
Citation: Najjar, R. Redefining

Radiology: A Review of Artificial

Intelligence Integration in Medical

Imaging. Diagnostics 2023, 13, 2760.

https://doi.org/10.3390/

diagnostics13172760

Academic Editors: Michał Strzelecki,

Adam Piorkowski and Rafał

Obuchowicz

Received: 13 June 2023

Revised: 1 August 2023

Accepted: 10 August 2023

Published: 25 August 2023

Copyright: © 2023 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

diagnostics

Review

Redefining Radiology: A Review of Artificial Intelligence
Integration in Medical Imaging
Reabal Najjar

Canberra Health Services, Australian Capital Territory 2605, Australia; reabal.najjar@act.gov.au

Abstract: This comprehensive review unfolds a detailed narrative of Artificial Intelligence (AI)
making its foray into radiology, a move that is catalysing transformational shifts in the healthcare
landscape. It traces the evolution of radiology, from the initial discovery of X-rays to the application
of machine learning and deep learning in modern medical image analysis. The primary focus
of this review is to shed light on AI applications in radiology, elucidating their seminal roles in
image segmentation, computer-aided diagnosis, predictive analytics, and workflow optimisation. A
spotlight is cast on the profound impact of AI on diagnostic processes, personalised medicine, and
clinical workflows, with empirical evidence derived from a series of case studies across multiple
medical disciplines. However, the integration of AI in radiology is not devoid of challenges. The
review ventures into the labyrinth of obstacles that are inherent to AI-driven radiology—data quality,
the ’black box’ enigma, infrastructural and technical complexities, as well as ethical implications.
Peering into the future, the review contends that the road ahead for AI in radiology is paved with
promising opportunities. It advocates for continuous research, embracing avant-garde imaging
technologies, and fostering robust collaborations between radiologists and AI developers. The
conclusion underlines the role of AI as a catalyst for change in radiology, a stance that is firmly rooted
in sustained innovation, dynamic partnerships, and a steadfast commitment to ethical responsibility.

Keywords: medical imaging; radiology; artificial intelligence; machine learning; deep learning;
convolutional neural networks; computer-aided diagnosis; radiomics

1. Introduction

Radiology, since its inception, has experienced a revolutionary journey, punctuat-
ing modern medicine with its profound influence. From the discovery of X-rays to the
subsequent integration of artificial intelligence (AI) and machine learning (ML), this multi-
faceted discipline continually evolves, transforming itself and the healthcare ecosystem
it underpins.

This comprehensive review scrutinises the interplay of AI and ML in radiology, ex-
ploring their foundational principles, historical progression, practical applications, inherent
challenges, and ethical dilemmas. By enriching understanding of AI and ML’s contributions
to radiology, the review aims to foster insightful discussions among clinicians, researchers,
and policymakers, ultimately shaping the field’s direction and enhancing patient outcomes.
The exploration delves into the fundamental constructs of AI and ML, their growing in-
fluence in radiology, practical integration strategies, and illustrative case studies across
various medical specialties. Further, it addresses challenges such as data quality, ethical
concerns, and contemplates potential future directions in AI-driven radiology.

1.1. Radiology in Modern Medicine

Radiology, the medical discipline centred on the utilisation of imaging modalities
to diagnose and treat diseases, has emerged as a cornerstone of contemporary medicine,
forming an integral part of clinical practice. It extends beyond mere disease detection to
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encompass treatment guidance and ongoing disease management. Expertise in diagnos-
tic modalities such as computed tomography (CT), magnetic resonance imaging (MRI),
positron emission tomography (PET), ultrasound, and X-rays guide immediate clinical in-
terventions, treatment monitoring, and chronicle a visual narrative of a patient’s health. The
intricate insights into anatomical, physiological, and molecular disease processes provided
by medical imaging have a significant impact on patient care, facilitating the tailoring of
treatments, thereby improving therapeutic outcomes and minimising adverse effects [1–3].

Radiology serves as a crucial gear in the intricate machinery of interdisciplinary
medical teams. Radiologists deliver precise, timely imaging reports, thus enhancing com-
munication among various specialists and shaping crucial decisions, which contributes
to a holistic, patient-focused healthcare approach [4]. As valued consultative partners,
radiologists offer key insights into the choice and interpretation of suitable imaging studies,
playing a significant role in radiation safety and dose management while their exper-
tise elucidates the clinical picture, offering insights that can markedly influence patient
management [5,6].

1.2. From Roentgen to Magnetic Fields: A Brief History

The metamorphosis of modern medical imaging technology, from Wilhelm Roentgen’s
pioneering discovery of X-ray technology in 1895 to contemporary advanced techniques,
epitomises the relentless pursuit of scientific advancement and its profound impact on
radiology (Figure 1). Roentgen’s unprecedented X-ray innovation offered a non-invasive
glimpse into the human body, forming the foundation for modern imaging. Despite its
initial limitations in 2D representation and soft tissue contrast, this fundamental concept
laid the groundwork for more sophisticated, non-invasive imaging modalities [7].

Figure 1. A historical timeline of the key discoveries in medical imaging.

The advent of CT in 1973 by Sir Godfrey Hounsfield and Allan Cormack marked a
significant milestone, transcending the limitations of 2D imaging by introducing a three-
dimensional (3D) format [8]. CT utilises the basic principle of differential absorption but
couples this with the synchronised rotation of X-ray sources and detectors around the
patient’s body, paired with sophisticated computational algorithms, enabling the recon-
struction of 3D volumetric data from the collected 2D images [7].

Introduced in the 20th century, ultrasound imaging marked a departure away from
ionising radiation-based technologies by using high-frequency sound waves to create real-
time images of internal body structures. Its non-ionising radiation nature, real-time imaging
capability, and cost-effectiveness have allowed broad applicability in various clinical fields,
such as obstetrics, gynaecology, cardiology, and emergency medicine [9]. As an indispens-
able tool in emergency and critical care medicine, its transformative role, especially through
point-of-care ultrasound (POCUS), has facilitated rapid bedside assessments and hastened
clinical decision-making [7].

In the 1970s, Paul Lauterbur and Sir Peter Mansfield led the development of MRI, a
technology that employs a robust magnetic field and radio waves to generate exceptionally
detailed images of the body, particularly of soft tissue structures [10,11]. The non-ionising
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nature of MRI, coupled with its unrivalled soft tissue differentiation ability, revolutionised
medical imaging. Manipulation of RF pulse sequence timing in MRI further enhanced
its diagnostic utility, enabling the acquisition of various image types and discernment of
distinct tissues and pathologies [7].

1.3. From Film to Function: An Evolution in Radiology

Parallel to the disruptive innovations in imaging modalities, another pivotal shift was
occurring in the late 20th century: the evolution from film-based to digital radiography
and the introduction of Picture Archiving and Communication Systems (PACS). This
transition radically improved the efficiency of image acquisition, storage, and retrieval,
while also enabling the seamless sharing and transfer of images within and across healthcare
institutions [12].

The transformation in medical imaging technology did not stop with these innovations.
Functional imaging techniques such as PET, which is uniquely characterised by its use
of radiolabelled biochemical substances, and Single-Photon Emission Computed Tomog-
raphy (SPECT), employing gamma-emitting radionuclides to trace biological processes,
illuminated metabolic and biological processes, opening a window into cellular activity
and providing invaluable insights into the functional status of organs [13,14].

3D imaging heralded a significant evolution in medical imaging by providing a more
precise understanding of spatial relationships within the body, thereby improving diagnos-
tic accuracy and surgical planning. The subsequent development of four-dimensional (4D)
imaging further pushed the boundaries by incorporating the element of time, allowing for
real-time monitoring of physiological processes [15].

The confluence of functional and anatomical imaging gave rise to hybrid imaging tech-
nologies such as PET/CT and SPECT/CT. These modalities amalgamate the strengths of
both techniques, providing comprehensive diagnostic information. For instance, PET/CT
combines the metabolic insight of PET with the detailed anatomical context of CT, consider-
ably enhancing the accuracy of lesion localisation and characterisation [16].

Lastly, the emerging field of interventional radiology, which leverages imaging for
guidance during minimally invasive procedures, has reshaped the healthcare landscape.
By providing real-time visualisation of the target area, these procedures offer enhanced pre-
cision, potentially improving patient outcomes and reducing recovery times. For example,
image-guided biopsies provide a safer and less invasive alternative to surgical biopsies,
leading to fewer complications and shorter hospital stays [17].

1.4. A Glimpse into the Future: New Frontiers

Radiology’s future promises transformation through the integration of virtual/augmented
reality (VR/AR) and AI, heralding a new era of medical imaging. Originating from the
gaming and entertainment industries, VR/AR technologies are gradually permeating
radiology, providing an immersive environment advantageous for radiology training and
clinical practice. In the latter, the technologies can augment imaging data visualisation,
thereby enhancing diagnosis and treatment planning [18].

AI, particularly its subset machine learning, is radically improving radiology, strength-
ening image analysis, and mitigating diagnostic errors. AI algorithms process and interpret
data, performing tasks that emulate or even surpass human cognitive capabilities. ML,
through exposure to labeled examples, is capable of extracting complex, high-level data,
even from unlabelled datasets. By integrating AI into VR/AR technologies, the potential to
boost radiological efficiency, improve diagnostic accuracy, and improve treatment planning
exponentially exists [19].

Over the last two decades, the radiology community has refined computer-aided
diagnosis (CAD) tools based on ML, which are set to bring about an integrated diag-
nostic service by incorporating radiology, pathology, and genomics data to improve the
performance of CAD and enhance the productivity of radiology service by AI-assisted
workflow [20].
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Notwithstanding, the integration of AI and VR/AR in radiology encounters technical
hurdles, notably incorporating AI-derived results into existing workflows. A proposed
roadmap, however, advocates for AI-based image analysis algorithm integration, featuring
a radiologist-AI feedback loop system for continuous improvement. This is exemplified by
a case study demonstrating improved detection of brain metastases with AI application
and radiologist feedback [21].

The ethical, legal, and societal implications of these technologies in radiology warrant
careful scrutiny. The application of AI in radiology, while promising, can raise ethical
issues, particularly related to bias and “black box” issues (i.e., the lack of transparency in
AI decision-making processes). Advocacy for ethical AI underscores the need to address
possible discriminatory effects and injustices, recommending future radiology-focused AI
developments to incorporate social science perspectives [22].

2. The Fundamentals of Artificial Intelligence and Machine Learning

This section offers a journey through complex developments of AI and ML, sketching
their historical trajectory and explaining the distinctive yet interconnected terminologies of
AI, ML, and Deep Learning (DL). It also sheds light on the key ML algorithms and tech-
niques that have shaped the technological landscape, underscoring the indelible imprint
they have left on it.

2.1. Chronicle of Artificial Intelligence: Milestones and Breakthroughs

The compelling development of AI, spanning from antiquity—marked by folklore
and tales of artificial beings—to our current era of sophisticated AI systems, has roots
in the philosophical depictions of human cognition as a mechanistic process (Figure 2).
The inception of modern AI concepts is largely accredited to the development of the
programmable digital computer in the 1940s, reaching a milestone with the field’s official
establishment at the 1956 Dartmouth Conference [23].

Figure 2. Significant milestones in the evolution of artificial intelligence.

The 1970s saw a significant leap forward with the emergence of rule-based expert
systems like MYCIN, a seminal creation by Buchanan and Shortliffe [23,24]. These expert
systems, designed to replicate human expertise by leveraging knowledge bases and infer-
ence engines, laid the foundation for AI’s influential role in medical diagnosis and clinical
decision-making.

Machine learning algorithms, which surfaced in subsequent years, spearheaded a
novel paradigm for data-driven predictions and classification. Decision trees introduced in
1986, support vector machines in 1995, and neural networks in 1986, collectively broadened
the AI horizon in healthcare [25–27]. These algorithms propelled the analysis of exten-
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sive datasets, thereby inaugurating a novel epoch of pattern recognition and predictive
modelling in healthcare.

The turn of the century witnessed a paradigm shift with the advent of deep learning
approaches, particularly convolutional neural networks (CNNs). Surpassing previous
methodologies in image recognition tasks, CNNs, architecturally modelled on structure
and function of the human brain, precipitated major advancements in medical image
classification, segmentation, and detection, due to their capacity to learn hierarchical
representations from vast amounts of labelled data [28,29].

The accelerated progression of AI in recent years is a by-product of the synergis-
tic interplay of two factors: the surge in big data and advancements in computational
power. The widespread dissemination of electronic health records (EHRs), medical imaging
archives, and annotated datasets provide ample training data, while progress in hardware,
including graphical processing units (GPUs) and distributed computing, have expedited
the deployment of computationally demanding AI algorithms [30].

The rapid advancement of AI language models, such as GPT-4, has led to unique
applications and implications across a multitude of discplines, including healthcare and
medical imaging [31]. These models, whilst capable of generating human-like text and
facilitating communication, have raised salient concerns. The potential for these models
to contribute substantially to medical research and patient care is undeniable; however,
experts express reservations about their limitations and potential to inadvertently engender
inequities or disseminate misinformation, thus emphasising the need for robust strate-
gies to manage these risks responsibly. These strategies include increasing transparency
about potential harms, promoting early detection of issues, and implementing regulatory
measures and peer reviews [32]. By doing so, the goal is to ensure that AI technologies,
including language models, are utilised optimally and ethically, contributing positively to
medical imaging and healthcare outcomes.

By recognising these milestones, we can appreciate the progression of AI in health-
care, particularly in medical imaging. The intertwining of rule-based systems, traditional
machine learning algorithms, and the transformative influence of deep learning techniques
has laid the foundation for the current state-of-the-art AI applications in radiology and
other medical specialties.

2.2. Decoding the Terminology: AI, ML, and DL

The computational intelligence landscape is an expansive system, constituted of
distinct yet interconnected systems, with each sector playing a specific role and interacts
uniquely within the data science sphere (Figure 3).

Artificial intelligence is defined as the replication of human intelligence in machines
that are programmed to emulate human cognition and actions, encompassing learning,
problem-solving, reasoning, and perception. AI can be classified into two major types:
narrow AI, which is designed for specific tasks (e.g., facial recognition or voice commands),
and general AI, which mimics a broader spectrum of human intellect. AI aims to develop
systems with autonomous intelligent functionality, capable of problem-solving, decision-
making, and performing tasks typically requiring human intelligence [33].

Machine learning, a subset of AI, is centred around the development of software that
learns autonomously from accessed data. The learning process is derived from the analysis
of observations or data to identify patterns and make informed future decisions based on
these observations. Its fundamental objective is to enable computers to adapt their actions
autonomously without human intervention. The primary categories of ML algorithms
are supervised learning, which predicts or classifies new data based on examples, and
unsupervised learning, which identifies inherent patterns and structures within the data
without guidance from pre-established outputs [34].

Deep learning, an ML subset, utilises multilayered artificial neural networks (aptly
coined “deep”), enabling DL algorithms to model and understand complex data patterns.
These algorithms are especially effective for tasks where manual feature extraction proves
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challenging, such as image or speech recognition. It is noteworthy that these feature layers
are data-learned, not human-engineered, embodying an architecture inspired by the human
brain and have proven successful in visual recognition tasks, even outperforming human
performance [28].

Recognising the nuanced interrelationships between AI, ML, and DL aids in conceptu-
alising each subfield’s contribution and progression within the broader AI narrative. AI
lays the foundation for ML and DL. ML amplifies AI’s potential by enabling machine data
learning, and DL further deepens these capabilities with neural networks that decipher
complex data patterns. Each field enriches the wider AI domain, culminating in the modern
AI landscape where each layer contributes to the evolution of intelligent systems.

Figure 3. Schematic illustration of artificial intelligence and machine learning frameworks [35].

2.3. Machine Learning Foundations: Algorithms and Techniques

Machine learning is anchored by a plethora of algorithms and techniques that enable
computers to learn from data. The two primary types of machine learning, supervised and
unsupervised learning, lie at the heart of this field.

Supervised learning, a dominant machine learning variant, harnesses pre-established
examples or training data, consisting of input-output pairs. The objective is to formulate a
function that maps input data to corresponding outputs, enabling accurate predictions or
classifications for unfamiliar data. Central to supervised learning are algorithms such as
linear regression, logistic regression, and decision trees [36].

In contrast, unsupervised learning navigates the data space autonomously to uncover
inherent patterns, structures, or relationships devoid of predefined outputs. Its focus
is on discovering intrinsic data structures, thus offering insights that could potentially
solve complex problems. Notable unsupervised learning algorithms include clustering
techniques like k-means, hierarchical clustering, and dimensionality reduction methods
such as principal component analysis (PCA) [37].

Artificial Neural Networks (ANNs) simulate the operational framework of the human
brain, executing intricate tasks via a network of interconnected artificial neurons arranged
in layers. The backpropagation algorithm, a vital cog in ANN operations, exhibits high
fault tolerance, ensuring the system’s functionality despite occasional neuronal failures [38].
ANNs facilitate feature extraction and sophisticated pattern recognition, crucial for machine
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learning, which enhance data representation or class differentiation by aiding raw data
pre-processing for feature extraction or selection [39].

Developments in ANNs have given rise to complex structures like deep learning mod-
els comprising multilayer neurons. Notably, CNNs employ convolution in lieu of standard
matrix multiplication in certain layers. Tailored for processing pixel data, CNNs excel in
tasks related to pattern recognition in images, audio, or text, substantially contributing to
computer vision and Natural Language Processing (NLP) by simplifying complex patterns
into abstract representations through layers of features [40].

3. Integrating AI into Medical Imaging: The Dawn of Radiology 2.0

This section delves into the remarkable role of AI within medical imaging, spot-
lighting the revolutionary shifts it catalyses in the world of radiology. Its multifaceted
potential, from revolutionising image acquisition to reshaping radiological analyses, and
from streamlining reporting to crafting personalised medical narratives, positions AI at
the epicentre of the ongoing healthcare revolution. Beyond radiology, this transformation
extends to other areas of healthcare—such as pathology, cardiology, genomics, drug dis-
covery, and healthcare delivery—where the impactful strides of AI are being increasingly
recognised. Concluding this exploration is the emergent paradigm of AI-facilitated per-
sonalised medicine, underscoring a more proactive, patient-oriented, and holistic patient
care approach.

3.1. A Paradigm Shift in Radiology

AI has instigated a profound metamorphosis in the field of radiology, redefining
traditional workflows and elevating the radiologist’s role (Figure 4). In the realm of
image acquisition, AI augments scanning procedures, optimises image fidelity, and fosters
sophisticated image reconstruction across MRI, CT, and PET modalities. Foremost among
these advancements, deep learning accelerates MRI scanning, harmonising efficiency and
quality, with commensurate progress witnessed in CT and PET image reconstruction [41].

Figure 4. A streamlined workflow diagram illustrating the role of artificial intelligence in radiologi-
cal practice.

AI significantly streamlines the acquisition of radiologist analyses on chest X-rays, as
evidenced by a study wherein an AI system reduced interpretation delivery times from
11.2 days to a mere 2.7 days, reinforcing the potency of automated triaging systems in
streamlining healthcare workflows and amplifying patient care standards [42].
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As one of the pioneering healthcare specialties to adopt digital technology, radiology
has capitalised on machine learning in CAD tools for over two decades, demonstrating
robust performance in sensitivity and specificity [43]. Although clinical adoption has been
slow due to various challenges, AI is posited as a pivotal tool to surmount these, enhancing
CAD performance, streamlining radiology services, and fostering the development of
integrated diagnostic services.

The integration of AI into radiology reporting has structured and annotated data to
bolster report uniformity and streamlining patient history tracking. These cutting-edge
tools generate comprehensive task lists, incorporating pertinent information from the
patient’s history into EHRs, with the prime objective of enhancing report accessibility and
integration into care pathways [44].

Beyond AI’s transformative influence on reporting and imaging procedures, these
state-of-the-art systems play a pivotal role in maintaining continuity in provider communi-
cation and patient care, validating correlations between imaging diagnoses, radiological
reports, and treatment plans, alerting providers to any discrepancies. Moreover, AI op-
timises personnel allocation and scanner usage and reduces radiation exposure, thereby
boosting efficiency and quality of care [45]. By virtue of its broad-spectrum capabilities,
AI is redefining the landscape of radiology, cementing its indispensable status within
the discipline.

3.2. Beyond Radiology: Broader Applications of AI in Healthcare

AI has indelibly altered several healthcare areas, demonstrating its capability to
enhance clinical practice beyond radiology via improvements in diagnostics, genomics,
drug discovery, and healthcare delivery optimisation.

Pathology has witnessed the successful application of AI algorithms in tissue analysis,
markedly enhancing diagnostic accuracy and speed. Automated image analysis tools
enable pathologists to scrutinise tissues microscopically, identifying subtle histopathological
attributes often overlooked by the human eye [46]. AI also accelerates the move towards
digital pathology, converting traditional glass slides into digital scans for remote diagnostics
and collaborative work—both of which are vital in the digital age of telemedicine [47].

AI shows considerable promise in cardiology, particularly in interpreting electrocar-
diograms and echocardiograms. Sophisticated ML algorithms detect complex cardiac
patterns and abnormalities, accurately predicting conditions such as atrial fibrillation and
myocardial infarction [48]. Its exponential growth in echocardiography is evident, with au-
tomated algorithms aiding in the interpretation of cardiac structure parameters, mitigating
interobserver variability, and enhancing diagnostic precision [49].

The complex nature of genomics renders it an ideal candidate for AI intervention. DL
techniques decipher genomic data, aiding in identifying genetic variants linked to disease
susceptibility, and opening avenues for tailored treatment strategies based on individual
genetic profiles [50].

AI has proven invaluable in the field of drug discovery by expediting the search for
potent therapeutic compounds, and subsequently, accelerating the drug development pro-
cess. For example, AI can predict the pharmacokinetic and pharmacodynamic properties of
novel compounds, pinpoint potential drug targets, and simulate clinical trials, substantially
reducing both time and costs associated with drug development [51].

Additionally, AI’s ability to optimise healthcare delivery is remarkable. AI-driven
predictive analytics can enhance hospital workflows, accurately predicting patient admis-
sion rates, and optimising resource allocation [52]. AI applications in cost reduction have
also emerged, with machine learning algorithms identifying inefficiencies in healthcare
systems, thus enabling cost-effective care (SHAH 2021). The overarching aim of these
AI applications is to improve patient outcomes by streamlining diagnostic processes and
personalising treatment plans.
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3.3. A New Era of Personalised Medicine

AI has catalysed a paradigm shift in the arena of personalised medicine. With its
unparalleled capacity for processing vast amounts of complex data, AI is broadening the
scope of personalised medicine, venturing into previously uncharted territories.

One of the most significant contributions of AI to personalised medicine is its potential
to unlock the treasure trove of information embedded in EHRs. By harnessing the power
of advanced machine learning algorithms, AI can discern patterns within EHRs, which
can provide critical insights into specific disease states or risk factors. This process enables
a proactive approach to patient care, allowing healthcare providers to foresee potential
health risks and intervene accordingly [4]. In a landmark study by Rajkomar et al. (2018),
AI was successfully utilised to predict medical events using data from EHRs, underlining
its instrumental role in preventative medicine [53].

By integrating various sources of patient data—ranging from medical imaging and
EHRs to genomic data—AI enables a more holistic approach to healthcare. This unification
allows for personalised treatment plans, precise disease risk prediction, and improved
monitoring of treatment responses. AI systems also enhance clinical decision-making by
harmonising patient-specific data with up-to-date scientific discoveries, generating clini-
cally relevant recommendations [54]. However, it is vital to ensure that AI’s implementation
is patient-centric and ethical considerations such as data privacy, security, and algorithmic
bias are rigorously adhered to. This vigilance guarantees the equitable application of AI
technologies, respecting the rights and needs of all patients [4].

In conclusion, AI is shaping a new era of truly personalised patient care. However,
it is paramount to acknowledge the necessity for continuous research and meticulous
validation to ensure the safe and effective deployment of AI in healthcare. Multidisciplinary
collaborations, involving specialists from AI, radiology, genomics, and clinical practice, are
crucial for fine-tuning AI-driven models and technologies. Such partnerships will help
maximise the potential benefits of AI, leading to enhanced patient outcomes and propelling
the field of medicine into the future.

4. Practical Applications of AI in Radiology Practice

This section critically examines the practical applications of AI in the field of radiology,
elaborating on the novel approaches it brings to imaging techniques, diagnosis, and patient
care. By navigating through AI-driven methodologies like DL and CNNs, the section
illuminates how AI is redefining the way image segmentation and classification, and
diagnostics are conducted. Moreover, it explores the prognostic power of radiomics and
predictive potential of AI in optimising workflows. Throughout the discourse, the section
also confronts the inherent challenges and bottlenecks in the integration of AI within
radiology, underpinning the critical need for interpretability, validation, standardisation,
and the need to preserve the human element in healthcare.

4.1. Image Segmentation and Classification

DL has ignited a significant shift within radiology that is particularly noticeable in
the domains of image segmentation and classification, where substantial strides have been
made. The advancements brought about by these AI-centric methods have amplified the
precision and speed of diagnosis, thereby amplifying the competency of radiologists and
raising the bar of patient care. Nevertheless, the assimilation of AI brings about numerous
challenges that need to be overcome to facilitate its optimal integration and application
within radiology.

CNNs, given their inherent ability to learn complex patterns through backpropagation,
have emerged as formidable tools for computational visual tasks, including various radio-
logical applications. Their distinct architectural layers, from calculations in convolutional
layers to the generation of predictions in fully connected layers, all converge to form a profi-
cient object detection system. These networks have demonstrated remarkable proficiency in
object detection tasks, thanks to their integrated capabilities of feature extraction, semantic
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segmentation, and the handling of multi-scale features. The efficiency and effectiveness
of CNNs can be further amplified through the application of transfer learning, which
allows for the reuse of pre-existing models. This, in turn, enhances accuracy, facilitates
efficient training even with limited datasets, and minimises the need for labour-intensive
and error-prone manual segmentation [40,55].

Illustrating CNNs’ potential, the segmentation of lung nodules from CT scans using
AI has shown superior performance in the early detection and treatment of lung cancer,
achieving an area under the receiver operating characteristic curve (AUROC) of 94.4% and
outperforming six radiologists in the task [56]. Similarly, CNNs have played a pivotal role
in the segmentation of brain tumours from MRI scans and the analysis of retinal images for
early symptoms of diabetic retinopathy, further underlining AI’s broad applicability and
versatility of AI in the sphere of medical imaging [40,55].

Image classification, an equally critical application of AI in radiology, leverages CNNs
to differentiate between normal and pathological findings. AI models have been engi-
neered to distinguish between benign and malignant tumours in mammography, achieving
performance metrics comparable to human radiologists, thus facilitating early detection of
breast cancer [57].

Notwithstanding these significant strides, integrating AI within radiology invites a
suite of challenges that need to be addressed. The construction of robust and reliable AI
models necessitates access to extensive datasets and thorough validation, both of which can
be challenging due to privacy concerns and the heterogeneous nature of medical imaging
data. Second, ensuring the interpretability and explicability of the “black-box” dilemma in
deep learning models is paramount to garner trust and adoption from both radiologists and
patients. Lastly, integrating AI into existing clinical workflows and fostering a harmonious
human-AI collaboration are essential to fully realise the potential of AI in radiology and
translate these technological advances into tangible enhancements in patient care.

4.2. Advancing Diagnostics with AI and CAD Systems

The third wave of AI, notably the integration of deep learning technology into CAD
systems, has propelled radiology into a digital era. The emergence of AI-integrated CAD
(AI-CAD) systems has revolutionised radiology services, underpinning transformative
changes in the landscape of diagnostics. These systems have redefined how radiologists
interpret images, increasing diagnostic accuracy, reducing false positives, and significantly
improving workflow efficiencies.

AI-CAD systems’ merit lies in their substantial reduction of false positives, enhancing
dependability in clinical settings. This is corroborated by a study comparing AI-CAD
and traditional CAD software, where the AI system outperformed by decreasing the false-
positive marks per image (FPPI) by a significant 69%. It specifically excelled in identifying
microcalcifications and masses, reducing false positives by 83% and 56% respectively. Such
reductions optimise radiologists’ efficiency, potentially cutting their case reading time by
an estimated 17%, and mitigate socioeconomic issues like patients’ unnecessary emotional
stress and financial burden [58].

Employing ensemble learning methodologies can hone CAD systems further, as
evidenced by a recent study deploying a calibrated ensemble of deep learners for the task
of detecting abnormalities in musculoskeletal radiographs. This ensemble model excelled
over individual models, even outperforming expert radiologists in three out of the seven
upper extremity anatomical regions (with an AUC of 0.93, Accuracy of 0.87, and Precision
of 0.93). These results lend compelling support to the utility of the calibrated ensemble
approach in identifying abnormalities in musculoskeletal X-rays [59].

AI has also shown remarkable promise in equalling, and in some cases surpassing, the
performance of radiologists in breast screening through the deployment of AI algorithms
for automated patient triage and predicting treatment outcomes—tasks that extend beyond
human capabilities [60]. However, to fully exploit the benefits of AI in routine breast
imaging fully, there’s a need to ensure sufficient data availability for testing and monitoring
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AI algorithms pre and post-integration into healthcare systems [60]. Yet, the dawn of a
new AI epoch has presented a promising avenue that is anticipated to spur the next major
transformation in radiology: the growth of radiomics—a field seeking to unify data from
radiology, pathology, and genomics to offer a comprehensive diagnostic service [20].

4.3. Prognostics with Radiomics and Predictive Analytics

Radiomics is an emerging field within medicine, predicated on the extraction of
high-dimensional data from radiological images and harbours immense potential for the
landscape of medical diagnostics, prognosis, and the evaluation of disease response to
treatment. However, radiomics still faces challenges, including the need for standardi-
sation and validation to ensure reliable and reproducible outcomes. The main strength
of radiomics lies in its ability to complement traditional clinical practice with precise,
quantitative information, thereby revolutionising medical decision-making processes [61].

The rapid exponential growth of medical imaging data has fostered a conducive
environment for the application of ML and data-driven science. Radiomics-based decision-
support systems for precision diagnosis and treatment are poised to become integral tools
in the armamentarium of modern medicine. This, however, is not to say that the journey
of radiomics towards full clinical applicability is without challenges. The field currently
grapples with a lack of standardisation and validation that are quintessential for ensuring
reliable and reproducible outcomes [61,62].

In this milieu, the advent of AI presents promising avenues for overcoming these chal-
lenges and unlocking the full potential of radiomics. Through modelling high-dimensional
data, AI-driven analytics enable accurate predictions pertaining to disease progression,
treatment response, or patient survival. This significant stride offers clinicians an unprece-
dented wealth of information that vastly transcends the limitations of human perception.
Particularly within oncology, radiomics has proven instrumental in identifying molecular
phenotypes and lymph node metastases, appraising treatment response, and prognosticat-
ing disease survival [61].

It is crucial to acknowledge that the amalgamation of AI into radiomics remains in
its infancy. To fully harness its potential in medical imaging, a concerted effort towards
research and development is crucial. A key facet of this development will be the facilitation
of large-scale data sharing, the establishment of standardised data collection protocols,
clear evaluation criteria, and robust reporting guidelines. These elements are fundamental
to the maturation and widespread adoption of radiomics as a discipline, opening the door
to a new era of precision medicine.

4.4. Workflow Optimisation Using AI

AI is gaining traction in radiology, aiming to optimise workflows and enhance non-
interpretative tasks’ efficacy. When coupled with NLP, AI can automate the triage of
imaging studies, prioritising urgent cases based on the retrieval and analysis of key data
from patients’ EHR. This expedites patient triage, radiology reporting, and managing
incidental finding follow-ups [20].

AI significantly enhances the radiology process by automating triage and improving
report generation. It swiftly sorts and prioritises radiological studies like CT scans and MRIs
based on urgency, highlighting critical cases for immediate review. This automation aids
in consistently detecting severe conditions such as stroke, haemorrhage, and malignancy,
reducing errors. The use of AI, particularly NLP, in non-interpretative tasks alleviates
tedious aspects of the workflow, potentially mitigating radiologist burnout [4].

Furthermore, AI enhances the generation and interpretation of radiology reports. Deep
Learning algorithms address the limitations of traditional reporting, including fatigue-
induced errors or inconsistencies due to varied expertise levels. They detect and charac-
terise findings to improve consistency, facilitate standardised report creation, and reduce
errors. This additional analysis layer streamlines the workflow and augments report clarity,
significantly contributing to the quality of radiology services [63].
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The incorporation of AI transcends the limits of purely diagnostic capabilities, pro-
foundly amplifying interdisciplinary collaboration and patient-radiologist communication.
AI platforms serve as a vital conduit that nurtures a collective understanding of imaging
results among disparate healthcare professionals as they possess the potential to demystify
the complexity of medical terminologies for patients. This transparency aids in establishing
a strong rapport between the patient and the radiologist while also cultivating a higher
degree of patient involvement in their personal health [61].

As strides are made towards AI integration in radiology, it’s crucial to recognise that
as of 2021, only 30% of radiologists reported clinical AI use, with over 70% expressing
reluctance to invest in AI. Many perceived AI as offering negligible benefits, hinting at
the field of radiology being in the “trough of disillusionment” phase in the AI adoption
process [64]. This disillusionment emanates from factors such as scepticism about AI
performance and applicability, a perceived lack of necessity, inadequate workflows for
efficient AI utilisation, and a dearth of scalable AI-supporting infrastructure.

To transition into the “slope of enlightenment”, the field must establish infrastructure
that supports optimal AI functionality, involving the redefinition and disruption of existing
systems such as image management and PACS for intelligent workflow orchestration [65].
Notwithstanding AI’s potential, the importance of preserving the human element in patient
care cannot be overstated, underlining that while AI can augment the work of radiologists,
it is not a substitute for the nuanced judgement and empathetic communication that are at
the heart of patient care.

5. Case Studies: AI across Medical Specialties
5.1. Neuroradiology

The rapidly expanding field of ML, particularly supervised techniques and DL, has
proven to be indispensable in managing high-dimensional data within the realm of neu-
roradiology (Figure 5). This cutting-edge technology has facilitated the early detection
of a different stroke subtypes, as evidenced in the study by Yedavalli et al. (2021) [66].
CNNs demonstrate remarkable expertise in various tasks, including detecting infarcts or
haemorrhages, segmentation, classification, and identification of large vessel occlusion.
The application of CNNs in these areas has significantly influenced the approach to stroke
treatment, as expounded by the research carried out by Soun et al. (2021) [67].

Figure 5. An overview of machine learning driven applications in neuroradiology [68,69].
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AI transcends diagnostic boundaries to bolster clinical decision-making, particularly in
scenarios marked by substantial inter-rater variability. Its applications span from classifying
stroke subtypes and detecting haemorrhages to identifying segmentation and large vessel
occlusions. This advancement presents distinct advantages for facilities managing a small
number of stroke patients or those functioning as regional hubs [70].

An ever-growing body of research underscores AI’s potential in bolstering decisions
related to thrombolysis and thrombectomy. Shlobin et al. (2021), for instance, devised an
AI model capable of precisely detecting large vessel occlusions using CT imaging, which
demonstrates a high level of sensitivity and specificity in identifying patients suitable
for timely thrombectomy intervention [71]. Zhu et al. (2022) utilised AI algorithms to
predict thrombolysis responses in patients afflicted with acute ischaemic stroke, integrating
imaging features with clinical data to support clinicians in formulating the most effective
treatment strategies [72].

AI also plays a critical role in the early detection of neurodegenerative disorders,
specifically for conditions like Alzheimer’s and Parkinson’s diseases. Sophisticated AI
algorithms have been designed to analyse MR images for detecting specific biomarkers
or characteristic patterns associated with these conditions. The task of discerning subtle
changes in brain structure or function, which is crucial in diagnosing these diseases, is
made more efficient with AI due to its ability to detect refined voxel-level patterns and
provide objective, quantitative assessments [73].

Furthermore, AI has demonstrated its potential in predicting postoperative outcomes
for brain and spine surgeries. By examining preoperative imaging data, AI models can
generate prognostications regarding surgical outcomes, such as the likelihood of complica-
tions or the extent of functional improvement, aiding surgeons in treatment planning and
managing patient expectations, as documented by Soun et al. (2021) [67].

5.2. Oncological Imaging

AI and ML technologies, fuelled by the surge in high-performance computing, have
catalysed significant advancements in oncology, particularly in cancer imaging (Figure 6).
In precision oncology, the synergy between AI, superior computing, and deep learning
strategies, coupled with the integration of multi-omics data, has streamlined cancer diagno-
sis, prognosis, and treatment [74,75].

The intrinsically digital nature of oncological imaging lends itself to AI and ML
applications. Here, the imaging pipeline from acquisition to interpretation, reporting, and
communication thrives within the digital space, enabling efficient data capture for AI and
ML analysis. As a result, these technologies are being actively explored and adopted in
cancer imaging, which constitutes a significant proportion of the workload in numerous
healthcare facilities [74].

In tumour detection and classification, AI is increasingly being used to discern between
benign and malignant lesions and various tumour types, particularly in diagnostics for
breast, lung, and prostate cancers, with AI-based devices already making their way into
clinical practice [75]. Studies reveal that deep learning models and CNNs can classify lung
nodules on CT scans and differentiate renal cell carcinoma subtypes on MRI with high
accuracy, often rivalling the expertise of experienced radiologists [76,77].

AI algorithms provide an objective, consistent means of assessing changes in tumour
size or metabolic activity changes, automating measurements that were traditionally time-
consuming and susceptible to inter-observer variability, such as those under the Response
Evaluation Criteria In Solid Tumors (RECIST) [78]. AI accomplishes this by harnessing
radiomic features—high-dimensional data extracted from radiological images—to build
mathematical models adept at detecting subtle changes indicative of treatment response [4].
Furthermore, AI plays a key role in monitoring treatment response by quantifying tumour
changes via granular analysis of medical image subunits (pixels/voxels). These smaller
elements can be examined by computers to reveal objective mathematical features linked
with disease behaviour or outcomes [74]. AI also procures valuable prognostic insights by
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analysing radiomic signatures, such as texture analysis, to predict survival rates in lung
cancer patients from pre-treatment CT images, while radiomic features extracted from MRI
scans have shown a correlation with recurrence risk in patients with glioblastoma [79,80].
Consequently, the integration of AI in radiology leads to efficient and precise tracking of
tumour progression, significantly enhancing overall treatment assessment and patient care.

Traditional methods of monitoring radiation therapy response, based on manual
assessment of changes in tumour size and characteristics, are often subjective and may
overlook subtle indicators of treatment efficacy. AI, particularly CNNs, provide an objec-
tive means of assessing treatment response, utilising vast datasets of annotated imaging
scans to accurately identify and delineate tumours [78]. This automation streamlines the
planning process, potentially enhancing treatment outcomes via precise radiation dosing.
The effectiveness of this approach is often quantified by the Sørensen–Dice coefficient
(DSC), facilitating early and accurate therapy efficacy assessment and timely treatment
adjustments, if necessary [81].

Figure 6. An overview of machine learning applications in oncological imaging [82,83].

5.3. Cardiovascular Imaging

AI has considerably advanced cardiovascular imaging in recent years, enabling en-
hanced detection and quantification of heart diseases, comprehensive analysis of vascular
abnormalities, and the integration of multi-modality imaging data (Figure 7). AI algorithms
can efficiently interpret complex imaging data, recognising initial stages of cardiac diseases,
such as coronary artery disease and congestive heart failure, through modalities like cardiac
CT, MRI, or echocardiography. For example, ML models and CNNs have demonstrated
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the ability to automatically detect coronary artery calcification and perform automatic seg-
mentation of left ventricular myocardium, respectively, with strong correlation to manual
analyses [84,85]. AI technology has also enhanced the functional evaluation of the left
ventricle in echocardiographic diagnosis by automating tasks traditionally reliant on visual
observation and manual boundary tracing, such as measuring left ventricular ejection
fraction using the Simpson method. Such advancements promise to reduce the dependence
on physician experience, increasing the repeatability and accuracy of these evaluations [84].

Figure 7. An overview of machine learning applications in chest imaging [68,86].

Beyond cardiac strucuture conditions, AI is also instrumental in the analysis of vascu-
lar abnormalities, such as aortic aneurysms or peripheral artery disease, facilitating early
intervention and potentially improving patient outcomes. CNNs have proven effective
in evaluating abdominal aortic aneurysms from CT images, demonstrating high accuracy
in detecting and sizing these potentially life-threatening conditions [87]. Furthermore,
AI-assisted standard section recognition has significantly reduced the time required for
evaluation, enhanced detection ability, and improved the accuracy of novice practition-
ers, which has been particularly beneficial in settings with limited resources for training
echocardiography physicians [84].

A major breakthrough in AI-based cardiovascular imaging is the integration of data
from multi-modality imaging, which combines information from CT, MRI, and echocar-
diography to provide a holistic representation of cardiac structure and function. This
consolidated data is essential for complex assessments, such as detecting ischaemia or
planning interventions. For instance, ML algorithms can merge perfusion data from MRI
with coronary anatomy from CT, generating sophisticated 3D heart models, thus improving
the detection of cardiac ischaemia and facilitate precise procedural planning [88,89].

5.4. Abdominal Imaging

AI has fostered unprecedented advancements in abdominal and pelvic imaging, par-
ticularly within the domain of gastrointestinal imaging (Figure 8). AI’s contributions have



Diagnostics 2023, 13, 2760 16 of 25

been pivotal in improving detection, diagnosis, and staging of liver and pancreatic diseases.
The conceptualisation of diverse AI-based predictive models has broadened the diagnostic
spectrum, encompassing gastrointestinal and inflammatory diseases, non-malignant condi-
tions, and the detection of bowel bleeding using cutting-edge technology such as wireless
capsule endoscopy [90]. AI has also proven instrumental in detecting hepatic-associated
fibrosis by leveraging EHRs to derive meaningful insights into patient health data and
medical history. Furthermore, AI’s fusion with endoscopic ultrasound technology has
substantially improved both the accuracy and speed of diagnosing pancreatic carcinoma,
consequently enhancing patient management strategies [90].

Figure 8. An overview of AI-driven applications in abdominal imaging [91].

In the specialised fields of hepatology and pancreatology, the integration of AI with
various imaging techniques has brought about a diagnostic paradigm shift in diagnos-
ing liver and pancreatic diseases. The techniques that have benefited from AI include
ultrasound, endoscopic ultrasonography, CT, MR, and PET/CT. AI’s influence permeates
beyond diagnostics, aiding in the selection of the most appropriate diagnostic test for a
patient based on individualised medical profile. Furthermore, AI has been instrumental in
optimising image quality, accelerating image acquisition, and predicting patient prognosis
as well as their response to treatments [92].

AI has reshaped abdominal and pelvic imaging with its ability to deliver precise and
reproducible imaging diagnoses. The technology facilitates automated or semi-automated
segmentation and registration of the liver and pancreatic glands, along with their associated
lesions, thereby increasing the diagnostic accuracy and treatment efficacy. The integration
of radiomics introduces novel quantitative metrics into radiological reports, enriching the
detection and characterisation of focal lesions and diffuse diseases of the liver and pancreas,
leading to potential enhancements in clinical outcomes [92].

In nephrology, contemporary AI applications display remarkable potential in anticipat-
ing the onset of acute kidney injury before significant biochemical changes become evident,
potentially allowing for timely interventions to prevent disease progression. Additionally,
AI’s ability to identify modifiable risk factors for chronic kidney disease progression offers
valuable insights for preventative care [93].

Furthermore, in the sphere of renal tumour detection, AI models have demonstrated
proficiency matching, or even exceeding human accuracy, in interpreting imaging stud-
ies. This impressive feat could augment prognostication and decision-making processes
post-renal transplantation. The heightened precision in detecting and diagnosing renal
tumours fosters more effective treatment strategies, potentially leading to improved patient
outcomes [93].
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6. Challenges, Limitations, and Future Directions

The expansion of AI in healthcare, particularly in the field of diagnostic radiology, has
presented unprecedented opportunities to enhance the quality and efficiency of patient
care. Despite this, the rapid growth comes with a myriad of challenges, including the
necessity for adequate data quality and volume, the “black box” dilemma, integration
into clinical practice, and ethical considerations. This section dissects these issues and
proposes potential resolutions that could facilitate the assimilation and responsible usage of
AI in radiology while addressing various technical, infrastructural, regulatory, and human
factors (Figure 9).

Figure 9. Challenges of AI integration into clinical practice.

6.1. Data Quality, Quantity, and the “Black Box” Problem

The performance of AI algorithms, essentially mathematical mirroring of reality, de-
pends not only on their training datasets and precision but also on calibration in interpreting
medical images depends on comprehensive datasets that accurately reflect varied patient
demographics, including age, sex, ethnicity, and disease stages [94,95].

The construction of such datasets is frequently obstructed by representation biases
due to the utilisation of restricted demographic groups or specific clinical settings [96].
Strategies like data augmentation, oversampling, and undersampling are often employed
to remedy data scarcity, ensuring dataset diversity and balanced representation during
model training [97].

It is essential to recognise and address potential risks associated with biased or unrep-
resentative data as mismanagement can inadvertently perpetuate health disparities and
yield AI models with subpar performance in certain patient populations. The “black box”
problem in AI, denoting the lack of transparency in AI models, complicates error detection
and bias identification, thus adversely affecting underrepresented groups and clinical
utility [22]. Tackling these challenges requires a concerted effort to diversify data collec-
tion, combat bias in AI system design, perform population subgroup-based performance
analyses, and use representative population samples for clinical validation [22].

Adding to these strategies, a growing field known as explainable artificial intelligence
(XAI) seeks to demystify AI decision-making processes through improving inference re-
liability and enhancing transparency and interpretability [98]. XAI techniques, such as
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saliency maps, feature importance, and surrogate models, aid in visualising and explaining
the rationale behind AI models’ decisions, making them accessible to both experts and lay
audiences [99,100].

6.2. Clinical Integration of AI into Radiology Practice

The integration of AI into clinical radiology has been met with both enthusiasm and
scepticism, necessitating a clear roadmap to address the multifaceted challenges that arise.
Central to these is the prerequisite for robust hardware and reliable software, which are
instrumental in managing the vast amounts of data generated by medical imaging systems.
The untapped potential in the estimated 97% of unused hospital data can be harnessed
by AI-enabled applications, substantially augmenting disease trajectory prediction and
treatment regimen modification [101].

The effective implementation of AI demands high-performance hardware capable of
executing complex computations in real time, implying the need for significant investment
in powerful, reliable hardware infrastructure to circumvent any adverse effects on patient
care due to system failures [101]. On the other hand, the software must be robust, intuitive,
and designed to integrate within existing radiological systems, necessitating close collabo-
ration between AI developers, radiologists, and other healthcare professionals [102]. AI
also holds the promise of alleviating administrative burdens that beleaguer radiologists
who, on average, dedicate approximately 16.6% of their working hours (roughly nine hours
per week) to administrative tasks [103].

Navigating the hurdles of regulatory approval and ongoing monitoring is equally
imperative, as AI tools need to undergo rigorous validation to demonstrate safety and effec-
tiveness before gaining regulatory approval [104]. Once approved, continuous monitoring
and evaluation are necessary to track performance and ensure continuous improvement
and the delivery of reliable results. Lastly, successful AI integration into radiology hinges
on acceptance and adoption by end-users, primarily radiologists [103]. This highlights
the importance of providing sufficient training and support to ensure radiologists can
effectively use AI tools and comfortably integrate them into daily practice.

6.3. The Ethical Conundrums

The ethical implications of AI integration within radiology unearths several ethical
quandaries, namely data privacy and security, patient confidentiality, informed consent,
misdiagnosis risks, and the preservation of the human element in patient care.

The intersection of data privacy and security with AI pivots on the governance of
patient data, notably when considering public-private partnerships involving large tech
corporations. A review of commercial healthcare AI unveiled that a considerable fraction
of these technologies are under the control of private entities, raising alarms about po-
tential data misuse. This is epitomised by the DeepMind incident, which involved the
transfer of patient data from the United Kingdom to the United States without explicit
patient consent [105]. These events call for more stringent regulatory oversight to guar-
antee that patient data remains within its original jurisdiction and is safeguarded against
unauthorised access.

Patient confidentiality and informed consent, inextricably linked to data privacy,
require patients to exercise autonomy over their data, comprehending its use, potential
risks, and associated benefits. This aspect becomes especially significant within AI-driven
healthcare, where the black box nature of learning algorithms can veil the decision-making
processes [105]. Consequently, requisite safeguards and transparency procedures need
implementation to uphold privacy and secure patient autonomy.

Furthermore, the potential for misdiagnosis, liability, and accountability in AI-assisted
radiology raises significant ethical concerns. Although AI offers promising diagnostic
capabilities, it is susceptible to errors and biases, which can lead to incorrect diagnoses and
patient harm [106]. Addressing this issue necessitates the development and implementation
of clear guidelines and policies for AI use in medical settings, with an emphasis on decision-
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making accountability and delineating the responsibilities of healthcare professionals and
AI systems.

With that being said, the risk of over-reliance on AI emphasises the importance of
preserving the human element in patient care. While AI can enhance healthcare delivery
and complement the skills of healthcare professionals, it should not overshadow the ir-
replaceable expertise and nuanced decision-making inherent in the practice of medicine,
particularly given the complexity and variability of individual cases [22]. As the role of
AI in radiology continues to evolve, these ethical considerations must remain at the fore-
front of discussions, policy-making, and research, ensuring the responsible and equitable
application of this transformative technology in healthcare.

6.4. Bridging the Gap: Collaboration between Radiologists and AI Developers

The growing intersection of AI and radiology necessitates a synergistic collaboration
between radiologists and AI developers to create advanced tools that drive clinical innova-
tion and improve patient care. This section discusses the fusion of these disparate fields
and the importance of interdisciplinary collaboration, its benefits, and strategies to bridge
the gap between academia and industry.

Radiologists bring to the table an in-depth understanding of clinical needs, disease
processes, and imaging interpretation nuances, while AI developers possess the technical
acumen to design, implement, and optimise machine learning algorithms. This diverse
expertise is not just complementary but also essential for the development of AI tools that
are clinically viable, safe, and effective. Without the input of radiologists, AI tools risk being
designed without consideration for real-world clinical workflows, limiting their utility
or potentially compromising patient safety. Conversely, without the technical skills of AI
developers, radiologists would struggle to leverage the vast potential of AI in imaging
analysis [65].

Interdisciplinary research is the key to marrying these distinct skill sets. Collaboration
between radiologists and AI developers can result in AI tools more attuned with clinical
needs, effectively bridging the gap between theory and practice. Such partnerships also
encourage a collective sense of ownership and responsibility, driving the adoption and
optimisation of AI tools in clinical settings. A common model for fostering collaboration is
the Academia-Industry Collaboration Plan (AICP), which outlines processes and methods
for establishing partnerships between academia and industry [107]. This is crucial as uni-
versities supply the workforce and innovative ideas, while the industry provides necessary
funding for research and innovation.

However, promoting collaboration between academia and industry is not without its
challenges. One significant hurdle that can stifle innovation and delay the deployment of
AI tools in radiology is the contemporary dichotomy between these two sectors. While
academia often focuses on theory and exploration, industry is more concerned with practi-
cal applications and market viability [107]. To overcome this, there are several strategies that
can be employed. First, joint projects involving both academic and industry partners can
facilitate the exchange of ideas and resources, leading to innovative and robust AI solutions.
Shared datasets enable a more diverse range of research, enhancing the generalisability
of AI tools. Finally, open-source software offers a platform for collaboration, promoting
transparency and reproducibility, both of which are fundamental to scientific progress.

6.5. Medical Education and Training in Healthcare

The incorporation of AI into clinical practice necessitates the acquisition of new skills.
With AI algorithms capable of processing large volumes of data far beyond human capaci-
ties, the emphasis on memorising extensive medical information or developing procedural
skills through repetitive practice may diminish. This shift necessitates the need for clinicians
to acquire new skills, such as data science, statistics, and AI ethics, which will be crucial
for interacting safely and effectively with AI technologies [108]. These skills will empower
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clinicians to competently input data, interpret algorithmic outputs, and communicate
AI-derived treatment plans to patients.

In the face of this shift, the roles and responsibilities of radiologists may extend
beyond image interpretation to encompass a broader understanding and application of AI
technologies. Radiologists, traditionally concerned primarily with image interpretation,
may find themselves more engaged in tasks such as AI model development, validation,
or monitoring. For instance, a significant component of AI in radiology involves the
labelling of images, a labor-intensive and costly process that demands the expertise of
radiologists [20]. As AI technologies advance, radiologists will increasingly interact with
decision support systems that can suggest diagnoses, alert test results, and even automate
clinical documentation [108].

The professional evolution of radiologists may also coincide with significant scientific
and technical advancements in radiomics and pathomics, facilitating the integration of
diagnostic services and personalised medicine, especially in resource-poor settings with
limited infrastructure where the adoption of AI might be challenging [20].

The Royal Australian and New Zealand College of Radiologists (RANZCR) has
adopted a progressive approach to these challenges and opportunities. In their 2023
curriculum, AI-related topics have been incorporated, reflecting the growing recognition
of the importance of AI in radiology and the need for radiologists to acquire new com-
petencies. This crucial inclusion of AI ensures that RANZCR remains at the forefront of
technology and innovation, solidifying its commitment to equipping radiologists with the
most advanced tools and knowledge in the rapidly evolving field of medical imaging [109].

7. Conclusions

This review concludes by summarising the key insights, transformative potential, and
future path of the intricate relationship between AI and medical imaging. With AI playing a
pivotal role in modern radiology, it provides a plethora of advantages such as improved di-
agnostic accuracy, workflow efficiency, and personalised patient care. These advancements,
including tools for image partitioning, categorisation, computer-aided diagnosis, and inno-
vative diagnostic and prognostic tools driven by radiomics and predictive analytics, herald
a promising potential for improving patient outcomes. However, challenges concerning
data privacy, security, and the ‘black box’ nature of AI models remain to be addressed.
Despite these hurdles, the future is promising with new algorithms and architectures
broadening the scope of medical image analysis. An essential synergy between radiologists
and AI developers is needed to foster interdisciplinary research and bridge academia and
industry. This need also extends to preparing healthcare professionals for an AI-infused
landscape and evolving the role of radiologists in the AI era. Embracing AI’s potential
in redefining radiology involves not only an unwavering dedication to innovation and
development of advanced algorithms, but also nurturing collaborations among radiologists,
AI developers, patients, and policy-makers. These joint efforts should aim to meet clinical
needs, translate research into practical applications, and ensure ethical AI deployment,
always prioritising patient safety, privacy, and dignity. In this light, the forthcoming aeon of
AI in radiology, though challenging, unfolds its vast potential in transforming healthcare.
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