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Abstract: The incidence of renal mass detection has increased during recent decades, with an in-
creased diagnosis of small renal masses, and a final benign diagnosis in some cases. To avoid
unnecessary surgeries, there is an increasing interest in using radiomics tools to predict histological re-
sults, using radiological features. We performed a narrative review to evaluate the use of radiomics in
renal mass characterization. Conventional images, such as computed tomography (CT) and magnetic
resonance (MR), are the most common diagnostic tools in renal mass characterization. Distinguishing
between benign and malignant tumors in small renal masses can be challenging using conventional
methods. To improve subjective evaluation, the interest in using radiomics to obtain quantitative
parameters from medical images has increased. Several studies have assessed this novel tool for renal
mass characterization, comparing its ability to distinguish benign to malign tumors, the results in
differentiating renal cell carcinoma subtypes, or the correlation with prognostic features, with other
methods. In several studies, radiomic tools have shown a good accuracy in characterizing renal mass
lesions. However, due to the heterogeneity in the radiomic model building, prospective and external
validated studies are needed.

Keywords: benign; malignant; kidney; tumor; radiomics; renal mass; renal cell carcinoma; texture
analysis; prognosis

1. Introduction

Due to improvements in diagnostic techniques, the incidence of renal mass detection
has increased during recent decades. Some series have shown that around 20–30% of small
renal masses (<4 cms) are benign tumors [1–3].

To avoid unnecessary surgeries, there is an increasing interest in clinical and radiologi-
cal features that could help to predict histological results [4,5]. In recent years, many tools
have been potentiated to enhance image interpretation, including radiomics and artificial
intelligence (AI) [6,7]. However, currently, no predictive models are available in clinical
practice [4].

AI, as a concept, refers to the use of computational technologies to make predictions
simulating intellectual procedures typical of human intelligence [4,8]. Many applications
of this computer science branch are being studied [8,9]. Radiomics is a tool that converts
medical images into quantitative features and data that can help in decision support.
This can solve the actual limitations of conventional imaging tests [4]. A common tool
of radiomics is texture analysis, which allows the quantification of heterogeneity in the
region of interest in the image, and the correlation of these dates with clinically relevant
variables [10].
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2. Radiomics and Texture Analysis

Radiomics in renal cancer can be used in lesion characterization, and to assess the
malignance probability before a treatment decision assessment and therapy response [10].
Lesion characterization can help to correlate the imaging features with different tumor
characteristics. These tumor characteristics can be related to the histological data, tumor
grade, or genetic and molecular patterns [4].

One of the most important tools used is texture analysis. This tool uses the pixel
distribution of images, especially from magnetic resonance (MR) imaging and computed
tomography (CT). The extrapolation of the quantitative data from the imaging tests cannot
be achieved through only human interpretation [4]. These data can later be used to build
algorithms that allow the differentiation of tissue characteristics, which can help, for
example, in the differentiation of tumor lesions between benign and malignant tumors [11].

Texture analysis assesses the pixel and voxel gray-level distribution in a region of
interest (ROI) in the image; subsequently, the distribution is represented by a histogram.
There are different ways of performing texture analysis, with the most frequent being the
use of statistics-based techniques [10]. The main variables used in statistical analysis are
the gray-level intensity, asymmetry, kurtosis, entropy, and mean of the positive pixels for
each histogram [12]. Figure 1 shows a summary of how the texture analysis is performed.
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After image features analysis using radiomics, it is possible to use AI (via machine
learning and deep learning algorithms) to analyze these data, and create models that can
help in treatment decisions [11].

3. Radiomics in Renal Mass Characterization

Different kidney lesions can vary between malignant and benign tumors, and the
differentiation of these main groups is essential to making a correct treatment decision.
Although MR and CT are used to assess tumor characteristics and help to distinguish
between benign and malignant, there are new tools based on radiomics that can give more
information [4,13].
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There are many lesions, including renal cell carcinoma (RCC), that are low in attenua-
tion; in these cases, heterogeneity is an important feature to analyze. This heterogeneity
can be assessed objectively, using texture analyses [10,14,15].

Varghese and collaborators [16] analyzed, retrospectively, 129 cases of RCC and
45 cases of benign renal masses, angiomyolipomas (AMLs), and oncocytomas, using texture
analysis from multiphase CT scans. Whole lesion regions of interest (ROIs) were established.
The entropy, entropy of fast-Fourier transform magnitude, mean, uniformity, information
measure of correlation 2, and sum of averages were the metrics used to calculate the area
under the curve (AUC) to differentiate between benign and malignant masses, ranging
from 0.80 to 0.98 depending on the combinations. The texture model with all texture metrics
had an AUC of 0.87 (p < 0.05).

Wentland et al. used a machine learning (ML) model in 148 renal masses evaluated via
CT scan, to differentiate between benign and malignant lesions. The features were selected
using the random forest model. Their ML model achieved an overall accuracy of 0.82, and
an AUC of 0.80 [17].

Recently, Feng and collaborators performed, retrospectively, an analysis of 156 small
renal masses (92 malignant tumors vs. 64 benign tumors), using radiomics. From the CT
scan, they drew three-dimensional ROIs, to extract radiomic features. The tumors were
classified into three categories: A (AML with visible fat), B (benign SRM without visible
fat, and C (malignant SRM). After selecting the optimal features, they elaborated three
models: the clinical factor model, radiomics signature, and radiomics nomogram. In the
differentiation between categories B and C, the radiomics nomogram showed the highest
AUC, but no significant differences were found between the three models (p > 0.5). The
radiomics nomogram showed a better discrimination when comparing clinical factors to
differentiate between benign and malignant lesions (p = 0.0007) [18].

Due to the more frequent use of CT scans in general clinical practice, there are not many
studies using texture analysis with MR. Hoang et al. [19] evaluated the quantitative texture
parameters in 142 renal lesions characterized by multiphasic contrast-enhanced MR; 90 were
clear cell carcinomas, 22 were papillary carcinomas, and 30 were oncocytomas. A histogram
was used to differentiate benign and malignant lesions and texture imaging features, to
differentiate the carcinoma subtype. It showed a good specificity when comparing benign
and malignant lesions (oncocytomas versus RCCs: 85.8%).

One of the largest series using MR-based models included a total of 1161 renal lesions
(655 malignant and 507 benign), and was a study performed by Xi and collaborators [20].
They compared the results for the differentiation of benign and malignant lesions between
a deep learning (DL) model, expert-based model, and radiomics. The best results were
found with the DL model, with an accuracy of 0.70.

Xu et al. used deep learning to differentiate between benign and malignant tumors.
They found a good AUC using DL models, working from MR images, based on T2-weighted
images, diffusion-weighted imaging (DWI), and a combination of both. The AUCs were
0.906, 0.846, and 0.924, respectively; the AUC was highest using the model combination [21].

A recent study performed by Massa’a et al. [22] evaluated 182 renal masses with ML
models, using features extracted from MR. The best accuracy was found using features
from T2-weighted images. The three best-performing ML models were the support vector
machine (SVM), logistic regression (LR), and linear discriminant analysis (LDA), with an
AUC of 0.79, 0.78, and 0.77, respectively, without statistically significant difference, between
these models (p > 0.5).

3.1. Angiomyolipoma

AMLs are benign tumors that have an important fat component. However, some of
them have a minimal fat component, and these cases are difficult to differentiate from
RCCs [10,23]. Several studies have compared image characteristics between AMLs and
RCCs [23–28]. Some of them are summarized in Table 1.
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Table 1. Evaluation of AMLs via texture analysis.

Evaluation of AMLs via Radiomics

Study Objetive Study Design Model Results

Yan L et al. [25]
Year 2015

Discrimination of AMLs with
minimal fat, ccRCCs, and pRCCs

- Patients evaluated via CT scan
- 18 AMLs vs. 18 ccRCCs vs. 14 pRCCs
- Retrospective study

- Texture analysis

Classification accuracy:

- Up to 100% for minimal-fat AMLs, vs. ccRCCs
with PCP

- 100% for minimal-fat AMLs, vs. pRCCs with NP
- 97.5% for ccRCCs, versus pRCCs with CMP

Hodgdon et al. [24]
Year 2015

Accuracy of texture analysis to
differentiate fat-poor AMLs

from RCCs

- Patients evaluated via CT scan
- 16 fat-poor AMLs vs. 84 RCCs
- Retrospective study

- Texture analysis
- SVM (based in most

discriminative features)

- Lower homogeneity and higher entropy in RCCs (≤0.1)
- Model with several texture features resulted in an AUC

of 0.89 ± 0.04.
- Difference in AUC between textural features and

subjective visual heterogeneity was 0.25 (p = 03)

Takahashi et al. [26]
Year 2016

Detection of fat presence using pixel
distribution and texture analysis.

- Patients evaluated with CT scan
- 38 AMLs and 83 RCCs
- Retrospective study

- CT pixel distribution
- Texture analysis

- Fat was identified in 15/38 AMLs and 1/83 RCCs using
subjective methods and CT negative pixel distribution

- Combining CT negative pixel distribution with texture
analysis, fat was identified in 20/38 AMLs

Feng et al. [27]
Year 2018

Differentiate fat-poor AMLs from
RCCs in small renal masses (<4 cm)

- Patients evaluated via CT scan
- 17 AMLs vs. 41 RCCs
- Retrospective study

- Texture analysis
- SVM (ML)

- SVM-RFE classifier with selected 11 optimal features
obtained the highest AUC in differentiating fat-poor
AMLs (up to 0.955)

Cui EM et al. [23]
Year 2019

Differentiate fat-poor AMLs
from RCCs

- Patients evaluated via CT scan (three
phase images: PCP, CMP, NP)

- 41 AMLs vs. 130 RCCs (82 ccRCCs, 22
pRCCs, 26 chRCCs)

- Retrospective study

- Texture analysis
- SVM (ML)

- ML based in whole tumor CT texture features (from
three-phase image) showed the best accuracy in
differentiating AMLs from all RCCs
(accuracy of 92.69%)

Wang et al. [28]
Year 2021

Differentiate AMLs without visible
fat from ccRCCs

- Patients evaluated via CT scan
- 31 AMLs vs. 74 cc-RCCs
- Retrospective study

- Texture analysis (Three
different ROIs calculated)

- The heterogenous degree determined by ROI 3 was
higher for RCCs than AMLs

- Images from CMP had the highest
diagnostic performance

Abbreviations: AML, angiomyolipoma; ccRCC, clear cell renal cell carcinoma; pRCC, papillary renal cell carcinoma; CT, computed tomography; PCP, precontrast phase; NP,
nephrographic phase; CMP, corticomedullary phase; SVM, support vector machine; AUC, area under the curve; ML, machine learning; RFE, recursive feature elimination; ROI, region
of interest.
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In 2016, Takahashi et al. [26] compared the fat presence in 38 AMLs and 75 RCCs by
comparing subjective evaluation with objective methods using CT pixel distribution and
texture analysis. Macroscopic fat was identified in 15/38 AMLs and 1/83 RCCs. Through
the addition of CT negative pixel distribution into the texture analysis, fat was identified
in 20/38 AMLs and 1/83 RCCs, but this difference from the subjective method was not
statistically significant.

Feng et al. [27] used the ML-based texture analysis of CT images to differentiate AMLs
from RCCs in 58 patients with small renal masses <4 cm (17 AMLs vs. 41 RCCs). To
establish discriminative classifiers, SVM was used. Of the 45 features extracted from the
images, 16 showed significant intergroup differences. Selecting the optimal 11 features,
and using SVM, obtained the highest AUC in differentiating fat-poor AMLs (up to 0.955).
These 11 features were: mean, median, 10th percentile, 25th percentile, 75th percentile, 90th
percentile, skewness, entropy (these first in the unenhanced phase), 25th percentile (in the
corticomedullary phase [CMP]), energy, and entropy (in the nephrographic phase).

Cui EM et al. [23], performed a retrospective study of 171 renal masses, using texture
analysis with machine learning, to better discriminate AMLs from other lesions. They
extracted image features from the whole tumor in three phases of CT, differently to other
studies that extracted these features from different tumor slices. They found that ML
performed best in differentiating AMLs from all RCCs, with an accuracy of 92.69%. The
most important findings to differentiate these cases were the hyperattenuation and homo-
geneity of the pre-contrast phase. On the other hand, they showed the worst results when
differentiating AMLs from non-RCCs, probably because these lesions can have a similar
appearance to AMLs (homogeneous and hyperattenuating). They found better results
using computer-assisted methods, when comparing the same cases with the subjective
morphological features recognized by radiologists.

Wang and collaborators [28] evaluated different selected ROIs to assess their impact on
differentiating AMLs from RCCs. They evaluated, retrospectively, 31 patients with AMLs
and 74 with RCCs. They analyzed different quantitative parameters determined by three
different ROIs. ROI 1 and ROI 2 were placed in the part of the tumor that showed more
enhancement, varying the area size (smaller for ROI 2), and ROI 3 was placed on the largest
image of the tumor, to measure the heterogeneous degree. All these parameters were eval-
uated via a four-phase CT scan. They observed that the heterogenous degree determined
by ROI 3 was higher for RCCs than AMLs. In the evaluation of the enhanced attenuation
value, the parameters determined by ROI 2 showed a better diagnostic performance. The
ROC curves calculated with the parameters during the CMP were higher [28].

3.2. Oncocytoma

An oncocytoma is a benign renal neoplasm, with a prevalence that varies between
3–7%, when evaluating small renal masses (<4 cms) [29]. It is shaped by polygonal and
eosinophilic cells that are rich in mitochondria. These cells are similar to chromophobe
RCCs, which can complicate their differentiation, because of similar image findings and
pathology characteristics [10].

Due to the differences in treatment and prognosis between these two entities, the
interest in tools that allow us to improve their diagnostic has increased. Many articles have
studied radiomics in terms of distinguishing these renal lesions.

In the cohort of patients analyzed by Varghese et al. [16], 27 cases of renal cell on-
cocytoma were evaluated. They found that adding a Fourier analysis to the histogram
analysis significantly improved the AUC in 0.20. The full texture model had an AUC of
0.90 (p < 0.05) for differentiating oncocytomas from the rest of the tumors in the study.

Hoang et al. [19] elaborated three different models using texture analysis, with param-
eters obtained from multiphase MR. Analyzing oncocytomas, the models showed a good
accuracy in distinguishing oncocytomas from malignant lesions (oncocytomas versus RCCs:
77.9%; oncocytomas versus clear cell RCCs [cc-RCCs]: 79.3%). Due to the lack of diagnoses
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of chromophobe histology tumors in their center, the model could not be calculated for this
subtype of RCCs.

More recently, Uchida et al. [30] analyzed, retrospectively, a 49-patient cohort with
renal masses diagnosed via 1.5T MRI. After partial or radical nephrectomy, the pathological
anatomy results were 41 chromophobe RCCs (ChRCCs) and 8 renal oncocytomas (ROs).
They obtained image features via MR image and texture analysis, using apparent diffusion
coefficient (ADC) maps. They obtained 49 texture features, with eight of them contributing
significantly to the differentiation between ChRCCs and ROs. The mean ADC value was
the one with more relevance in differentiating these two entities. Their results showed that
the ChRCCs had a lower mean ADC value than the ROs (p < 0.0001).

3.3. Subtypes of Renal Cell Carcinoma (RCC)

As is known, due to the increase and improvements in imaging techniques, an increase
in the diagnosis of renal masses has been observed. The main problem is the risk of
overtreatment in 20–30% of resected renal masses, which are benign [1]. Besides, the most
common malignant tumor is the RCC, which includes different subtypes that have different
morphological and pathological features, due to their different biological behaviors, which
can lead to different prognoses [31]. For example, in low-grade cc-RCCs, minimally invasive
surgery could be planned safely, but in high-grade tumors, precaution should be taken [32].
Additionally, the different biological behaviors among these tumors could help in the
development of targeted therapeutic agents [33].

Kocac B et al. [33] elaborated a texture analysis model using CT images to distinguish
different subtypes of RCC. They selected, retrospectively, 68 cases of RCCs (48 cc-RRCs,
13 pc-RCCs, 7 chc-RCCs), and added 26 RCC cases from public databases, to perform
external validation (13 cc-RCCs, 7 pc-RCCs, 6 ch-RCCs). The features were extracted from
unenhanced and CMP CT. Using the selected features, algorithms were elaborated. The
base classifiers used were artificial neural networks (ANNs) and SVM. They obtained
the best results in the discrimination of RCCs vs. non-RCCs with the CMP-image using
ANNs, with poor results in distinguishing the main three RCC subtypes. To improve the
reproducibility and generalizability, additional algorithms (such as adaptive boosting or
bagging) can be used in machine learning.

As has been mentioned, Varghese and collaborators [16], after analyzing, retrospec-
tively, 129 cases of RCCs and 45 cases of benign renal masses (AMLs and oncocytomas),
using texture analysis from multi-phase CT scans, found that adding texture analysis meth-
ods to the base model resulted in a significant improvement in the AUC to differentiate the
three subtypes of RCCs (clear cell, papillary, chromophobe).

Some studies evaluated the role of radiomics in differentiating subtypes of papillary
RCCs due to their different behavior. Vendrami CL et al. [34] used texture analysis in
47 papillary RCC tumors characterized via MR images; 31 were type 1, and 16 were type 2.
They performed a statistical model with qualitative and quantitative analyses, including
2D and 3D analysis. Significant differences showed in some MR image features; namely,
the necrosis, heterogeneous enhancement, perilesional stranding, and metastases, which
were more frequent in papillary type 2 RCCs. They found that this model, with 2D texture
analysis in the VIBE sequence, showed a good prediction of type 2 tumors (AUC value of
0.87). Lastly, 3D analysis did not improve the model, compared to 2D analysis.

Duan C et al. [35] performed a single institution study evaluating the difference
between the papillary renal cell carcinoma (PRCC) subtypes, using texture analysis. They
analyzed, retrospectively, 62 patients with renal tumors, diagnosed via three-phase CT
scans. Based on the pathology results, they included 30 type 1, and 32 type 2, PRCC cases.
The features were extracted from ROIs that included the whole tumor. They saw that
the entropy and correlation were increased in type 2 PRCCs, and that the best results
in differentiating both types were obtained via the nephrographic-phase model, and the
model using the texture parameters of three-phase CT.



Diagnostics 2023, 13, 2743 7 of 11

3.4. Identification of Aggressive Tumor Features and Sarcomatoid Differentiation

The nuclear grade, represented by Fuhrman grading, is one of the most important and
independent prognostic factors [36,37]. To avoid tumor biopsy due to a lower concordance
rate with the Fuhrman grade (from 30–97%), the use of radiomics models to predict the
nuclear grade has been studied [33,34,38].

Ding and collaborators [39] presented a cohort of 92 cases of cc-RCCs studied via CT
images, compared with a validation cohort. They performed three different models, finding
that adding texture features increased the accuracy of the prediction models for grading
cc-RCCs in the study and validation cohort.

In 2019, another study performed by Lin and collaborators [32] assessed the im-
pact of a machine learning model to predict the Fuhrman nuclear grade in a total of
232 cc-RCC lesions. Their results suggested that the classifier based on three-phase CT
images showed an acceptable performance in predicting the Fuhrman grade, and was
superior to single-phase CT images, with an AUC of 0.87.

Sarcomatoid RCCs are associated with aggressive behavior and a poor prognosis, with
approximately 60–80% of patients having advanced or late-stage disease. For this reason,
observation, ablative therapies, and nephron-sparing surgeries are not recommended, as
a radical treatment is needed [40,41]. It is difficult to make a diagnosis before treatment,
due to the heterogeneous distribution of the sarcomatoid regions, with the poor biopsy
results being positive in approximately 7.5% of cases [42]. Some studies have valued the
accuracy of radiomics in differentiating sarcomatoid histology [15,43,44].

In 2015, Schieda and collaborators [43] applicated texture analysis to differentiate
20 sarcomatoid RCCs and 25 cc-RCCs. All patients were studied via a CT scan. For
the texture analysis, they extracted the gray-level co-occurrence and run-length matrix,
showing that sarcomatoid RCCs were significantly more heterogeneous than RCCs (with
a greater run-length nonuniformity and greater gray-level nonuniformity in sarcomatoid
RCCs). When combining textural features, the AUC in the identification of sarcomatoid
RCCs was 0.81 +/− 0.08 (p < 0.0001).

More recently, Meng et al. [44], compared 29 sarcomatoid RCCs with 99 cc-RCCs. After
collecting 1029 different features extracted from the CMP and nephrographic phase (NP)
via CT scans, they used the selected features to build different models, using radiomics
approaches. The AUC value using the selected CMP and NP radiomics features was
significantly higher than that using subjective characteristics. A better value of AUC
was obtained using the NP nephrographic model, which could have an important role in
differentiating sarcomatoid RCCs and cc-RCCs.

4. Discussion

AI is a branch of computer science that is attracting a continuous growing interest
in the medical fields [45]. Just as it is being used for treatment aspects (for example, as
an important auxiliary tool in surgery), it has a large potential in diagnostics. The use
of AI can improve diagnostic efficiency. Its application in several diagnostic fields has
been studied: radiological, pathological, ultrasonographic, endoscopic, and biochemical.
Different departments are evaluating this tool, such as as pneumology, ophthalmology,
cardiology, etc. [46]. In urology, there are many fields in which AI is being studied, such as
urolithiasis, the benign enlargement of the prostate, pediatric urology, renal transplant, and
prostate cancer, among others. It has a lower impact on less-frequent tumors, such as penile
and testicular tumors [45]. Regarding renal masses, radiological assessment is essential,
and the development of techniques that can improve diagnostic efficiency are growing. The
interest in radiomics for improving the characterization of tumor lesions without invasive
techniques has increased. Due to the different prognosis in some histological subtypes,
and the low accuracy in the pathology results in some series of renal biopsies, radiomics is
emerging as a powerful tool for renal mass characterization, the recognition of prognostic
features and, moreover, helping with therapeutic decisions.
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Nowadays, conventional images, such as CT or MR, are the most common diagnostic
tools for renal mass characterization. Some features on a contrast-enhanced CT can suggest
the tumor’s histology but, currently, there is no radiographic feature that can accurately
predict histologic analysis. For example, a renal mass with a central stellate region, with
a low level of enhancement, can suggest the diagnosis of an oncocytoma, which can be
confused with central necrosis from an RCC [6]. Distinguishing between benign and
malignant tumors in small renal masses is challenging using conventional images and,
sometimes, the interobserver differences are considerable [43]. To improve subjective
evaluation, and avoid conventional imaging limitations, the interest in using radiomics to
extract quantitative parameters from medical images has increased.

The main problem with the studies evaluating radiomics is that are based on retro-
spective cases, with the limited evidence that comes with this. Prospective studies with
a larger sample size are needed. Another limitation is the heterogeneous performance in
the radiomic techniques, with different selected features, different calculations of ROIs, and
different methods of performing texture analysis. This heterogeneity makes the assessment
of external validation difficult. This means that none of the multifactorial algorithms have
achieved clinical use, or been independently validated [47].

External validations are needed in order to achieve future clinical applications, with
large-size and probably multicentric studies [48]. Of the mentioned papers, only one
performed an external validation of radiomic models based on CT scans to distinguish
between benign and malignant lesions, with some limitations, especially the small study
size [33].

Most of the mentioned studies have been based on CT images, which is not uncommon,
as it is used most frequently. Only a few studies have used features extracted from MR in
their analysis, which can complicate external validation [34].

Another important characteristic that varies between studies is the selection of ROIs.
Some cases select some slices of the tumor; other cases take the whole tumor volume.
Some include hemorrhagic regions or calcifications, while other exclude these features.
The different sizes of ROIs can affect the role of the quantitative parameters, which
means that it is challenging to use the selection criteria in routine diagnoses and external
reproducibility [28].

Moreover, the CT phases used to extract the different features are not constant. Some
studies used single-phase, and others multi-phase CT. In some cases, there was a better
accuracy among the models performed with the nephrographic phase [24,44], and in some,
with CMP [28,33]. More studies are needed in order to assess the impact of different phases
in radiomic models.

In a nutshell, there is an important heterogeneity in the radiomic features used in
the different studies, with a lack of a standard selection of features that could be used to
calculate uniform models. This would bring radiomics closer to clinical use [7].

5. Future Directions

The increase in the investigation of the role of radiomics in renal mass characterization
shows that it is a good tool for discriminating between benign and malignant tumors, and
for discriminating, in some cases, subtypes of RCCs, and evaluating imaging features that
correlate with prognostic factors. To access this technology, and use AI, it is important to
build high-quality datasets.

Prospective and multicenter studies are needed, in order to perform reproducible and
homogeneous models with independent validation, to bring radiomics to clinical practice.

Another field that is receiving increasing interest is radiogenomics, which is using
radiomic features to correlate with prognostic and predictive biomarkers, and anticipate
the treatment response. The associations between quantitative features and mutational
genes or molecular markers are being investigated [4,6,45].
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6. Conclusions

Several applications of AI are being investigated regarding their use in clinical practice.
Due to the high incidence of benign tumors in SRM, and to avoid overtreatment, the use
of radiomics to achieve better accuracy in the evaluation of these tumors is being studied.
Radiomic tools have shown good accuracy in characterizing renal mass lesions in several
studies, proving useful in most series in distinguishing between different types of renal tu-
mors, and between benign and malign tumors, and in the detection of radiological features
associated with a bad prognosis. However, due to the heterogeneity in the technique meth-
ods, and the different algorithms used, prospective studies with homogeneous algorithms
are needed, to assess the real impact of using this tool in clinical assistance.
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