
Citation: Ismail, M.; Craig, S.;

Ahmed, R.; de Blank, P.; Tiwari, P.

Opportunities and Advances in

Radiomics and Radiogenomics for

Pediatric Medulloblastoma Tumors.

Diagnostics 2023, 13, 2727.

https://doi.org/10.3390/

diagnostics13172727

Academic Editor: Tejpal Gupta

Received: 24 July 2023

Revised: 19 August 2023

Accepted: 21 August 2023

Published: 22 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

diagnostics

Review

Opportunities and Advances in Radiomics and Radiogenomics
for Pediatric Medulloblastoma Tumors
Marwa Ismail 1,*, Stephen Craig 1, Raheel Ahmed 2, Peter de Blank 3 and Pallavi Tiwari 1,4

1 Department of Radiology, University of Wisconsin-Madison, Madison, WI 53706, USA;
sccraig2@wisc.edu (S.C.); ptiwari9@wisc.edu (P.T.)

2 Department of Neurosurgery, School of Medicine and Public Health, University of Wisconsin-Madison,
Madison, WI 53706, USA; raheel.ahmed@neurosurgery.wisc.edu

3 Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA;
peter.deblank@cchmc.org

4 Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
* Correspondence: ismail8@wisc.edu

Abstract: Recent advances in artificial intelligence have greatly impacted the field of medical imag-
ing and vastly improved the development of computational algorithms for data analysis. In the
field of pediatric neuro-oncology, radiomics, the process of obtaining high-dimensional data from
radiographic images, has been recently utilized in applications including survival prognostication,
molecular classification, and tumor type classification. Similarly, radiogenomics, or the integration
of radiomic and genomic data, has allowed for building comprehensive computational models to
better understand disease etiology. While there exist excellent review articles on radiomics and radio-
genomic pipelines and their applications in adult solid tumors, in this review article, we specifically
review these computational approaches in the context of pediatric medulloblastoma tumors. Based on
our systematic literature research via PubMed and Google Scholar, we provide a detailed summary
of a total of 15 articles that have utilized radiomic and radiogenomic analysis for survival prog-
nostication, tumor segmentation, and molecular subgroup classification in the context of pediatric
medulloblastoma. Lastly, we shed light on the current challenges with the existing approaches as well
as future directions and opportunities with using these computational radiomic and radiogenomic
approaches for pediatric medulloblastoma tumors.

Keywords: medulloblastoma; radiomics; risk stratification; radiogenomics; molecular subgroups

1. Introduction

Medulloblastoma (MB), a high-grade malignancy, is the most frequent brain tumor
in children, accounting for 30% of all pediatric intracranial tumors and 7% to 8% of all
brain tumors and has a 5-year survival rate of approximately 70–75% [1,2]. MB originates
in the cerebellum or posterior fossa, arising from the fourth ventricle or vermis, and can
spread throughout the brain and spine via cerebrospinal fluid [2,3]. Surgery, specifically
maximal safe resection, was the sole treatment for MB tumors until the 1950s, when
craniospinal irradiation became a widely accepted adjuvant treatment, followed by the
acceptance of chemotherapy as another standard treatment modality in the 1990s [2].
Over the years, advanced research has led to improved diagnostic, surgical, and radiation
technologies, resulting in improved patient outcomes. However, a successful treatment
protocol ultimately depends on the patient’s risk stratification and tumor staging.

Until recently, Chang’s staging has been a primary tool for MB risk stratification [2].
Initially incorporating tumor size and the presence of metastasis at the time of initial diag-
nosis to classify the tumor into stages, this stratification system has since incorporated other
parameters such as age at diagnosis and amount of residual disease after surgery [2,4,5].
Based on these variables, MB patients are stratified into (1) high-risk: patients aged 3 or

Diagnostics 2023, 13, 2727. https://doi.org/10.3390/diagnostics13172727 https://www.mdpi.com/journal/diagnostics

https://doi.org/10.3390/diagnostics13172727
https://doi.org/10.3390/diagnostics13172727
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com
https://orcid.org/0000-0001-6623-3040
https://doi.org/10.3390/diagnostics13172727
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com/article/10.3390/diagnostics13172727?type=check_update&version=2


Diagnostics 2023, 13, 2727 2 of 19

younger with a residual tumor greater than or equal to 1.5 cm2 following maximal safe
resection and (2) average-risk: patients with none of the features associated with high-
risk status.

More recently, MB has been sub-categorized, based on cytogenetic profiles, to have
molecular subgroups with distinct survival outcomes, which are named based on the cellu-
lar pathway activation they exhibit [6–11]. The 4 MB subgroups have been identified as
Wingless (WNT), with a generally good prognosis; Sonic Hedgehog (SHH), which exhibits
varied patient outcomes according to the age group; Group 3, with a poor prognosis; and
Group 4, with an intermediate prognosis. Recent clinical trials are focusing on targeted
therapies for each molecular subgroup to produce better personalized treatment plans [12].
Additionally, as long-term MB survivors have substantial neurologic and cognitive compli-
cations [4,13–16], some of these clinical trials have been primarily directed toward assessing
the efficacy of therapy de-escalation in hopes of reducing long-term radiation-induced neu-
rotoxicity in patients with average risk [17]. However, despite the advances in molecular
sub-characterization of MB tumors, which have dramatically improved targeted therapies
and patient outcomes, the prognosis for MB tumors remains inadequate. The significant
tumor microenvironment heterogeneity reported across MB patients [10,18] results in
distinct biologic behaviors that impact the disease classification as well as the treatment
protocols [18].

Magnetic Resonance Imaging (MRI) (e.g., a gadolinium-based contrast agent (Gd-
T1w), T2-w, T2-FLAIR sequences) remains the modality of choice for diagnosis, surgical
guidance, and post-treatment follow-up response assessment in MB tumors. For instance,
treatment response assessment in MB tumors requires tumor delineation to reliably com-
pute measurements in two perpendicular planes (bidirectional or 2D) on clinical MRI
scans, based on consensus recommendations by the response assessment in pediatric
neuro-oncology (RAPNO) working group [19]. Recently, however, the field of radiomics
(high-throughput extraction of large amounts of imaging features) [20] has provided a
mechanism to exploit large qualifiable tumor-specific features on routine MRI scans that
go beyond the sub-optimal bidirectional measurements. These radiomic features have
been evaluated to capture tumor characteristics, including (a) semantic or qualitative fea-
tures (i.e., radiologist-derived assessments of the tumor including speculations, size of
the tumor along several axes) [20], (b) voxel-level texture features including gray-level
features, which capture intra-tumoral heterogeneity measures [21], (c) morphometric (i.e.,
shape-based) features that quantitatively measure tumor boundary changes based on their
3D topology [22], as well as (d) tissue deformation features which capture the impact of
tumor-related mass effect in the tumor microenvironment [21], on clinical MRI scans. These
radiomic approaches have shown great promise in diagnostic, predictive modeling, and
clinical decision-making [21–26] in the context of adult tumors (including brain tumors);
however, they have only recently been explored for pediatric brain tumors.

Similarly, radiogenomics, or imaging genomics, has served as a conduit to create
“virtual biopsy” maps by establishing statistical associations of radiomic features with
genomic and molecular information, including point mutations and signaling pathways
of biological significance. With the increasing relevance of MB molecular subgroups,
including SHH, WNT, Group 3, and Group 4 tumors, in modifying treatment decisions,
there have been recent attempts to identify imaging/radiomic correlates of these molecular
sub-types and their associations with survival in MB tumors [6,9,10]. These radiogenomic
approaches may provide additional insights into a better understanding of tumor etiology
and ultimately develop personalized, biologically relevant, and non-invasive treatment
plans [27].

While there are excellent review papers focused on applications of radiomics and
radiogenomics in adult tumors (including brain tumors) [21–26], these computational
approaches have only recently been investigated for pediatric brain tumors. Thus, in
this review article, we attempt to comprehensively and systematically compile a total of
15 existing articles that have investigated radiomic and radiogenomic approaches solely in
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the context of pediatric MB. Our objectives in this review article are three-fold. The first is to
provide an overview of a typical radiomic and radiogenomic pipeline in the context of MB
tumors. Secondly, we provide a detailed literature review of the radiomic and radiogenomic
approaches that have thus far been explored for pediatric MB. We have grouped these
studies by their endpoint, resulting in three main categories: (1) applications in survival
prognostication [28–32], (2) applications in molecular subgroup classification [32–40] (i.e.,
radiogenomics), and (3) MB tumor segmentation [41,42]. Finally, we address the current
challenges and future directions pertaining to applications of radiomic and radiogenomic
approaches in pediatric MB tumors. Table 1 lists the acronyms used in this review paper.

Table 1. List of acronyms used in this paper.

Acronym Term Acronym Term

ADC Apparent Diffusion Coefficient ICC Intraclass Correlation Coefficient

AUC Area Under the Curve KPS Karnofsky Performance Status

CBV Cerebral Blood Volume LASSO Least Absolute Shrinkage and Selection Operator

CE Contrast-Enhanced LOOCV Leave-One-Out Cross-Validation

CI Concordance Index MB Medulloblastoma

CNN Convolutional Neural Network MRI Magnetic Resonance Imaging

DC Dice Coefficient OS Overall Survival

DSC Dynamic Susceptibility Contrast PFS Progression-Free survival

DWI Diffusion-Weighted Images RF Random Forest

Gd-T1w Gadolinium-enhanced T1-weighted SHH Sonic Hedgehog

GLCM Gray-level co-occurrence matrix SVM Support Vector Machine

HR Hazard Ratio uCBV Uncorrected Cerebral Blood Volume

WNT Wingless

2. Overview of Radiomic and Radiogenomic Pipelines

Figure 1 shows a typical radiomic/radiogenomics workflow. Typically, the workflow
starts with data acquisition from the imaging scanners, followed by pre-processing operations
that attempt to overcome scanner artifacts and data shifts across multi-institutional scans.
In this context, many approaches have been developed for intensity standardization [32]
or artifact removal (including motion artifacts) occurring during image acquisition, a
common problem when acquiring scans from pediatric patients. Pre-processing is then
followed by segmenting the region of interest (i.e., the tumor and its compartments of
interest) from the imaging modalities [41–45]. Following tumor segmentation, radiomic
analysis is performed, which involves extracting the different feature classes (e.g., texture,
shape, size, structural deformations) from the tumor compartments [28–40]. Typically, the
feature extraction stage is followed by some operations for pruning and reduction of the
feature sets to remove redundant, highly correlated features. This can be conducted using
different statistical approaches, such as logistic regression [29,31,32], minimum redundancy,
maximum relevance [33], Pearson’s correlation coefficient [30,39], and principal component
analysis [28]. The set of selected features is then fed into different machine learning and
statistical models that pertain to a specific application. For instance, logistic regression
models are employed for survival prognostication, such as Cox proportional hazard models
and Least Absolute Shrinkage and Selection Operator (LASSO) regression [35,36,38,39].
Similarly, different machine learning classifiers may be employed for identifying and
classifying the different molecular subgroups, such as Support Vector Machine (SVM)-
based classifiers [33–35], Random Forest (RF)-based classifiers [37], etc. Performance
metrics are finally employed to assess the model’s ability to perform the designated task,
as well as its generalizability, to be applied in different clinical applications. There is a
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wide variety of performance metrics that could be included, from Area Under the Curve
(AUC) [33,34,40], to Kaplan–Meier curves [28–32] for survival analysis, hazard ratios, etc.
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Figure 1. Typical radiomic workflow for radiomic and radiogenomic approaches employed for
pediatric medulloblastoma research.

The radiogenomics pipeline builds on the radiomics pipeline by integrating the ex-
tracted radiomic features with the corresponding molecular information of the tumors,
seeking associations across omics and imaging. This paired (imaging-omics) information is
exploited to build comprehensive models that aim at guiding treatment strategies as well
as evaluating patient outcomes. These models are based on understanding disease etiology
and the biological underpinning of the disease.

3. Literature Review

In this section, we provide an overview of the existing literature for the developed
radiomic and radiogenomic approaches in the context of pediatric MB tumors. Our search
keywords for this review included a combination of keywords: “MB”, “radiomics”, “ra-
diogenomics”, “molecular subgroup”, “survival prediction”, and “automated tumor seg-
mentation”. This resulted in a total of 15 articles on PubMed and Google Scholar, which
we have grouped by their endpoint, resulting in three main categories: (1) MB tumor
segmentation [41,42] (2) applications in survival prognostication [28–32], (3) applications
in molecular subgroup classification [32–40] (i.e., radiogenomics). Interestingly, our search
yielded works in the literature that were largely focused on radiogenomics, including
predicting molecular subgroups [32–40] rather than survival and predicting patient out-
comes [28–32]. Below we present these radiomic and radiogenomic approaches as well as
the major findings from these studies.
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3.1. Segmentation of Pediatric MB Tumors

Radiation treatment planning in MB tumors requires careful tumor delineation. Simi-
larly, treatment response assessment in MB requires tumor delineation to reliably compute
measurements in two perpendicular planes (bidirectional or 2D). Automated segmentation
tools could substantially augment treatment planning in pediatric MB. Recently, deep-
learning architectures, including Fully Convolutional Networks and U-Net [41,43,46,47],
have allowed for the development of reliable and fully automated segmentation approaches
for various types of solid tumors, including adult brain tumors [46]. These approaches focus
on building fully convolutional encoder-decoder networks without fully connected layers
to achieve end-to-end tumor segmentation [47]. However, deep learning has only recently
been employed for the automated segmentation of pediatric brain tumors in a handful
of studies [41–45]. The reported dice scores from the non-enhancing tumor, necrosis, and
edema sub-compartments in these studies have been sub-optimal, which underlines the
challenges with segmenting pediatric brain tumors. For instance, Peng et al. [42] developed
a deep-learning network to automatically segment the tumors of high-grade gliomas, MB,
and other leptomeningeal diseases in pediatric patients, on T1w contrast-enhanced and
T2/FLAIR images. Similarly, the work in [41] employed a convolutional neural network
(CNN)-based model to segment the sub-compartments of multiple pediatric brain tumors,
primarily gliomas and included a limited cohort of MB cases (n = 24). The model processed
images at multiple scales simultaneously using a dual pathway. The first pathway kept the
images at their normal resolution, while the second pathway down-sampled them. While
the model was able to differentiate between the enhancing and non-enhancing tumor com-
partments of MB tumors, the reported dice scores were relatively low (0.62 for enhancing
tumor, 0.18 for edema, and 0.26 for non-enhancing tumor). It is generally noted that the
area of pediatric MB tumor segmentation is understudied, and more automated, reliable
approaches are needed on this front toward more effective radiation therapy planning in
pediatric MB.

3.2. Survival Prognostication in Pediatric MB Using Radiomic Approaches

Table 2 summarizes the works conducted in the literature in the context of pediatric
MB risk stratification. We provide a detailed summary of each of those approaches below.

3.2.1. Feature Extraction and Selection

The different approaches found in the literature in the context of MB risk stratification
utilized a wide range of radiomic features on different MRI protocols, including T1w, CE-
T1w, Gadolinium-enhanced T1w (Gd-T1w), T2w, FLAIR images, and perfusion imaging.
For instance, Grist et al. [28] and Yan et al. [29] utilized the Apparent Diffusion Coefficient
(ADC) maps from Dynamic Susceptibility Contrast (DSC) MRI perfusion images to predict
survival in MB. Specifically, Grist et al. utilized the ADC maps along with T2w images and
diffusion-weighted images (DWI) to extract imaging features from 17 MB cases. The feature
set included statistics from the ADC maps (e.g., kurtosis, mean, etc.), mean of corrected
Cerebral Blood Volume (CBV), and mean of uncorrected CBV (uCBV), in addition to the
postoperative tumor volume to stratify patients into low- and high-risk groups. Similarly,
Yan et al. [29] utilized the ADC maps, yet along with multiple MRI protocols, including
T1w, CE-T1w, T2w, and FLAIR, to extract 5929 radiomic features (shape features, first-order
intensity features, and higher-order texture features). Next, Intraclass Correlation Coeffi-
cient (ICC) was used for feature reduction before feeding them into the risk stratification
statistical model.
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Table 2. Summary of previous works utilizing radiomic approaches for MB survival prognostication.

Group Radiomic
Endpoint

Sample
Size

Single or
Multi-

Institution

Mean Age (Years)
Unless

Otherwise
Denoted

Features Modality
Models &

Feature
Selection
Methods

Performance
Met-

rics/Statistical
Analysis

Model Performance Limitations

Grist et al.,
2021 [28]

Survival
prediction 17 Multi 8.85

ADC maps
(kurtosis,

mean, etc.),
mean of

corrected CBV,
mean of

uncorrected
CBV, tumor

volume

T2w, DWI,
DSC

Cox
regression;
Iterative
Bayesian

analysis; KNN;
SVM; RF

Kaplan–Meier
Analysis, HR

Unsupervised clustering:
HR = 5.6, confidence

intervals = 1.6–20.1, p < 0.001
for high-risk patients

Supervised machine learning:
Bayesian features with a

single-layer neural network
& 10-fold cross-validation

provided 98% accuracy

Small cohort
size

Iyer et al.,
2022 [32]

Survival
prediction

88
(n = 60

for
training,
n = 28 for
testing)

Multi 5.4
Deformation
heterogeneity

features

Gd-
enhanced

T1w

Logistic
regression,

Cox models,
LASSO

Kaplan–Meier
Analysis, HR,

CI

Deformation features yielded
p = 2.9× 10−4, CI = 0.7

between low- and high-risk
patients

Deformation features with
Chang′s and molecular

stratificationyielded best results
inrisk− stratifying

patients (p = 0.005 , CI =
0.75)

Small cohort
size

Lack of
uniformity in
the treatment
strategies for

the risk
groups

Liu et al.,
2021 [30]

Survival
prediction

253
(113:

training;
113:hold-
out test

set 1;
27:hold-
out test
set 2)

Multi

7.4 for training set;

8.1 for hold-out
test set 1;

6.8 for hold-out
test set 2

647 features
per modality
(8 size and
shape, 639

texture)

T1w,
CE-T1w

Pearson’s
correlation,

Cox
Regression

with LASSO

Kaplan–Meier
Analysis,
Kruskal–

Wallis
test

Predictive model of PFS
yielded C-indices of 0.71, 0.7,

and 0.72 on
training and hold-out

test sets 1 and 2.

The radiomics nomogram
integrating radiomic features,

age, metastasis performed
better than the nomogram

incorporating
clinicopathological factors

(CI = 0.723 vs. 0.665
and 0.722 vs. 0.677 on the
held-out test sets 1 and 2)

Molecular
information

was not
involved.

Limited size
for hold-out

test set 2



Diagnostics 2023, 13, 2727 7 of 19

Table 2. Cont.

Group Radiomic
Endpoint

Sample
Size

Single or
Multi-

Institution

Mean Age (Years)
Unless

Otherwise
Denoted

Features Modality
Models &

Feature
Selection
Methods

Performance
Met-

rics/Statistical
Analysis

Model Performance Limitations

Yan et al.,
2020 [29]

Survival
prediction

166
(83: train-

ing,83:
testing)

Single Median: 8

5929
features
(shape,

first-order
intensity,

higher-order
texture).

T1w,
CE-T1w,

T2w,
FLAIR,
ADC
maps

ICC, LASSO,
Cox

regression

Kaplan–Meier
Analysis;
Wilcoxon
test/chi-
square

test

Radiomics-clinicomolecular
signature predicted

OS (CI = 0.762),
PFS (CI = 0.697)

better than radiomics
signature (CIs = 0.649,0.593

for
OS, PFS)

or the clinicomolecular
signature

(CIs = 0.725, 0.691 for OS,
PFS)

Limited
sample size

Lack of
volumetric
MRI data

Zheng et al.,
2022 [31]

Survival
prediction

111 (77:
training,

34:
testing)

Single 5.82

1132 features
(first-order
statistics,

volume, shape,
GLCM,

gray-level
run-length

matrix,
gray-level size
zone matrix)

CE-T1w Cox regression
model, LASSO

T-test, Mann–
Whitney U

test, Fisher’s
exact/chi-

square
test

Radiomic features + clinical +
conventional MRI features

yielded
best results for predicting OS

(CI = 0.82), vs. using the
radiomic signature alone
(CI = 0.7) on training set

CIs were 0.78 and 0.75 using
the integrative model and the
radiomic model, on the test

set

Limited
sample size

Data was from
a single

institution.

Molecular
information

was not
available
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Liu et al. [30] and Zheng et al. [31] focused on routine MR imaging in their analysis.
For instance, Liu et al. [30] constructed a radiomic model on multi-institutional data that
comprised 253 MB pediatric patients, with a training cohort and two hold-out test sets.
Specifically, a total of 1294 radiomic features were extracted from T1w images as well as
contrast-enhanced T1w (CE-T1w) images (647 features from each modality) that include
size, shape, and textural features. Feature selection was then conducted using Pearson’s
correlation coefficient. Zheng et al. [31] constructed a radiomic model for risk stratification
on a total of 111 children with pathologically confirmed MB. One thousand one hundred
thirty-two radiomic features were extracted from CE-T1w images that include first-order
statistics, volume, shape, gray-level co-occurrence matrix (GLCM), gray-level run-length
matrix, gray-level size zone matrix, and gray-level dependence matrix. Feature reduction
was then conducted using ICC.

Interestingly, Iyer et al. [32] explored radiomic features outside of the tumor that can
help quantify the mass effect occurring in the healthy “brain around tumor” regions due to
the tumor pushing and displacing the neighboring structures. Specifically, Gadolinium-
enhanced T1-weighted (Gd-T1w) images of 88 MB patients were analyzed, where local
tissue deformation heterogeneity features captured from the “brain around tumor” regions
were extracted. These features were analyzed to identify differences between high-risk pa-
tients with highly heterogenous tumors and low-risk patients that have less heterogeneous
tumors for the purpose of survival prediction.

3.2.2. Statistical Models for Survival Prognostication

Most works for MB survival prediction have utilized logistic regression models and
Cox proportional hazards models to risk-stratify MB patients. For instance, Grist et al. [28]
utilized Cox regression analysis along with iterative Bayesian survival analysis to select the
top features extracted from the ADC maps and the other modalities for survival prognosti-
cation. Additionally, both unsupervised machine learning (using K-means clustering) and
supervised machine learning (using the Bayesian features with an RF classifier, a single-
layer neural network, and an SVM classifier were employed for risk stratification with
10-fold cross-validation. The unsupervised clustering technique yielded an elevated Hazard
Ratio (HR) of 5.6, confidence intervals of 1.6–20.1, and p < 0.001 for the high-risk patients.
Applying supervised machine learning techniques that employed the Bayesian features
combined with a single-layer neural network with 10-fold cross-validation provided an
accuracy of 98% in risk stratification.

Iyer et al. [32] constructed their survival model from the deformation heterogeneity
deformation features, along with Chang’s stratification components for the MB subjects as
well as their molecular subgroup information using multivariate logistic regression models.
The radiomic deformation features yielded significant differences between low- and high-
risk patients (p = 2.9× 10−4, Concordance Index (CI) = 0.7). Interestingly, the deformation
features combined with Chang’s classification and molecular stratification yielded the best
results in risk-stratifying patients into low- and high-risk (p = 0.005, CI = 0.75).

Liu et al. [30] employed Cox regression analysis and LASSO regression on their set
of selected radiomic features to identify the features with the most prognostic value. A
radiomic signature was constructed based on this set of features to predict progression-free
survival (PFS) and overall survival (OS). Kaplan–Meier analysis and the log-rank test re-
vealed that the prognostic model yielded C-indices of 0.71, 0.7, and 0.72 on the training and
the hold-out test sets 1 and 2, respectively. Further, a radiomics nomogram that integrates
the radiomic features, age, and metastasis was constructed and performed better than the
nomogram incorporating only clinicopathological factors (C-index = 0.723 vs. 0.665 and
0.722 vs. 0.677 on the held-out test sets 1 and 2, respectively). Similarly, Yan et al. [29]
employed LASSO regression and Cox proportional hazards regression for the identification
of the top features for survival prediction. Clinicomolecular factors, comprising age, sex
(female or male), Karnofsky Performance Status (KPS), molecular subgroups (WNT, SHH,
Group 3 or Group 4), the extent of resection (complete or incomplete), radiation therapy
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(yes or no), and chemotherapy (yes or no) were also incorporated into the survival pre-
diction models. The Wilcoxon test and chi-square test were used to assess differences in
survival between the risk groups. Kaplan–Meier analysis, along with the log-rank test,
revealed that the radiomics-clinicomolecular signature predicted OS (C-index = 0.762) and
PFS (C-index = 0.697) better than either the radiomics signature (C-index: OS: 0.649; PFS:
0.593) or the clinicomolecular signature (C-index: for OS = 0.725; for PFS = 0.691) alone.

Zheng et al. [31] also employed multivariate Cox regression and LASSO models to
create a radiomic signature for risk stratification and obtain a radiomic score for each
subject by using a linear combination of selected radiomics features and their weighted
coefficients. Additionally, an integrative model combining radiomic features, clinical
features, and conventional MRI features was constructed. The models were then evaluated
using Kaplan–Meier analysis and C-indices. The radiomic features combined with clinical
and conventional MRI features yielded the best results for predicting OS (C-index = 0.82)
compared to using the radiomic signature alone (C-index = 0.7) in the training set. On the
test set, C-indices were 0.78 and 0.75 using the integrative model and the radiomic model,
respectively. This was observed in other works as well [29,30,32], where integrating the
radiomic features with clinical and molecular parameters improves the performance of the
risk stratification models rather than using any of these parameters alone.

3.3. Molecular Subgroup Identification in Pediatric MB Using Radiomic Approaches

Table 3 summarizes the works conducted in the literature in the context of pediatric
MB molecular subgroup classification. It was generally observed that combining radiomic
features with clinical and demographic information generated the best results in terms of
both survival prognostication and molecular subgroup identification.

3.3.1. Feature Extraction and Selection

In the context of identifying the 4 MB molecular subgroups, several models have
utilized textural analysis on the tumor regions to identify differences between the sub-
groups. [33–40] For instance, Chang et al. [33] attempted to find the imaging surrogates
of the 4 MB molecular subgroups using radiomic analysis in a study of 38 MB patients.
Specifically, a total of 253 radiomic features that include tumor intensity, shape and size,
and texture features were extracted from five different imaging sequences (T1w, T2w,
FLAIR, ADC, and CE-T1w). This was followed by applying different feature selection
algorithms, including minimum redundancy, maximum relevance, sequential backward
elimination, and sequential forward selection to obtain the best future combination. Simi-
larly, Iv et al. [34] developed a computational framework to predict the molecular subgroups
of 109 MB patients collected from three different sites, where 590 radiomic features were
extracted from T1w and T2w MR images. Namely, the features included intensity-based his-
tograms, tumor edge-sharpness, Gabor features, and local area integral invariant features.
A non-parametric Wilcoxon rank sum test was used for feature selection. Additionally,
Saju et al. [35] employed texture analysis on the CE-T1w and T2w MR images of 38 MB
patients, where features that included first- and second-order GLCM and shape features
were extracted. Feature reduction was then conducted using LASSO regression.
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Table 3. Summary of previous works utilizing radiomic approaches for identification of MB molecular subgroups.

Group Radiomic
Endpoint Sample Size

Single or
Multi-

Institution

Mean * Age
(Years)

* Unless
Otherwise
Denoted

Features Modality
Models &

Feature
Selection
Methods

Performance
Met-

rics/Statistical
Analysis

Model Performance Limitations

Chang et al.,
2021 [33]

Molecular
classifica-

tion

38 (WNT: 7,
SHH: 12, Group

3: 8,
Group 4: 11)

Multi 7.5

253 features
(intensity, shape

and size,
texture)

T1w, T2w,
FLAIR, CE-
T1w, ADC

minimum
redundancy
maximum
relevance;
sequential
backward

elimination;
SVM

Accuracy,
Sensitivity,
Specificity

The model based on 8
GLCM features has
AUCs of 0.82, 0.72,
and 0.78 for WNT,

Group 3, and Group 4

Limited sample size

Iyer et al., 2022
[32]

Molecular
classifica-

tion

71 (n = 49 for
training- WNT:4,
SHH:15, Group
3:8, Group 4: 22;

n = 22 for
testing- WNT:3,
SHH:6, Group

3:3, Group 4:10)

Multi 5.4
Deformation
heterogeneity

features
Gd-T1w

Multiclass
ANOVA;
multiple

comparison of
means

HR, CI

p-values = 0.028 for
Group 3 vs. SHH and

Group 4, 0.05 for
Group 3 vs. Group 4

Small cohort size

Lack of uniformity in the
treatment strategies for
the different subgroups

Mutation information for
the molecular subgroups

was not available

Chen et al., 2020
[40]

Molecular
classifica-

tion

113 (n = 74 for
validation-
WNT:17,

SHH:18, Group
3:20, Group 4:19;

n = 39 for
testing- WNT:7,
SHH:9, Group

3:11,
Group 4: 12)

Multi 4.4 for infants,
10.5 for children

Feature pyramid
network &

refined feature
layers of

Residual neural
network

(ResNet101)

CE-T1w,
T2w

Mask-RCNN
model: feature

extraction,
region proposal,

prediction.

Kruskal–Wallis
test, AUC,
sensitivity,
specificity

Accuracy of 0.93 in the
cross-validation cohort
and 0.85 in the testing

cohort.

AUCs of molecular
subgrouping were 0.97

and 0.92 in
cross-validation and

independent test
cohorts

Limited sample size

No information about
evidence of spinal

metastasis to predict
dissemination
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Table 3. Cont.

Group Radiomic
Endpoint Sample Size

Single or
Multi-

Institution

Mean * Age
(Years)

* Unless
Otherwise
Denoted

Features Modality
Models &

Feature
Selection
Methods

Performance
Met-

rics/Statistical
Analysis

Model Performance Limitations

Dasgupta et al.,
2019 [39]

Molecular
classifica-

tion

111 (WNT: 17,
SHH: 44, Group

3: 27,
Group 4: 23)

Multi Median = 9
Tumor size, MR

Imaging
characteristics

T1w, T2w,
DWI

Multimodal
logistic

regression,
nomogram

construction

Pearson
chi-square test,
Fisher’s exact
test, Cohen’s

Kappa statistics

Overall molecular
subgroup

accuracy = 74%; 95%
SHH, 78% Group 4,
56% Group 3, 41%

WNT

No reliable prediction of
WNT and Group 3

A uniform MRI protocol
was not used

No correlation between
magnetic resonance

spectroscopy findings &
molecular

subgrouping

IV et al., 2019
[34]

Molecular
classifica-

tion

109 (WNT: 19,
SHH: 30, Group

3: 24,
Group 4: 36)

Multi 8.7 (across three
sites)

590 features
(intensity-based

histograms,
tumor

edge-sharpness,
Gabor, local area

integral
invariant
features)

T1w, T2w
Wilcoxon rank

sum
test,

SVM classifier

AUC,
ROC curves

Double 10-fold
cross-validation for

predicting SHH,
Group 3, Group 4

using combined T1w
and T2w images

yielded AUCs = 0.79,
0.70, and 0.83,
respectively

Heterogeneity in image
data (different scanners,

etc.)

Limited imaging
sequences

Saju et al., 2022
[35]

Molecular
classifica-

tion

38 (WNT:7,
SHH:7, Group

3:12,
Group 4:12)

Single Median = 9

82 features from
each modality;

first and
second-order
GLCM and

shape features

CE-T1w,
T2w LASSO, SVM AUC,

ROC curves

10-fold
cross-validation

yielded AUCs of 0.93,
0.9, 0.93, and 0.93 in

predicting WNT,
SHH, Group 3, and

Group 4

Very limited sample size

Wang et al., 2023
[36]

SHH and
Group 4

prediction

95 (SHH:47,
Group 4:48;

ratio 7:3
training: test)

Multi 6.75 for SHH,
7.5 for Group 4

7045 features
(intensity
statistics,

texture, shape
and size,

high-order
statistics)

T1-, CE- T1-,
T2-

weighted,
FLAIR,
ADC

LASSO

T-test, Fisher’s
exact test,

Delong test,
AUC, ROC

curves

Classification model
with 17 optimal

features yielded AUCs
of 0.96 and 0,75 in
training and test

cohorts

Limited sample size

No external validation

No inclusion of WNT,
Group 3
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Table 3. Cont.

Group Radiomic
Endpoint Sample Size

Single or
Multi-

Institution

Mean * Age
(Years)

* Unless
Otherwise
Denoted

Features Modality
Models &

Feature
Selection
Methods

Performance
Met-

rics/Statistical
Analysis

Model Performance Limitations

Yan et al., 2020
[37]

Molecular
classifica-

tion

122 (92 for
training-
WNT:15,

SHH:16, Group
3:40, Group 4:21;

30 for testing-
WNT:6, SHH:4,

Group 3:14,
Group 4:6)

Single 11.57

5929 features
(location, shape,

intensity,
texture)

T1w,
CE-T1w,

T2w, FLAIR,
ADC

ICC, RF-based
wrapper

algorithm,
logistic

regression

Kruskal–Wallis
test, Wilcoxon

test, ROC, AUC

Incorporating tumor
location, gender, age,
and hydrocephalus

with radiomics
generated AUCs

of 0.91 and 0.86 for
WNT and SHH

Advanced MR
sequences not included

Limited sample size

Nanostring assay was
utilized for molecular
subgrouping, which is
not a calibrated assay

Zhang et al.,
2022 [38]

Molecular
classifica-

tion

263 (WNT: 26,
SHH: 83, Group
3/4: 154; 75:25

for training:
test set)

Multi
10.1 for WNT,

6.9 for SHH, 12.8
for Group 3/4

1800 texture
features

CE-T1w,
T2w

Binary classifier
along with SVM,

logistic
regression,
KNN, RF,
extreme
gradient
boosting,

neural network

Wald test, Dice
Similarity Score

Combined, the
sequential classifier

achieved a DC score of
88% and a binary score

of 95% for WNT.

Group 3 vs. Group 4
classifier achieved an

AUC of 98%

Limited sample size

Heterogeneity of MR
scans (12 sites)

Features extracted from
isolated tumor volumes

No incorporation of
tumor-brain spatial

relationships
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In a similar fashion, Wang et al. [36] attempted to predict SHH and Group 4 subgroups
on 95 MB patients (divided in the ratio of 7:3 for training: test sets) using their T1w, T2w,
CE-T1w, and FLAIR sequences in addition to their ADC maps. Specifically, 7045 radiomic
features that include intensity statistics, texture features that quantify the tumor hetero-
geneity (e.g., gray-level run-length and gray-level co-occurrence), shape and size, and
high-order statistical features (using various filters such as exponential, logarithmic, square,
square root, and wavelet) were extracted from the image sequences. This was followed
by employing feature reduction algorithms to remove the redundant features, such as
variance threshold, SelectKBest, and the LASSO regression model. Yan et al. [37] developed
a radiomic model to predict the molecular subgroups of 122 MB subjects. Five thousand
five hundred twenty-nine radiomic features were extracted from T1w, CE-T1w, T2w, and
FLAIR MR images, in addition to the ADC maps of these patients. Namely, tumor location,
shape features, intensity-based features, and texture features were extracted. The texture
and intensity features were extracted from both the MR images and the transform-domain
images. Feature pruning was then employed using ICC to remove the redundant features.
Finally, Zhang et al. [38] constructed a model to identify the 4 molecular subgroups of
263 MB patients using their CE-T1w and T2w MR images. Specifically, 1800 radiomic
textural features were extracted and then reduced using LASSO regression.

Aside from textural analysis, Iyer et al. [32] conducted a statistical approach to identify
differences between the 4 MB subgroups on the Gd-T1w images of 71 patients. After
extracting radiomic features that quantify the structural deformations occurring in the
“brain around tumor” regions due to mass effect, this was followed by statistical analysis to
classify the four subgroups. Also, Dasgupta et al. [39] conducted a study on 111 MB patients
to predict their molecular subgroups from T1w, T2w, and diffusion imaging. Specifically,
imaging features such as tumor location and size, diffusion characteristics, tumor margin,
and T2w characteristics were extracted. A correlation between those individual features
and the molecular subgroup was then established using statistical methods.

Interestingly, a deep learning approach was previously adopted for the task of MB
molecular stratification. Specifically, Chen et al. [40] developed a multi-tasked CNN-
based approach that utilizes different information, including genotyping and prognosis,
to predict the molecular subgroup of 113 MB patients. Using the tumor mask, this multi-
staged model employed feature extraction from CE-T1w and T2w MR images using a
ResNet model, region proposal, and subgroup prediction. The ResNet model used pyramid
representations to construct feature pyramids, which were then used in the second stage to
obtain region proposals that contain tumor lesions. Finally, each feature map of a region
proposal was transformed into fixed spatial dimensions for the tasks of molecular subgroup
prediction, prognosis, and tumor segmentation in a multi-task learning technique. In a
3-fold cross-validation scheme, the molecular subgroup prediction task, with the assistance
of tumor segmentation and prognosis tasks, achieved AUCs of 0.96, 0.96, 0.99, and 0.96 for
WNT, SHH, Group 3, and Group 4 subgroups, respectively.

3.3.2. Statistical Models for Molecular Subgroup Identification

Most of the approaches utilized in the context of MB molecular subgroup identification
have employed logistic regression along with machine learning classifiers [33–38]. For
instance, Chang et al. [33] implemented an SVM classifier with nested leave-one-out cross-
validation (LOOCV) to find the best model from their extracted set of texture features. Based
on the selected set of features (8 GLCM features), a prediction model was constructed, which
generated (AUC) values of 0.82, 0.72, and 0.78 for WNT, Group 3, and Group 4, respectively.
Similarly, IV et al. [34] employed an SVM classifier for the molecular subgroup prediction
task using a cross-validation strategy. From their set of 590 radiomic features, the tumor
edge-sharpness feature was found to be the most discriminative feature between SHH and
Group 4 molecular subgroups. In this study, it is noted that the scans were acquired from
different scanner vendors with different imaging parameters, which may affect the model’s
performance metrics. In order to account for these variations, the authors have conducted
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extensive validation on their cohorts. Specifically, two predictive models were developed;
one was based on a double 10-fold cross-validation scheme, where the subjects from the
three datasets were combined, whereas the other model employed a three-dataset cross-
validation strategy, where the model was trained using two datasets and tested on the third
independent cohort. The 10-fold cross-validation model applied on the MRI modalities
combined (T1w, T2w) yielded AUCs of 0.79, 0.7, and 0.83 for predicting SHH, Group 3,
and Group 4 subgroups, respectively. Similarly, the 3-dataset cross-validation strategy
resulted in predicting the SHH group with an AUC of 0.7–0.73 as well as Group 4 with an
AUC of 0.76–0.8. In the work by Saju et al. [35], an SVM classifier was also employed in a
10-fold cross-validation strategy for model development. The authors used both One-vs-
One and One-vs-All multiclass classification approaches for evaluation. Multiple models
were sequentially evaluated by the system using a combination of the selected features
to find the best predictive model. The best model was obtained by using a combination
of 30 GLCM and six shape features on CE-T1w MR images. A 10-fold cross-validation
demonstrated AUCs of 0.93, 0.9, 0.93, and 0.93 in predicting WNT, SHH, Group 3, and
Group 4 MB subgroups, respectively.

In the work by Wang et al. [36], based on the feature reduction step employed on the
7045 extracted features, a total of 17 optimal features were used to develop the classification
model, which yielded classification accuracies with AUCs of 0.96 and 0.75 in the training
and the test cohorts, respectively. Interestingly, when combining the radiomic features
with the location of the tumor, the pathological type, and the hydrocephalus status of
the two molecular subgroups, the model performance was improved, achieving AUCs
of 0.965 and 0.849 in the training and the test cohorts, respectively. Yan et al. [37] also
constructed a classification model which was RF-based and yielded 11 optimal features
out of the 5529 extracted to predict the molecular subgroups. This model yielded AUCs
of 0.83, 0.67, 0.6, and 0.7 for WNT, SHH, Group 3, and Group 4, respectively, for the test
cohort of 30 patients. Further, incorporating tumor location and hydrocephalus status into
the radiomic model improved the AUCs for WNT and SHH subgroups to 0.84 and 0.83,
respectively. Finally, adding age and gender information to the model further improved
the AUCs to 0.91 and 0.87 for WNT and SHH subgroups, respectively, and the classification
accuracies for Group 3 and Group 4 were 70% and 86.67%, respectively. Uniquely, Zhang
et al. [38] developed a two-stage model that comprises a binary classifier in each step for
WNT, SHH, and non-WNT and non-SHH classes. The first stage was used to distinguish
WNT and SHH from Group 3/Group 4 subgroups, whereas the second stage was used
to distinguish WNT from SHH. Six different classifiers, namely, SVM, logistic regression,
k-nearest neighbor, RF, extreme gradient boosting, and neural network, were employed in
each stage, and the overall performance was assessed for the combined stages. The final
multiclass classifier was guided by maximizing the Dice Coefficient (DC), calculated as
the weighted average between precision and recall. The combined, sequential classifier
achieved a DC score of 88% and a binary score of 95%, specifically for the WNT subgroup.
Additionally, a Group 3 versus Group 4 classifier achieved an AUC of 98%. One of the no-
table limitations in this work is the heterogeneity across MRI scans that were collected from
12 different sites with various protocols and scanners. The authors attempted to mitigate
this issue by performing z-score normalization to the images prior to feature extraction in
order to improve the robustness of the radiomic model and the classification task.

Other statistical tests were employed in the context of MB molecular subgroup identifi-
cation. For instance, Iyer et al. [32] utilized a multiclass ANOVA test, followed by multiple
comparison of means, to identify significant differences between the four subgroups based
on the deformation heterogeneity features extracted from the neighboring structures to the
tumor. Significant differences were observed between deformation magnitudes obtained
for Group 3, Group 4, and SHH subgroups that occurred up to 60 mm outside the tumor
edge. The skewness of deformation yielded a p-value of 0.028 for Group 3 vs. SHH and
Group 4, and the median of deformation yielded a p-value of 0.05 for Group 3 vs. Group 4.
Similarly, Dasgupta et al. [39] applied some statistical tests such as the Pearson chi-square
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test, Fisher’s exact test, and Cohen’s Kappa statistics to establish a correlation between the
imaging features and molecular subgroups. Additionally, on the training cohort (N = 76),
binary logistic regression was performed using different combinations of the significant
MRI features to distinguish a certain molecular subgroup from the other three, and nomo-
grams were constructed for the individual subgroups. The predictive accuracies for the
subgroups were excellent for SHH (95%), acceptable for Group 4 (78%), but sub-optimal
for Group 3 (56%) and WNT (41%) subgroups.

4. Challenges and Future Directions

From the compiled literature on the radiomic and radiogenomic approaches for MB
pediatric brain tumors, we identified some common challenges and limitations, which we
elaborate upon below.

4.1. Limited Sample Size and Class Imbalances

One reported limitation in most of the papers that we included in this review was
the limited sample size, which can drastically affect the performance of computational
models, including risks of overfitting and lack of independent validation. For instance,
the literature focused on survival prognostication and employed sample sizes ranging
between 17–253 subjects, with a median of 112 subjects. Similarly, for the papers focused on
molecular subgroup stratification, the sample sizes ranged between 38–263, with a median
of 109 subjects. One possible explanation for this limitation is the lack of availability of
large pediatric brain tumor cohorts, as there are far more adults diagnosed with brain
tumors than children (around 350 pediatric MB cases are diagnosed annually in the United
States [48], compared to around 25,000 adults estimated to be diagnosed with brain tumors
in 2023 [49]). One observation from the literature review we conducted is that the cohorts
larger than 100 subjects are curated through multiple institutions, which can be a long-term
direction toward solving the problem of limited data in radiomic analysis for MB studies.
In addition, multiple clinical trials that include >200 MB pediatric subjects [17] may be
made available in the coming years for testing and validating computational approaches.
Further, utilizing the ongoing efforts with current consortiums that facilitate pediatric data
curation, such as the Children’s Brain Tumor Network [50], is one of the solutions to the
problem of limited cohorts.

Another observation in the conducted literature review was the class imbalance with
regard to the molecular subgroup categories. For instance, the curated cohorts in some
studies [29,38] had a very limited sample size of the WNT subgroup compared to the
other subgroups, which may have biased the performance of the radiomic models and
hence decreased their sensitivity. Some of the recommended approaches to overcome
this problem, among several others, are bootstrapping [38], sampling [51], and one-class
learning [51].

4.2. Data-Shift and Model Generalizability across Multi-Institutional Studies

Curating studies retrospectively from multiple institutions is beneficial for evaluating
the robustness and generalizability of the developed computational approaches. From a
clinical standpoint, different scanners with different field strengths and different imaging
acquisition parameters (e.g., manufacturer, field strength, spatial resolution, pulse acquisi-
tion parameters, scanner image filters) are acquired on a regular basis for pediatric tumor
diagnosis. Hence, constructing radiomic models that account for and are robust to the
image variations across sites and scanners will be paramount for demonstrating clinical
utility [34]. Unfortunately, the variations introduced when employing multi-institutional
data affect the reproducibility of radiomic features, in particular, the textural features which
rely on per-voxel intensity measurements. Several works have come up with different
pre-processing strategies to standardize MRI scans [32,35,37,38,52]. Some works also tend
to assess the resilience of the radiomic features extracted from data acquired across different
institutions by training their approaches on subjects curated from one institution and then
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performing external validation on an independent test cohort [34,40]. Others tend to train
and test their models on data combined from different institutions [32,36] by performing
random grouping. This strategy may allow for the incorporation of a range of differently
acquired scans in the training model and hence increase the model’s generalizability. Sev-
eral studies also tend to apply k-fold cross-validation schemes to evaluate the efficacy of
their models on multi-institutional cohorts [34].

4.3. Lack of Uniformity in the Treatment Strategies across the Different MB Risk Groups

Non-uniform treatment protocols for MB patients have been reported in the litera-
ture [32], which may confound risk stratification analysis. Currently, the ongoing clinical
trials for pediatric MB target specific risk groups, thus enrolling patients with uniform
treatment regimens. With public access to clinical trial data, utilizing these cohorts of
uniformly treated patients in radiomic and radiogenomic analysis in the future can afford
opportunities to build more robust models that are not affected by modifications to initial
treatment protocols.

4.4. Unavailability of Molecular Subgroup Information

Some studies have reported the unavailability of molecular subgroup information
in their patients’ cohorts [30,36], which posed some restrictions on their analysis, such
as lacking the ability to extend their algorithms to the identification of all molecular
subgroups [36] or needing to perform an analysis on a subset of the available datasets for
molecular subgroup identification [32].

4.5. Linking the Extracted Radiomic Features to the Underlying Disease Pathobiology

A future direction that still needs some effort while utilizing radiomics and radio-
genomics in pediatric MB is to link the findings of these works with the biological un-
derpinning of the disease and help understand the disease etiology. Some of the existing
works have attempted to build nomograms and signatures to predict patient outcomes
and risk-stratify patients [30,32,39]. However, there is still a need for additional studies
in this area to obtain biological validation of the findings and thus have better clinical
decision-making and improved outcomes for the pediatric cancer community.

5. Conclusions

The works reviewed in this paper demonstrate the promise of applying radiomics
and radiogenomics for advancements in diagnosis, prognostication, and improving patient
outcomes in pediatric medulloblastoma. However, there are still challenges in this area,
prominently a lack of publicly available studies for computational analysis. However,
with the recently launched clinical trials and with data sharing efforts across different
institutions as well as data consortiums, this challenge might be mitigated in the coming
years, ultimately allowing for building reliable and reproducible machine learning models
trained on large multi-institutional cohorts.
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