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Abstract: The goal of this study was to create a novel machine learning (ML) model that can predict
the magnitude and direction of pubertal mandibular growth in males with Class II malocclusion.
Lateral cephalometric radiographs of 123 males at three time points (T1: 12; T2: 14; T3: 16 years
old) were collected from an online database of longitudinal growth studies. Each radiograph was
traced, and seven different ML models were trained using 38 data points obtained from 92 subjects.
Thirty-one subjects were used as the test group to predict the post-pubertal mandibular length and
y-axis, using input data from T1 and T2 combined (2 year prediction), and T1 alone (4 year prediction).
Mean absolute errors (MAEs) were used to evaluate the accuracy of each model. For all ML methods
tested using the 2 year prediction, the MAEs for post-pubertal mandibular length ranged from
2.11–6.07 mm to 0.85–2.74◦ for the y-axis. For all ML methods tested with 4 year prediction, the MAEs
for post-pubertal mandibular length ranged from 2.32–5.28 mm to 1.25–1.72◦ for the y-axis. Besides
its initial length, the most predictive factors for mandibular length were found to be chronological
age, upper and lower face heights, upper and lower incisor positions, and inclinations. For the y-axis,
the most predictive factors were found to be y-axis at earlier time points, SN-MP, SN-Pog, SNB, and
SNA. Although the potential of ML techniques to accurately forecast future mandibular growth in
Class II cases is promising, a requirement for more substantial sample sizes exists to further enhance
the precision of these predictions.

Keywords: artificial intelligence; machine learning; mandibular growth; growth prediction

1. Introduction

The post-natal growth of the human mandible holds great significance within the field
of orthodontics, as it boasts the highest growth potential among craniofacial structures [1].
The majority of mandibular growth takes place during adolescence, which coincides with
the common treatment period for orthodontic patients [2]. Normal mandibular growth is
typically observed in Class I patients, where the development of the mandible proceeds
without significant deviations or abnormalities. Unanticipated mandibular growth can
notably influence outcomes, particularly in Class III patients where excessive growth poses
challenges. Conversely, in Class II cases, there is often a prominent deficiency in mandibular
growth, characterized by insufficient horizontal and/or vertical development [3,4]. This
deficiency limits the potential for self-correction without the intervention of orthodontic
treatment [5]. To address these challenges, growth modification therapies have been
utilized for decades to enhance mandibular growth while concurrently restricting maxillary
growth [6]. If orthodontists had the ability to accurately predict mandibular growth, this
would hold immense value as it would enable clinicians to anticipate and plan orthodontic
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treatment effectively, allowing for timely interventions to guide and optimize mandibular
development, resulting in improved treatment outcomes and long-term stability.

In the 1960s, Bjork sought to understand normal growth variation by placing metallic
implants in the jaws of developing children [7–9]. His approach aimed to unravel the
mysteries of mandibular growth, enabling the prediction of both the magnitude and
direction of growth with greater precision. In his research, Bjork deduced that the mandible
exhibits a predominant downward and forward growth pattern, with the condyle serving
as the primary site of substantial growth [9]. Skieller et al. made a significant contribution
to mandibular growth prediction using longitudinal studies and cephalometric analysis.
Their research focused on establishing growth patterns predictions based on intermolar
angle, the shape of the lower border of the mandible, the inclination of the symphysis, and
mandibular inclination [10]. Though their methods were thought to have high accuracy,
subsequent clinical evaluation exhibited notable inaccuracy and limitations [11]. Thereafter,
Ricketts and his colleagues [12,13] proposed an arcial prediction method, which exhibited
promising clinical utility when subjected to preliminary testing with a limited sample size,
subsequently earning recognition as a prediction method currently integrated into the
Dolphin Imaging 11.0 Software. Ultimately, predictions derived from anatomical structures
have demonstrated inconsistent accuracy.

In the pursuit of more accurate predictions, several mathematical models have been
developed. Rudolph et al. incorporated the Bayes theorem and Gaussian distribution to
develop a statistical model that predicted mandibular growth based on observed variables
and their probabilistic relationships [14]. Their approach leveraged both prior knowledge
and the data at hand to estimate and predict mandibular growth. However, this method
demonstrated a prediction accuracy of only 82%. Buschang et al. developed a mathematical
model that involved comparing the average yearly growth velocities with a population-
based growth curve [15]. Their findings demonstrated a prediction accuracy of 76%; the
researchers acknowledged the presence of bias due to anticipated growth variations that
could not be fully accounted for by the prediction methods employed. In 2021, Jiménez-
Silva et al. conducted a systematic review investigating Class II mandibular growth and
reached a significant conclusion, highlighting the overall low-to-moderate methodological
quality of existing predictors and underscoring the pressing need for reliable prediction
methods [16]. Numerous studies were found to possess an elevated risk of bias and em-
ployed broad sample selections, further emphasizing the need for rigorous investigation.
As a result, this systematic review advocates for the implementation of a meticulously
designed longitudinal cohort study based on lateral cephalometric radiographs, which ad-
here to stringent quality standards, to address this research gap and provide more accurate
predictions. Despite concerted efforts, it remains challenging for human-made models to
comprehensively account for the intricate and multifaceted variations in human beings.

Walker was one of the first in the field of orthodontics to postulate and conduct
mandibular predictions using computer software [17]. Since then, technology has ad-
vanced so significantly that artificial intelligence (AI) and machine learning (ML) have been
utilized in almost every aspect of our life. AI is the development of computer systems
capable of performing tasks that normally require human intelligence [18]. Within AI, ML
utilizes a set of inputs and outputs to create an algorithm to process the data and correctly
predict the output [19]. AI and ML have been utilized for several tasks in orthodontics, such
as for automated cephalometric analyses [20–24], predicting extraction vs. non-extraction
treatment decisions [25–33], predicting orthodontic extraction patterns [34], determining
the need for surgery in Class III patients [35], and growth assessment [36–44]. However,
little research has been conducted on the use of AI to predict mandibular growth. Niño-
Sandoval et al. utilized automated learning techniques to predict mandibular morphology
in Class I, II, and III patients [45]. This study used the coordinates of craniofacial landmarks
as variables for Artificial Neural Networks and Support Vector Regression (SVR) to predict
morphological outcomes. This research yielded exceptional predictability, showcasing
the remarkable ability of AI to accurately forecast jaw morphology. The same group of
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researchers used AI to classify skeletal patterns through craniomaxillary variables selected
from the mandible for forensic use [46]. This resulted in 74% accuracy in correctly pre-
dicting the skeletal patterns. In an unpublished master thesis, Jiwa et al. employed deep
learning techniques to construct an algorithm for mandibular growth prediction [47]. Their
approach involved utilizing predictions based on the X and Y coordinates of 17 mandibular
landmarks on selected cephalograms and comparing them with Rickett’s growth predic-
tion. However, this proved to be generally inaccurate, highlighting the necessity for larger
and more targeted sample populations to enhance the predictive capabilities. Recently,
Wood et al. utilized 39 linear and angular measurements from lateral cephalograms to
predict mandibular growth in untreated Class I male patients [48]. This study employed
seven distinct ML algorithms to analyze the measurements, predict the magnitude and
direction of the mandible, and subsequently compare the results to the final cephalogram
of each patient. They were able to predict mandibular growth within 3 mm and y-axis
within 1◦.

To the best of our knowledge, there has been no previous research investigating the
application of ML for accurately predicting both the magnitude and direction of mandibular
growth in adolescent males presenting with a Class II malocclusion during the circum-
pubertal period. As mentioned earlier, existing predictions of mandibular growth have
often lacked the desired precision and accuracy. Achieving a breakthrough in the field of
orthodontics through such predictions would mark a significant advancement. By gaining
the capability to forecast mandibular growth in Class II patients, we could determine the
optimal timing to initiate treatment, assess the need for any growth modification, and
provide patients with the most effective and exceptional treatment plans possible, which is
of paramount importance. The goal of this investigation is to develop an ML algorithm that
can reliably and accurately forecast the magnitude and direction of mandibular growth
within this specific patient subgroup.

2. Materials and Methods
2.1. Ethics

This retrospective study was approved as a non-human subjects research (NHSR) by
the Institutional Review Board (IRB) of Indiana University Human Research Protection
Program (HRPP) (Protocol #14987).

2.2. Study Sample

The sample of this study consisted of digital cephalometric radiographs from subjects
in the American Association of Orthodontists Foundation (AAOF) Craniofacial Legacy
Collection, which includes data from the Bolton Brush Growth, Burlington Growth, Den-
ver Growth, Fels Longitudinal, Forsyth Twin, Iowa Growth, Matthews Growth, Michi-
gan Growth, and Oregon Growth studies [49]. The inclusion criteria consisted of males
with Class II malocclusion or an ANB > 3.5 with pre-pubertal (T1) (mean age ± SD:
12.0 ± 0.29 years), pubertal (T2) (mean age ± SD: 14.1 ± 0.27 years), and post-pubertal (T3)
(mean age ± SD: 15.9 ± 0.48 years) cephalograms. Subjects with craniofacial anomalies,
apparent skeletal asymmetries, missing teeth (excluding third molars), missing cephalo-
metric records, or lateral cephalograms lacking necessary structures were excluded from
this study. A total of 123 cases met the inclusion criteria and were selected for this study.

2.3. Sample Size Justification

The study used 92 of the cases for training and the remaining 31 for the testing set.
With this sample size, the 95% confidence interval for the intra-class correlation coefficients
(ICCs) had a width of 0.28, extending from 0.62 to 0.90, if the ICC was 0.80; higher ICCs
had shorter confidence interval widths.
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2.4. Data Collection

Images obtained from the AAOF collection were then imported into Dolphin Imaging
V. 11.95 (Dolphin Imaging and Management Solutions, Chatsworth, CA, USA) for further
analyses. A solitary investigator (G.Z.) identified and annotated 25 hard tissue landmarks
on each image (Figure 1). This process enabled the calculation of 38 linear and angular mea-
surements, which were subsequently utilized as hyperparameters for the model (Table S1).
Several cephalograms did not show adequate soft tissue; therefore, soft tissue landmarks
and associated cephalometric measurements were not included in the study.
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Figure 1. Cephalometric landmarks used in this study: 1. Sella (S), 2. nasion (N), 3. orbitale (Or),
4. porion (Po), 5. condylion (Co), 6. articulare (Ar), 7. basion (Ba), 8. gonion (Go), 9. menton
(Me), 10. gnathion (Gn), 11. pogonion (Pog), 12. B point (B), 13. lower incisor root apex (L1a),
14. lower incisor incisal edge (L1i), 15. mesial of lower first molar (L6m), 16. mesiobuccal cusp of
lower first molar (L6mb), 17. distal of lower first molar (L6d), 18. distal of upper first molar (U6d),
19. mesiobuccal cusp of upper first molar (U6mb), 20. mesial of upper first molar (U6m), 21. upper
incisor incisal edge (U1i), 22. upper incisor root apex (U1a), 23. A point (A), 24. anterior nasal spine
(ANS), and 25. posterior nasal spine (PNS).

The AAOF provided dots-per-inch (DPI) calibration for measurements; however, when
magnification discrepancies were detected, images were printed at a 1:1 scale, and ruler
length was verified for accuracy, whereafter the digital ruler was employed to recalibrate
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measurements. Demographic and cephalometric data were then compiled and stored
in a secure cloud service (OneDrive, Microsoft Co., Redmond, WA, USA). For the intra-
examiner repeatability assessment, a research randomizer was utilized to randomly choose
20 images for retracing. ICCs were utilized to evaluate the measurements’ repeatability.

2.5. Algorithm Training and Testing

The dataset was randomly separated into 75% training data for training the model and
25% testing data for testing the model. The training set’s purpose was to impart knowledge
to the ML models so that they could accurately forecast the post-pubertal mandibular
length and y-axis. To this end, input data obtained from both T1 and T2 were used for a
2 year prediction, whereas input data from only T1 were utilized for a 4 year prediction
(Figure 2).
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Six fundamental traditional regression techniques, XGBoost, Random Forest, Lasso,
Ridge, Linear Regression, and Support Vector Regression (SVR), along with a Multilayer
Perceptron (MLP) regressor were used to ensure the robustness of our investigation. To
investigate possible linear associations, we employed Linear Regression utilizing the least
squares method, along with L1 (Lasso) and L2 (Ridge) regularizers. The Linear Regression
technique, which is a venerable statistical tool, facilitates approximations for problems
in which the number of equations exceeds the number of unknowns. This approach is
particularly adept at unearthing linear relationships that might underlie the data. For
data that deviated from the linear trajectory, we utilized non-linear methodologies such
as kernel-based SVR, tree-based algorithms such as XGBoost and Random Forest, and
the MLP regressor. Random Forest, an ensemble of decision trees, was employed to
mitigate the disparity between predicted and actual dependent variables, as well as to
minimize overfitting, especially given the limitations of our constrained training dataset.
All experiments were conducted in Spyder 4.1.5, utilizing the programming language
Python 3.7.9 (Python Software Foundation, Fredricksburgh, VA, USA). To carry out the
experiments, the following packages were used: sklearn version 1.0.2 (NumFOCUS, Austin,
TX, USA) for least squares, Ridge, Lasso, and Random Forest; XGBoost version 1.5.0
(DMLC, Seattle, WA, USA) for XGBoost; and Keras version 2.4.0 (Keras, Mountain View,
CA, USA) in the TensorFlow version 2.4.3 (Keras, Mountain View, CA, USA) platform for
the neural network.

2.6. Statistical Analysis

The mean absolute error (MAE), root mean square error (RMSE), mean error (ME),
ICCs, and Bland–Altman plots were calculated for each technique to evaluate the agreement
between the predicted and actual outcome measurements. The accuracy percentage of
the methods was calculated using the formula (1 − (MAE/Actual Value) × 100). The
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directional and absolute differences between the predicted and actual measurements were
calculated and compared between models using analysis of variance (ANOVA), with
random effects to correlate data from the same patient. Paired t-tests were used to test for
a significant mean directional difference between predicted and actual measurements. A
two-sided 5% significance level was used for all the tests. All analyses were performed
using SAS version 9.4 (SAS Institute, Inc., Cary, NC, USA).

3. Results
3.1. Reliability Analysis

The results of the reliability analysis are presented in Table S2. Most variables exhibited
excellent repeatability (ICCs > 0.90), with the remainder having good repeatability (0.75 <
ICC < 0.90) [50]. The only measurement that revealed poor repeatability (ICC < 0.50) was
L1-MP.

3.2. Descriptive Statistics

Table S3 presents the descriptive statistics for the cephalometric variables at T1, T2, and
T3, encompassing measures such as mean, standard deviation, minimum, and maximum.
A significant increase in mandibular length was observed between T1 and T2, with an
average growth of 15.11 mm. Furthermore, between T2 and T3, the mandible exhibited
continued growth, with an additional 5.78 mm. In total, there was a cumulative increase of
20.89 mm in mandibular length between T1 and T3.

In comparison to mandibular length, the y-axis demonstrated relatively minimal
changes throughout puberty. Between T1 and T2, there was an average decrease of 0.14◦ in
the y-axis. Furthermore, an additional decline of 0.34◦ was observed between T2 and T3,
resulting in a cumulative decrease of 0.48◦ in the y-axis over the entire observation period
(T1–T3).

3.3. Prediction of the Post-Pubertal Mandibular Length

The results for the 2 year and 4 year predictions of post-pubertal mandibular length
are shown in Table 1 and Figure 3. For the 2 year prediction, MAEs ranged from 2.11 mm to
6.07 mm, with Lasso being the most accurate and Linear Regression being the least accurate.
Accuracy percentages ranged from 95.26% to 98.35% between the models employed. The
Lasso, Ridge, and MLP models demonstrated an excellent correlation between predicted
and actual values (0.90 < ICCs), while XGBoost, Random Forest, and SVR showed good
correlations (0.75 < ICCs < 0.90). Linear Regression was the only model with a moderate
correlation between the predicted and actual values (ICC: 0.58). Similarly, the 4 year
prediction MAEs ranged from 2.32 mm to 5.28 mm, with Lasso being the most accurate
and Linear Regression being the least accurate. All methods demonstrated a moderate to
good correlation between the predicted and actual values (0.67< ICCs < 0.84). The accuracy
percentages ranged from 95.88% to 98.19%.

Table 1. Results of the 2 year and 4 year prediction of post-pubertal mandibular length.

2 Year Prediction 4 Year Prediction

Models MAE RMSE ME ICC Accuracy
% MAE RMSE ME ICC Accuracy

%

XGBoost 2.80 3.29 −0.42 0.88 97.81 3.20 3.97 0.02 0.81 97.50
Random Forest 2.83 3.58 −0.56 0.83 97.79 3.55 4.39 0.34 0.71 97.23

Lasso 2.11 2.68 −0.54 0.91 98.35 2.32 3.13 −0.12 0.87 98.19
Ridge 2.29 2.71 0.10 0.91 98.21 2.62 3.37 −0.01 0.87 97.95
Linear

Regression 6.07 7.65 2.32 0.58 95.26 5.28 6.33 0.84 0.67 95.88

SVR 3.55 4.14 −0.29 0.78 97.23 3.41 4.01 −0.70 0.74 97.33
MLP 2.65 3.08 −0.46 0.90 97.93 3.09 3.90 −1.74 0.84 97.59

MAE: Mean absolute error, RMSE: root mean square error, ME: mean error, and ICC: intra-class coefficient.
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Mandibular length, age, PFH:AFH, and SNA at earlier time points were among the
top predictive factors for the 2 year and 4 year predictions of post-pubertal mandibular
length using Lasso (Figure 4). On the other hand, the Ridge model picked up U1 to APog
distance, mandibular length, upper and lower face heights, L1-MP, and mandibular plane
to occlusal plane angles as the most predictive factors of post-pubertal mandibular length.
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3.4. Prediction of the Post-Pubertal y-Axis

The results of the 2 year and 4 year predictions of the post-pubertal y-axis are shown
in Table 2 and Figure 5. For the 2 year prediction, MAEs ranged from 0.85◦ to 2.74◦, with
Lasso being the most accurate and Linear Regression being the least accurate. Random
Forest and Lasso demonstrated an excellent correlation between the predicted and actual
values (0.90 < ICCs), whereas XGBoost, Ridge, SVR, and MLP showed good correlations
(0.75 < ICCs < 0.90). Linear Regression was the only model with a moderate correlation
between the predicted and actual values (ICC: 0.63). The accuracy percentages ranged from
96.02% to 98.76% between the models employed. For the 4 year prediction, MAEs ranged
from 1.25◦ to 1.72◦, with Lasso being the most accurate and Random Forest and SVR being
the least accurate. All methods demonstrated a good correlation between the predicted and
actual values (0.76< ICCs <0.86). The accuracy percentages ranged from 97.50% to 98.18%.

Table 2. Results of the 2 year and 4 year prediction of the post-pubertal y-axis.

2 Year Prediction 4 Year Prediction

Models MAE RMSE ME ICC Accuracy
% MAE RMSE ME ICC Accuracy

%

XGBoost 1.20 1.55 −0.87 0.89 98.26 1.52 1.93 −0.62 0.82 97.79
Random Forest 1.17 1.45 −0.66 0.90 98.30 1.72 2.10 −0.79 0.77 97.50

Lasso 0.85 1.08 −0.37 0.95 98.76 1.25 1.72 −0.42 0.86 98.18
Ridge 1.41 1.74 −0.64 0.86 97.95 1.68 2.18 −0.68 0.77 97.56
Linear

Regression 2.74 3.78 0.32 0.63 96.02 1.66 2.24 −0.62 0.81 97.59

SVR 1.31 1.75 −0.39 0.86 98.10 1.72 2.25 −0.45 0.76 97.50
MLP 1.30 1.62 0.00 0.89 98.11 1.49 1.91 −0.38 0.83 97.83

MAE: Mean absolute error, RMSE: root mean square error, ME: mean error, and ICCL intra-class correlation
coefficient.
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and actual y-axis.
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y-axis, SN-MP, and SNA angles at earlier time points were among the top predictive
factors for the 2 year and 4 year predictions of the post-pubertal y-axis using Lasso (Figure 6).
In addition to these features, the Ridge model picked up SN-Pog, SNB, and SN-Occlusal
Plane angles as the most predictive factors of the post-pubertal y-axis.
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3.5. Method Comparison

The directional and absolute difference comparisons between the ML methods for the
2 year prediction of post-pubertal mandibular length are shown in Table 3. Linear Regres-
sion showed significantly larger absolute differences from the actual values compared to
all the other methods (p < 0.05). Additionally, SVR exhibited significantly larger absolute
differences from the actual values compared to Lasso and Ridge (p < 0.05). In the case
of the 4 year prediction for male mandibular growth, Linear Regression demonstrated
significantly larger absolute differences from the actual values compared to all the other
methods, whereas Random Forest and SVR showed significantly larger absolute differences
compared to Lasso (p < 0.05) (Table 4).

In terms of the y-axis prediction for the 2 year prediction, Lasso exhibited significantly
smaller absolute differences from the actual values compared to Linear Regression, Random
Forest, Ridge, and SVR (p < 0.05) (Table 5). Conversely, for the 4 year projection, Linear
Regression had significantly larger absolute differences from the actual values compared to
all the other methods (p < 0.05) (Table 6).

When comparing the prediction methods for both the 2 year and 4 year predictions of
mandibular length, no significant differences were found in terms of absolute differences
or directional differences for any of the methods (p > 0.05) (Table 7). However, when
considering the y-axis, the absolute differences between the predicted and actual values
were significantly larger when using the 2 year prediction compared to the 4 year prediction
for Linear Regression (p < 0.001) (Table 8). Additionally, the directional differences between
the predicted and actual values in the y-axis were significantly smaller when using the 2 year
prediction compared to the 4 year prediction for Linear Regression (p < 0.05). Specifically,
the predicted values were on average higher than the actual values for the 4 year prediction,
but slightly lower on average than the actual values for the 2 year prediction. Moreover,
the y-axis absolute differences between the predicted and actual values were significantly
larger when using the 4 year prediction data compared to the 2 year prediction data for
Random Forest (p < 0.05) (Table 8).
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Table 3. Directional and absolute difference comparisons between ML models for the 2 year prediction
of post-pubertal mandibular length.

Directional Difference Absolute Difference

Result p-Value Result p-Value

Lasso > Linear Regression <0.001 Lasso < Linear Regression <0.001
Lasso and MLP 0.922 Lasso and MLP 0.336

Lasso and Random Forest 0.971 Lasso and Random Forest 0.196
Lasso and Ridge 0.407 Lasso and Ridge 0.752
Lasso and SVR 0.745 Lasso < SVR 0.010

Lasso and XGBoost 0.882 Lasso and XGBoost 0.213
Linear Regression < MLP <0.001 Linear Regression > MLP <0.001

Linear Regression < Random Forest <0.001 Linear Regression > Random Forest <0.001
Linear Regression < Ridge 0.004 Linear Regression > Ridge <0.001
Linear Regression < SVR 0.001 Linear Regression > SVR <0.001

Linear Regression < XGBoost <0.001 Linear Regression > XGBoost <0.001
MLP and Random Forest 0.893 MLP and Random Forest 0.739

MLP and Ridge 0.464 MLP and Ridge 0.517
MLP and SVR 0.820 MLP and SVR 0.105

MLP and XGBoost 0.959 MLP and XGBoost 0.777
Random Forest and Ridge 0.386 Random Forest and Ridge 0.327
Random Forest and SVR 0.717 Random Forest and SVR 0.197

Random Forest and XGBoost 0.853 Random Forest and XGBoost 0.961
Ridge and SVR 0.614 Ridge < SVR 0.024

Ridge and XGBoost 0.496 Ridge and XGBoost 0.352
SVR and XGBoost 0.860 SVR and XGBoost 0.181

Table 4. Directional and absolute difference comparisons between ML models for the 4 year prediction
of post-pubertal mandibular length.

Directional Difference Absolute Difference

Result p-Value Result p-Value

Lasso and Linear Regression 0.171 Lasso < Linear Regression <0.001
Lasso < MLP 0.021 Lasso and MLP 0.115

Lasso and Random Forest 0.508 Lasso < Random Forest 0.013
Lasso and Ridge 0.876 Lasso and Ridge 0.536
Lasso and SVR 0.405 Lasso < SVR 0.027

Lasso and XGBoost 0.846 Lasso and XGBoost 0.075
Linear Regression < MLP <0.001 Linear Regression > MLP <0.001

Linear Regression and Random Forest 0.478 Linear Regression > Random Forest 0.001
Linear Regression and Ridge 0.225 Linear Regression > Ridge <0.001

Linear Regression < SVR 0.028 Linear Regression > SVR <0.001
Linear Regression and XGBoost 0.239 Linear Regression > XGBoost <0.001

MLP > Random Forest 0.003 MLP and Random Forest 0.357
MLP > Ridge 0.014 MLP and Ridge 0.337
MLP and SVR 0.137 MLP and SVR 0.518

MLP > XGBoost 0.013 MLP and XGBoost 0.834
Random Forest and Ridge 0.613 Random Forest and Ridge 0.061
Random Forest and SVR 0.136 Random Forest and SVR 0.783

Random Forest and XGBoost 0.639 Random Forest and XGBoost 0.476
Ridge and SVR 0.323 Ridge and SVR 0.109

Ridge and XGBoost 0.970 Ridge and XGBoost 0.243
SVR and XGBoost 0.305 SVR and XGBoost 0.662
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Table 5. Directional and absolute difference comparisons between ML methods for the 2 year
prediction of the y-axis.

Directional Difference Absolute Difference

Result p-Value Result p-Value

Lasso and Linear Regression 0.096 Lasso < Linear Regression <0.001
Lasso and MLP 0.374 Lasso and MLP 0.121

Lasso and Random Forest 0.483 Lasso and Random Forest 0.270
Lasso and Ridge 0.514 Lasso and Ridge 0.052
Lasso and SVR 0.968 Lasso and SVR 0.109

Lasso and XGBoost 0.229 Lasso and XGBoost 0.228
Linear Regression and MLP 0.434 Linear Regression > MLP <0.001

Linear Regression < Random Forest 0.018 Linear Regression > Random Forest <0.001
Linear Regression < Ridge 0.021 Linear Regression > Ridge <0.001
Linear Regression and SVR 0.088 Linear Regression > SVR <0.001

Linear Regression < XGBoost 0.004 Linear Regression > XGBoost <0.001
MLP and Random Forest 0.113 MLP and Random Forest 0.651

MLP and Ridge 0.124 MLP and Ridge 0.692
MLP and SVR 0.353 MLP and SVR 0.960

MLP < XGBoost 0.037 MLP and XGBoost 0.727
Random Forest and Ridge 0.961 Random Forest and Ridge 0.396
Random Forest and SVR 0.508 Random Forest and SVR 0.615

Random Forest and XGBoost 0.614 Random Forest and XGBoost 0.917
Ridge and SVR 0.540 Ridge and SVR 0.729

Ridge and XGBoost 0.580 Ridge and XGBoost 0.456
SVR and XGBoost 0.244 SVR and XGBoost 0.690

Table 6. Directional and absolute difference comparisons between the ML models for the 4 year
prediction of the y-axis.

Directional Difference Absolute Difference

Result p-Value Result p-Value

Lasso and Linear Regression 0.337 Lasso < Linear Regression 0.013
Lasso and MLP 0.823 Lasso and MLP 0.133

Lasso and Random Forest 0.070 Lasso < Random Forest 0.004
Lasso and Ridge 0.203 Lasso < Ridge 0.008
Lasso and SVR 0.891 Lasso < SVR 0.004

Lasso and XGBoost 0.339 Lasso and XGBoost 0.093
Linear Regression and MLP 0.237 Linear Regression and MLP 0.314

Linear Regression and Random Forest 0.390 Linear Regression and Random Forest 0.705
Linear Regression and Ridge 0.753 Linear Regression and Ridge 0.880
Linear Regression and SVR 0.411 Linear Regression and SVR 0.721

Linear Regression and XGBoost 0.997 Linear Regression and XGBoost 0.407
MLP < Random Forest 0.042 MLP and Random Forest 0.167

MLP and Ridge 0.135 MLP and Ridge 0.247
MLP and SVR 0.718 MLP and SVR 0.173

MLP and XGBoost 0.239 MLP and XGBoost 0.858
Random Forest and Ridge 0.585 Random Forest and Ridge 0.820
Random Forest and SVR 0.093 Random Forest and SVR 0.983

Random Forest and XGBoost 0.387 Random Forest and XGBoost 0.228
Ridge and SVR 0.256 Ridge and SVR 0.837

Ridge and XGBoost 0.750 Ridge and XGBoost 0.327
SVR and XGBoost 0.413 SVR and XGBoost 0.236
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Table 7. Comparisons of the directional and absolute differences between the 2 year and 4 year
predictions of post-pubertal mandibular length.

Directional Difference Absolute Difference

Method Result p-Value Result p-Value

XGBoost 2-year and 4-year 0.577 2-year and 4-year 0.495
Random Forest 2-year and 4-year 0.250 2-year and 4-year 0.213

Lasso 2-year and 4-year 0.595 2-year and 4-year 0.724
Ridge 2-year and 4-year 0.889 2-year and 4-year 0.563

Linear Regression 2-year and 4-year 0.062 2-year and 4-year 0.169
SVR 2-year and 4-year 0.603 2-year and 4-year 0.811
MLP 2-year and 4-year 0.107 2-year and 4-year 0.437

Table 8. Comparisons of the directional and absolute differences between the 2 year and 4 year
predictions of the post-pubertal y-axis.

Directional Difference Absolute Difference

Method Result p-Value Result p-Value

XGBoost 2-year and 4-year 0.500 2-year and 4-year 0.214
Random Forest 2-year and 4-year 0.724 2-year < 4-year 0.036

Lasso 2-year and 4-year 0.886 2-year and 4-year 0.126
Ridge 2-year and 4-year 0.912 2-year and 4-year 0.305

Linear Regression 2-year < 4-year 0.012 2-year > 4-year <0.001
SVR 2-year and 4-year 0.863 2-year and 4-year 0.125
MLP 2-year and 4-year 0.314 2-year and 4-year 0.455

4. Discussion

There is a significant degree of variability in both the magnitude and direction of
pubertal mandibular growth across different genders, races, and even among individuals
of the same age and gender [51]. To thoroughly investigate the complex growth patterns
of the mandible, we employed a targeted approach by selecting specific samples based
on malocclusion, gender, and age. This study specifically focused on analyzing records
exclusively from Class II males in the circumpubertal stage. By utilizing data from individ-
uals aged 11 to 16 years, we were able to examine the peak growth and maturation stages
that most males experience, capturing a more stable estimate of the final position of the
mandible as growth approaches its plateau. Our intention was to create a novel ML model
that can predict the magnitude and direction of pubertal mandibular growth in males with
Class II malocclusion.

This study is a vital contribution to an extensive series of investigations utilizing ad-
vanced ML techniques to forecast the intricate process of mandibular growth. Baumrind et al.
conducted a study in which orthodontists attempted to forecast the mandibular growth
of Class II patients, ultimately leading to the conclusion that human predictions fare no
better than chance [52]. Conversely, our study achieved an elevated level of precision by
accurately predicting the post-pubertal mandibular length within a margin of 2.5 mm. In a
similar vein, Wood et al. successfully predicted the mandibular length among Class I males
with an accuracy within 3 mm [48]. ML exhibited an exceptional capability for accurately
predicting the y-axis within a narrow range of 1 degree. Notably, Wood et al. also predicted
the y-axis in a range of 1 degree [48].

Different predictors were prominent in each ML model. In terms of mandibular length,
significant predictors that were identified include chronological age, upper and lower face
heights, and upper incisor position. The strong predictive power of chronological age is
inherently logical, given that the patients were situated within the circumpubertal age,
a period characterized by accelerated growth and development. It is noteworthy that
the algorithm likely detected the average peak height velocity, which typically transpires
around the age of 14 years, enabling more accurate predictions [2]. Lower face height also
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contributed significantly to precise predictions. Hypodivergent patients with a short lower
face height tend to exhibit more forward growth, whereas hyperdivergent patients with
a long lower face height exhibit more vertical growth [53]. Furthermore, the position of
the upper incisor plays a role in this regard. Class II Division 1 malocclusion is typified
by protruded maxillary incisors, whereas Class II Division 2 patients exhibit retruded
maxillary incisors. Since Class II Division 2 patients commonly have a shorter lower face
height [54], the algorithm may have leveraged this information to identify them as forward
growers. These predictive factors indicate that the ML algorithms were possibly capable of
differentiating between Class II Division 1 and Class II Division 2 patients to discern the
appropriate growth pattern more accurately.

Regarding the y-axis, the most predictive factors were identified as SN-MP, SN-Pog,
SNB, SNA, and SN-Palatal plane. SN-MP is a measurement of the mandibular plane angle
relative to the cranial base. The SN-MP angle provides the mandibular rotation model that is
hypodivergent, normodivergent, or hyperdivergent. The larger the SN-MP angle, the more
the mandible tends to become steeper, and the more the chin moves backward [54]. The
y-axis is another cephalometric measurement used to assess the direction of the mandibular
growth: downward and backward or downward and forward. Both the SN-MP angle
and the y-axis angle are used to evaluate the skeletal and growth patterns in orthodontics
and orthognathic surgery. They help orthodontists and surgeons understand the vertical
dimensions of the face, the inclination of the mandible, and the overall skeletal relationships
between the cranial base and the jaws. So, it is understandable that the vertical relationship
between the mandible and the cranial base helps predict the vertical direction of growth via
the y-axis. This is in agreement with Schudy, who found that SN-MP is closely associated
with the growth and morphology of the mandible when he sought to identify the specific
increments of growth responsible for the rotation of the mandible [54]. Schudy found
that the larger the SN-MP angle, the more the mandible tends to become steeper, and the
more the chin moves backward, and the smaller the angle, the greater the tendency of the
mandible to become flatter and the chin to grow forward [54]. Additionally, the ML models
utilized anterior–posterior measurements, such as SNA and SNB, to predict the y-axis. A
larger SNB may indicate a more forward mandibular growth. By assessing these sagittal
measurements, AI could make predictions about how the mandible will likely grow in
relation to the rest of the face.

When comparing the ML techniques to one another, none showed a clear superiority
to the others. However, Linear Regression may have performed worse than the others due
to its inherent limitations. Linear Regression assumes a linear relationship between the
predictor variables and the response variable, which may not accurately capture the non-
linearities present in human growth patterns [55]. On the other hand, the Lasso and Ridge
techniques incorporate regularization, which helps address issues of overfitting and model
complexity. The Lasso performs both variable selection and regularization by imposing
a penalty on the absolute values of the coefficients, effectively shrinking less important
predictors to zero [55]. This feature helps in identifying the most relevant predictors for
growth prediction. Ridge, on the other hand, adds a penalty term based on the square
of the coefficients, which allows for a better balance between bias and variance [56]. By
considering non-linear relationships and incorporating regularization techniques, Lasso
and Ridge are better equipped to handle the complexities involved in predicting human
growth with AI. When assessing the overall performance, the authors would consider
further studies using the Lasso prediction model.

The authors acknowledge certain limitations of this current study. First, the sample
size was relatively small due to the constraints of the available records in the AAOF
Legacy Collection. It is worth noting that when employing ML techniques, a larger sample
size is desirable as it allows for a more representative and diverse dataset. This, in turn,
increases the likelihood of capturing the true underlying patterns and characteristics of the
population, thereby reducing sampling bias and enhancing the model’s ability to make
predictions on unseen data. Moreover, a larger sample size would help mitigate the impact



Diagnostics 2023, 13, 2713 14 of 17

of random variation and minimize instances of overfitting. Another limitation is that
many images did not include sufficient facial tissue in the lateral cephalogram, which
could have potentially improved the accuracy of the prediction methods. Additionally,
the utilization of automated cephalometric landmark identification methods could have
ensured consistency in cephalometric analyses.

5. Conclusions

The tested ML algorithms successfully predicted the post-pubertal mandibular length
within a range of 2.5 mm and the y-axis within 1◦. Beyond the initial mandibular length,
several key predictors emerged for mandibular length, including chronological age, upper
and lower face heights, and upper and lower incisor positions and inclinations. Similarly,
for the y-axis, significant predictive factors encompassed y-axis measurements at earlier
time points, as well as the SN-MP, SN-Pog, SNB, and SNA angles. Upon comparing the
prediction methods for both the 2 year and 4 year forecasts of mandibular length, no
substantial differences surfaced in terms of absolute disparities or directional variations
among any of the methods. However, regarding the y-axis, employing the 2-year prediction
resulted in significantly larger absolute deviations between the predicted and actual values
compared to the 4 year prediction when utilizing Linear Regression. While the potential of
ML techniques to accurately anticipate future mandibular growth in Class II cases holds
promise, further research is imperative. Larger sample sizes and more extensive data points
are needed to refine the precision of these predictions.
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