathology results were extracted from the clinical
data system.
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Figure 1. Flowchart of the patient population.

2.2. MR Imaging

A standard-of-care prostate mpMRI protocol at 3T (Philips Ingenia Gyroscan, Best,
Netherlands) was acquired before biopsy according to PI-RADS v2.1 guidelines [8] using the
standard 16-multichannel body coil and integrated spine-phased-array coil, as summarized
in Table 1. Per protocol, patients were instructed to fast for 6 h before the MRI exam (for
DCE-MRI purposes), avoid ejaculatory activity for at least 72 h before the examination,
and perform bowel preparation before the MRI exam (administration of a fleet enema 4 h
before testing). mpMRI included the following sequences: 3 plane T2WI, axial T1WI, axial
DWI (b-values of 50, 500, and 1000 s/mm2), a separate acquisition of axial DWI (b-value
of 2000 s/mm2), wide field of view (FOV) T1WI in phase and out phase images, and
DCE imaging post administration of gadolinium contrast agent. All sequences had a slice
thickness of 3 mm, with no gap. No endorectal coil was used at our institution. Table time
acquisition time was approximately 30–40 min for this protocol.

Table 1. Sequence parameters for T2WI and DWI sequences.

Image Type Acquisition Parameters

T2WI

Matrix (pixels) 200 × 190
TE (ms) 110
TR (ms) 3200

Slice thickness (mm) 3

DWI

Matrix (pixels) 84 × 67
TE (ms) 98
TR (ms) 7100

Slice thickness (mm) 3
Diffusion gradient b100–500–1000–2000

Scanner Philips Ingenia, magnetic field strength of 3 T. TE = echo time; TR = repetition time; DWI = diffusion-
weighted image.

2.3. Target MRI–Ultrasound Biopsy

All selected patients underwent prebiopsy mpMRI to identify regions of PCa suspi-
cion, followed by targeted MRI–ultrasound fusion and concurrent standard systematic
TRUS-guided biopsy. Before the procedure, the prebiopsy mpMRI was interpreted by a
dedicated clinical radiologist, and the location of a suspicious tumoral lesion was identified
and marked for targeted biopsy based on the PI-RADS v2.1 classification [8]. Prostate
lesions with a PI-RADS score of 3 or higher were evaluated as suspicious of PCa and
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underwent a targeted biopsy. Using the commercially available navigation system Uro-
station MRI/ultrasound fusion device (Koelis, Meylan, France), the targeted biopsy was
performed by one urologist with the previously identified mpMRI lesions superimposed
using the T2WI sequence on the real-time TRUS images. Each tumoral lesion was sampled
both in the axial and sagittal planes by an end-fire TRUS probe. For the standard biopsy,
12 cores were collected in an extended-sextant template of biopsies from both sides’ lateral
and medial aspects of the base, mid, and apical prostate.

2.4. Imaging–Pathology Correlation

A dedicated genitourinary pathologist reviewed the biopsy samples (target and sys-
tematic) for each patient. A GS was assigned for each tumor outlined on hematoxylin-eosin
(H&E)-stained histology slides using the classification system from the International Society
of Urological Pathology (ISUP) [5]. GS ≥ 7 was considered to indicate csPCa. The dedicated
clinical radiologist ensured the same target lesions were analyzed at imaging and pathology.
The ground truth was provided by histopathological data combined with TRUS-target and
systematic biopsies. Our choice of biopsy population is widely validated by the scientific
community as it allows for an adequate reference standard for this radiomic study [22].

2.5. Segmentation and Radiomic Feature Extraction

For all 86 patients included in the study, a single (index) pathologically confirmed PCa
lesion per patient was segmented and analyzed. An experienced radiologist (with 10 years
of body MRI experience) and a radiology resident (with 3 years of experience in radiologic
reading) participated in the tumor localization. They manually segmented the regions of
interest (ROIs) along the tumor border on each section of the ADC map to cover the entire
lesion using specialized tools of the Slicer3D v4.10.2 software. Similarly, the ROIs of axial
T2WI were drawn with reference to the ADC map. Observers also measured the prostate
gland volume using the prolate ellipsoid formula, multiplying the largest anteroposterior
(H), transverse (W), and cephalocaudal (L) prostate diameters by 0.524 (H × W × L × π/6).
As all images were acquired with the same MRI protocol and resolution, no preprocessing
was applied before extracting quantitative image information. Slicer3D v4.10.2 and Python
v3.7 were used to extract 2D data from the most representative slice of the previously
segmented ROIs of T2WI and ADC maps. The open-source Python Pyradiomics library
v2.2.0 was used to compute 97 features from each ROI from ADC and T2 images, excluding
normalized features. These were separated into different groups: 2D Shape (n = 9), First
Order (n = 18), and texture features including GLCM (n = 24), GLRML (n = 14), GLSZM
(n = 14), GLDM (n = 13), and NGTDM (n = 5), based on the pixel’s grey level.

2.6. Statistical and ML Model Analysis

A feature analysis was performed based on individual performance and correlation,
using the nonparametric Mann–Whitney U-test (MWU) statistical hypothesis test [23], Pear-
son correlation (r < 0.8), Spearman Rank Correlation Coefficient (ρ) with GS classification,
and predictive power analysis with bootstrap AUC resulting from the MWU [24,25]. To ex-
tract the optimal cutoff value for the prediction of csPCa, a receiver operating characteristic
(ROC) curve evaluation was performed. The optimal value corresponded to the maximum
Youden Index obtained for the ROC curve [26]. The variables considered for the evaluation
were PSA, PSA-D, prostate volume (PV MR), PIRADS-V2.1, and the 194 extracted radiomic
features from T2WI and ADC maps.

The dataset was stratified and split into train/test (80%) and validation (20%) sets.
Univariate and multivariate ML models were built for the training/test set using different
classifiers, including Logistic Regression (LR), Support Vector Machine (SVM), Naive Bayes
(NB), and Classification and Regression Trees (CART). To prevent data leakage and mitigate
the impact of data skewness or outliers [27], we scaled the features from the training
set using the StandardScaler function and extracted the transformation parameters. This
transformation was then applied to the validation/holdout set. The selection of features
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for the multivariate models was performed automatically, using the Recursive Feature
Elimination algorithm (RFE) [27], with LR as the main estimator, allowing a maximum of
10 features. To evaluate the performance of the models, a 2-fold Cross-Validation (CV) was
employed for the train/test groups. We used the Repeated Stratified KFold CV technique
with 1000 repetitions. The area under the ROC curve (AUC) was calculated to evaluate the
classification’s performance. We assessed the performance in a range of 2 to 10 features. The
best model and classifier selection considered the mean AUC and its standard deviation.

In this study, we assessed six models—two univariate and four multivariate—for PCa
classification (differentiating GS = 6 from GS ≥ 7): PI-RADS v2.1; PSA-D; the best model
including quantitative clinical data alone (CL); the best T2WI radiomic model; the best
ADC radiomic model; and ultimately, the best combined model, including all available data
(T2WI + ADC + CL) as input for the automatic selection algorithm. The performance of the
ML models was compared using Frequentist and Bayesian correlated t-tests to obtain the
statistical significance of the model differences and guarantee that the results are statistically
valid, with a difference of more than 0.01, as suggested in Benavoli et al. [28]. ROC curves
were calculated using the best classifier for the best combined model (T2WI + ADC + CL),
the PI-RADS v2.1, and PSA-D univariate models.

The model construction and subsequent statistical analyses detailed above were ex-
ecuted utilizing Python version 3.7. The Scikit-learn package was used to build, train,
and validate the ML classification models. For the statistical analysis, the Matplotlib pack-
age provided the required tests. Statistical significance was determined at a threshold of
p-value < 0.05. A visual representation of this workflow is summarized in Figure 2.
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Figure 2. Pipeline encompassing MRI feature analysis and radiomic Machine Learning classification
models for patients with prostate cancer (PCa).

3. Results
3.1. Patient Population

Histopathological findings revealed a total of 86 prostate cancer lesions. Within this
cohort, 20 lesions (23%) exhibited a GS score of 6, 28 lesions (33%) were classified as 3 + 4,
21 lesions (24%) were categorized as 4 + 3, and 17 lesions (20%) had a GS score of ≥8. For
GS classification, the low-risk group (GS = 6) considered 20 patients, and the high-risk
group (GS ≥ 7) included 66 patients. An overview of the clinical indicators for the study
participants is presented in Table 2.



Diagnostics 2023, 13, 2779 6 of 13

Table 2. Patient demographics and clinical characteristics.

Patient Characteristics Data

Total number of patients with PCa included 86
Age (years), mean ± σ 66.10 ± 8.13

Comorbidities n (%) 63 (73)
Arterial hypertension 38 (44)

Diabetes Mellitus 19 (22)
Tobacco 13 (15)

PSA (ng/mL), median (IQR) 7.4 (10.6–4.7)
Prostate volume (ml), median (IQR) 43.5 (58–33)

Lesion size (mm), median (IQR) 10 (15.8–8.0)
PSA-D MR (ng/mL2), median (IQR) 0.15 (0.26–0.10)

Localization n (%)
Transition Zone (TZ) 5 (6)

Peripherical Zone (PZ) 81 (94)
PI-RADS n (%)

3 2 (2)
4 60 (70)
5 24 (28)

Gleason Score n (%)
6 20 (23)

7 (3 + 4) 28 (33)
7 (4 + 3) 21 (33)

8 5 (6)
9 12 (14)

σ = standard deviation; PSA = prostate-specific antigen; IQR = interquartile range; PCa = prostate cancer: PSA-D
MR = prostate-specific antigen density by magnetic resonance.

3.2. Univariate Performance

We selected the features for the univariate analysis based on their statistical significance
and AUC performance for the classification task, discarding highly correlated features with
lower performance. The evaluation included the 97 radiomic features extracted from T2WI
and ADC images and the additional clinical and image information. Table 3 shows the
results for the three most statistically significant values obtained in each dataset category.
This table only considers features that were not highly correlated (r > 0.8).

Table 3. AUC Scores of the three best radiomic and clinical features for each category.

Type Texture/Clinical Parameter AUC (95% C.I.) Cutoff C-GS (ρ )

T2WI
glszm-GrayLevelNonUniformity 0.72 (0.59–0.83) 5.6 0.36

shape-Elongation 0.70 (0.55–0.82) 0.74 −0.18
ngtdm-Coarseness 0.70 (0.59–0.81) 0.02 −0.31

ADC
firstorder-Minimum 0.75 (0.64–0.85) 316 × 10−6 mm2/s −0.36

gldm-DependenceVariance 0.75 (0.61–0.86) 0.10 0.37
gldm-GrayLevelNonUniformity 0.73 (0.59–0.84) 1.84 0.44

Clinical
PSA-D 0.77 (0.66–0.87) 0.14 ng/mL2 0.46
PV MR 0.69 (0.55–0.81) 45 mL −0.24

PSA 0.66 (0.52–0.78) 8 ng/ml 0.37

Cutoff (threshold) and C-GS (Spearman correlation rank). For highly correlated features (r > 0.8), we kept the
one exhibiting the best AUC. PSA = prostate-specific antigen; PSA-D = prostate-specific-antigen density; PV
MRI = prostate volume measured by MRI.

In our study, the best individual feature for classifying csPCa and non-csPCa was
PSA-D (AUC = 0.77), with a cutoff value for csPCa of 0.14 ng/mL2. This feature also
exhibited the highest correlation rank value with GS (ρ = 0.46) among all the categories.
However, the variance (95% C.I. [0.66–0.87]) was in the same range as the rest of the selected
features. Even though PI-RADS v2.1 score (AUC = 0.66 [0.57–0.74], ρ = 0.28) did not make
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it to the highest three AUC values from its category, the results are similar to those found
for PSA (AUC = 0.66 [0.52–0.78], ρ = 0.37).

From the radiomic features, the ADC maps provided information that allowed two
features to reach a maximum AUC value of 0.75, being the highest value after PSA-D.
The one with the smaller C.I. corresponded to a first-order type feature (Minimum) of
the ADC map and showed a negative correlation with GS. The Spearman correlations
between GS and ADC features generally had better values than those obtained for the
T2WI image features.

3.3. Evaluation of ML Multivariate Models

The resulting set sizes from the data split step were 68 patients for the training set
and 18 patients for the holdout set. The best results for each classification can be found in
Table 4, with the best classifier for most models being LR (6 out of 8). The best model had a
mean AUC of 0.91 [0.76–0.99] for differentiating non-csPCa (GS = 6) vs. csPCa (GS ≥ 7),
with a total of 10 selected features and a validation/holdout AUC of 0.80. The chosen
features for each classification are presented in Table 5.

Table 4. Performance of the ML models for the non-csPCa (GS = 6) vs csPCa (G ≥ 7) classification task.

Dataset n◦ Best
Classifier AUC (σ) [95% C.I.] AUCval accval

T2WI 4 LR 0.85 (0.05) [0.71–0.94] 0.55 0.67
ADC 6 LR 0.81 (0.08) [0.56–0.94] 0.71 0.88
CL 3 LR 0.76 (0.06) [0.62–0.87] 0.80 0.83

T2WI + ADC + CL 10 LR 0.91 (0.06) [0.76–0.99] 0.80 0.83
n◦ refers to the number of selected features with the best train/test performance in the dataset. The last two
columns correspond to the validation (holdout) results. CL = quantitative clinical information; σ = Standard
deviation; C.I. = Confidence Interval; LR = Logistic Regression; SVM = Support Vector Machine; NB = Naive
Bayes; AUCval = validation AUC; accval = validation accuracy.

Table 5. Selected features by RFE using Logistic Regression (LR) as an estimator for the best ML
multivariate model, i.e., dataset T2WI + ADC + CL.

Information Type GS = 6 vs. GS ≥ 7

T2WI

glcm-Imc1
glrlm-LongRunLowGrayLevelEmphasis

glrlm-ShortRunHighGrayLevelEmphasis
glrlm-RunLengthNonUniformity

ADC

firstorder-Maximum
ngtdm-Busyness

glcm-DifferenceVariance
glrlm-ShortRunEmphasis

Clinical
PSA-D
PV MR

GS = Gleason Score; PSA-D = prostate-specific antigen density; PV MRI = prostate volume measured by MRI.

The comparison between the best multivariate combined (T2WI + ADC + CL) model
and the best model based only on quantitative clinical information (CL: PSA-D, PV MR,
and PSA) yielded a probability for the combined model outperforming the pure clinical
model of 0.96 for the training set.

3.4. Combined ML Models vs. PI-RADS vs. PSA-D

The training set ROC curves for each model are presented in Figure 3. The validation
AUC of PI-RADS-v2.1 was 0.71 (training AUC score: 0.64 [0.55–0.73]), while for PSA-D, it
was 0.78 (training AUC score: 0.79 [0.67–0.90]), both using LR as the best classifier.
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Figure 3. ROC curves for predicting PCa aggressiveness (GS = 6 vs. GS ≥ 7), including AUC scores
for the best multivariate model and for univariate PI-RADS and PSA-D model. (a) ROC curves with
95% confidence intervals for the training dataset (repeated 2-fold CV). (b) ROC curves and AUC
scores for the corresponding validation dataset.

According to the Bayesian analysis, our multivariate model performs better than
PI-RADS v2.1 and PSA-D. For PI-RADS v2.1, the probability value for the multivariate
model exceeding the performance among the training AUC values was 0.99. For PSA-D,
the Bayesian comparison yielded a probability value of 0.93. These results demonstrate
statistical significance in favor of the multivariate model’s superior performance compared
with the univariate clinical models for the binary classification task within this cohort.

4. Discussion

This study presents an ML-based framework based on biparametric MRI-derived
T2WI and ADC radiomic features, combined with clinical information, to identify the
best-performing model to classify csPCa. Our study’s key finding was that MRI-derived
radiomics (T2WI/ADC) features exhibit a good performance as quantitative imaging
biomarkers for PCa classification in a cohort of Hispanic patients, a population where data
are scarce and only a few studies have been published [29,30]. Our combined multivariate
ML model using radiomic and clinical variables outperforms the classically used quali-
tative PI-RADS v2.1 and clinical indicators like PSA-D for the classification of clinically
significant PCa.

Our findings agree with previous studies assessing the role of texture feature analysis
using T2WI and ADC. Wibmer et al. [21] showed that several Haralick-based texture fea-
tures (entropy, energy, correlation, inertia, and homogeneity) extracted from T2WI/ADC
images could be helpful for Pca detection and that ADC texture parameters correlate with
tumor aggressiveness. Among the selected features used in our best multivariate model for
the classification of csPCa (GS ≥ 7), we obtained maximum ADC, which had a moderate
individual performance and a negative correlation with GS. A similar inclusion of maxi-
mum ADC within a combined multivariate model was also noted by Wóznicki et al. [31],
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albeit in the context of a volume of interest (VOI). Perhaps, the good correlation (≥80%)
of this parameter with mean ADC, which has been studied as an imaging classification
biomarker previously by Donati O. F. et al. [12], could help to interpret the rationale behind
this feature selection.

Our study corroborates and expands upon earlier research that affirms the superiority
of a multivariate ML model using radiomic and clinical variables over PI-RADS classi-
fication and serum markers such as PSA-D. Woźnicki et al. [31], in a model combining
T2WI/ADC radiomic and clinical data (PSA-D, digital rectal examination (DRE)), achieved
higher predictive AUC for differentiation of csPCa vs. non-csPCa in the test cohort when com-
pared with PI-RADS and mean ADC (AUCs of 0.84, 0.68 and 0.57 respectively)—consistent
with our findings. Moreover, Varghese et al. also established the enhanced performance
of ML-based radiomic analysis over PI-RADS evaluation [32]. Similar to our methodol-
ogy, they used a 2D radiomic approach on T2WI/ADC features to classify csPCa and
demonstrated a robust performance by validating the model with an external cohort.

In contrast to our findings, Bonekamp et al. [33] observed similar performance between
an ML-based radiomic approach and the quantitative assessment of mean ADC without
the added value of incorporating T2WI MRI-derived texture features within their specific
cohort. In a separate study, Gresser et al. [34] explored the potential of an MRI-derived
radiomic model using T2WI/ADC data on PI-RADS ≥ 3 prostate lesions using a real-world
dataset. Their analysis unveiled mean AUCs ranging from 0.78 to 0.83 for distinguishing
between csPCa and non-csPCa. Although these values were generally higher than PI-RADS,
mean ADC, or PSA-D, the differences lacked statistical significance. They concluded that
the limited clinical utility of this approach stems from its susceptibility to low robustness
and high result variability.

Our combined model attained an AUC of 0.80 in the validation dataset, effectively
distinguishing between csPCa and indolent non-csPCa cases. These outcomes are consistent
with recent systematic reviews conducted by Castillo et al. [35] and Sunchentev et al. [36],
where reported AUCs ranged from 0.75 to 0.88. These studies employed semiautomated
artificial intelligence methods for detecting csPCa, incorporating both peripheral and
transition zone lesions. The existing body of evidence reinforces our results, especially
within the unique demographic context of our Hispanic patient population.

PSA-D and PV were the clinical parameters included in the model. Since PSA produc-
tion is deregulated in PCa, PSA-D accounts for this disproportionate rise in prostate volume.
In our study, PSA-D exhibited a cutoff value of 0.14 ng/mL2, which lies within the range
of 0.10–0.15 ng/mL2, highlighted by Bruno et al. [37] as indicative of clinically significant
PCa suspicion. PV was also included, contributing positively to its final performance. Its
negative Spearman correlation is probably explained by the fact that smaller prostates can
concentrate a more significant amount of cancer by excluding pathologies such as benign
prostatic hyperplasia, which has been seen to be a protective factor in these cases, as seen in
Yamashiro et al.’s systematic review [38]. Our model uses PSA-D to predict more aggressive
tumor histology, which affirms that serum and imaging biomarkers can be synergistic.

This study developed a systematic ML-based framework to acknowledge the critical
role of feature and classifier selection in radiomic model performance. Its objective was
to establish an objective and reliable risk classifier by initially addressing the reduction in
feature space dimensionality. RFE enabled us to identify the most informative radiomic
and clinical features from the dataset and select the optimal number for each multivariate
model within our limit of 10. This tool has been previously used to reduce dimensionality
in MR-based PCa risk classification by other authors [39]. We also compared different
Machine Learning classifiers (LR, SVM, NB, and CART) for building the radiomic models.
As previously reported, LR was the best and most common classifier selected for the
distinction of csPCa [35,39]. This methodology, coupled with Bayesian analysis, extends
the comprehension of model significance beyond p-values, facilitating a more insightful
interpretation of statistical outcomes.
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Respecting the validation process, our results present some cases that escaped 95%
AUC C.I. To explain these results, we evaluated the distribution of values in our patient
cohort, finding outlier features (test data values out of 2σ range) with respect to the training
cohort. Moreover, the imbalanced nature of our dataset regarding the distribution of
patients in each GS group could have influenced this behavior. In future works, different
metrics to the AUC for selecting features and models could provide more stable results, as
suggested by Jeni L. et al. [40].

Despite extensive recent evidence supporting the potential use of radiomics in PCa
detection, aggressiveness assessment, and treatment decision-making assistance, several
studies have highlighted the substantial heterogeneity and poor reproducibility of the
developed predictive models [19,36]. As a result, various initiatives have acknowledged
the need for radiomics standardization to increase repeatability and bring radiomics re-
search into clinical practice [41]. A recent work by Castaldo et al. [42] commented on the
importance of using IBSI-compliant software (such as the open-source Python Pyradiomics
library) and standardizing radiomic features as part of the pipeline strategies that might
improve the reproducibility of these potential noninvasive biomarkers for PCa assessment,
both of which were used in our study.

Our results have important clinical implications, since new diagnostic tools for PCa
imaging studies are emerging, helping clinicians to differentiate nonsignificant vs. clinically
significant PCa, avoiding overtreatment, which may lead to potential surgical complications
and deterioration in life quality. Our findings support the concept of an MRI-guided
therapy route and highlight the possibility of novel imaging-based radiomics and clinical
biomarkers for risk classification in patients with PCa. Automatic ML assessment of the
prostate gland and characterization of suspicious index lesions in MRI could provide
more comprehensive imaging biomarkers for improved cancer identification and risk
stratification.

Limitations

We acknowledge several limitations of our study. First, because of the retrospective
nature, there might have been a potential selection bias in the patient sample. Also, the
MRI examination was carried out as part of the diagnostic process, and a texture/radiomic
analysis was retrospectively applied to a confirmed cancerogenic lesion using radiomics for
lesion characterization rather than lesion detection. Second, we use MRI-targeted biopsy
specimens as the ground truth instead of radical prostatectomy, which offers the defini-
tive assessment of PCa lesions; however, our target biopsy population allows a correct
imaging–pathology correlation and limits the overrepresentation of intermediate-risk PCa
disease [36]. We decided to use an analysis of index lesions only to avoid statistical cluster-
ing, because these lesions usually drive management strategies and patient outcomes [43].
Third, we used a non-open-source single-center database, with all MRI studies performed
by the same vendor/machine and without an external testing validation set, which limits
the reproducibility and clinical applicability of the proposed predictive models. In future
works, we will explore our developed algorithm in different medical centers as part of a
multicenter study, with recently proposed frameworks that facilitate the harmonization of
multicenter radiomic features to develop robust biomarkers in PCa clinical practice [42].

Fourth, even though our work used a moderately large sample compared with other
studies, the number of cases included is still a limitation in this ML/radiomics study, and
bigger series are needed. Finally, a subjective operator-based ROI segmentation of target
lesions by two observers in consensus was used in our research, resulting in a potential
ROI placement bias and limiting the generalizability of the developed predictive model.
New AI-based, fully automated methods for lesion segmentation might be explored in the
future to help overcome this problem, as well as 3D volumetric segmentation. However,
our results agree with previous studies while following an adequate methodology, as stated
by Stanzione et al. [18].
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5. Conclusions

Radiomics, in combination with ML tools, is a potentially valuable tool for objective
PCa aggressiveness imaging classification. Although further prospective large-scale co-
horts with external validation studies are needed, our results suggest that a combined
multivariate ML model using radiomic (T2WI/ADC) and clinical variables has a potential
role in predicting csPCa, particularly within the unique context of our Hispanic patient
population, which could help to direct patient management. In this work, our multivariate
ML model outperforms the classically used qualitative PI-RADS v2.1 and clinical indica-
tors like PSA-D for the classification of csPCa. Future work on automatic segmentation,
data preprocessing, augmentation techniques, and protocolization is necessary to provide
greater reproducibility to this promising diagnostic tool.
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