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Abstract: Today, with rapid advances in technology, computer-based studies and Artificial Intelli-
gence (AI) approaches are finding their place in every field, especially in the medical sector, where
they attract great attention. The Temporomandibular Joint (TMJ) stands as the most intricate joint
within the human body, and diseases related to this joint are quite common. In this paper, we
reviewed studies that utilize AI-based algorithms and computer-aided programs for investigating
TMJ and TMJ-related diseases. We conducted a literature search on Google Scholar, Web of Science,
and PubMed without any time constraints and exclusively selected English articles. Moreover, we
examined the references to papers directly related to the topic matter. As a consequence of the
survey, a total of 66 articles within the defined scope were assessed. These selected papers were
distributed across various areas, with 11 focusing on segmentation, 3 on Juvenile Idiopathic Arthritis
(JIA), 10 on TMJ Osteoarthritis (OA), 21 on Temporomandibular Joint Disorders (TMD), 6 on decision
support systems, 10 reviews, and 5 on sound studies. The observed trend indicates a growing interest
in artificial intelligence algorithms, suggesting that the number of studies in this field will likely
continue to expand in the future.

Keywords: temporomandibular joint; temporomandibular joint diseases; artificial intelligence;
machine learning; deep learning

1. Introduction

In recent years, technology has experienced rapid advancements, and its widespread
application now touches almost every domain. The ability to perform numerous tasks
online has significantly increased the amount of data being generated daily. To efficiently
process this data, make automated inferences, and minimize reliance on human interven-
tion, the adoption of artificial intelligence-based approaches becomes unavoidable.

AI can be defined as the process of transferring human intelligence to computers, while
ML, a sub-field of AI, involves making inferences by learning from data. In recent years,
Deep Learning (DL) approaches, a sub-field of Machine Learning (ML), have demonstrated
remarkable effectiveness in various domains, including image processing, object detection,
and classification. These DL techniques have also been applied in dentistry, as evidenced
by studies such as [1–6]. The primary reason why deep learning architectures receive
significant attention is their ability to automatically learn from diverse types of data,
including images, signals, videos, and texts.

The ML and DL methodologies utilized in the research we examined were not ex-
plained in detail. For a more comprehensive understanding of these methods, we included
two publications in the references [7,8], which provide general information about ML
and DL algorithms. Researchers can refer to these and similar studies to obtain more
in-depth information about the methodologies employed. The temporomandibular joint
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binds the mandible or lower jaw to the skull and is a complicated, delicate, and mobile
joint [9]. The TMJ controls the movement of the jaw. The anatomy of the TMJ can be
observed in Figure 1. Temporomandibular joint diseases, often related to muscles, are quite
common. They present with various symptoms, including face, head, or jaw pain, and
joint-induced sounds.

Figure 1. Anatomy of TMJ [10].

TMJ-related diseases are typically diagnosed through a patient’s clinical examination,
anamnesis, and the interpretation and reporting of images by a radiologist. Nonetheless,
this process can incur costs and consume a significant amount of time. To address this chal-
lenge, an automated system can be employed to assist physicians in the diagnosis process.
Computer-aided approaches, especially those based on artificial intelligence, machine learn-
ing, and deep learning algorithms, have shown great promise in effectively tackling such
diagnostic problems. In this study, we examined AI-based and computer-aided studies in
dentistry, with a particular focus on the temporomandibular joint and temporomandibular
joint-related diseases. The relevant literature searching was carried out on Web of Science,
Google Scholar, and PubMed. Only studies in the English language were considered, and
no date restrictions were applied. To ensure relevance and appropriateness, we checked
the reference lists of the most relevant papers and selected appropriate publications. We
carefully read the abstracts and discussion sections of the collected articles as they provide
fundamental information about each article’s subject. Additionally, we had a dentist who
is an expert in the field examine the publications obtained from the screenings. With the
expert’s approval, we identified and reviewed 66 articles that were deemed suitable for
this study. The process of publication selection is illustrated in Figure 2.

The remaining sections of the paper are structured as follows:

1. Fundamentals of TMJ (Section 2): Provides information about TMJ, data acquisition,
data utilized in diagnosis, and automatic diagnosis.

• Diseases and Diagnostics
• Independent Variables and Data Capturing

2. Fundamentals of AI (Section 3): Foundational knowledge about AI, ML, and DL.

• ML
• DL

3. Literature on TMJ (Section 4): Computer-based studies conducted on TMJ.

• Segmentation of TMJ
• Audio and Image-Based Diagnostic
• Decision Support Systems
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• Review studies on TMJ

4. Discussion (Section 5)
5. Conclusion (Section 6)

Figure 2. The flow chart of publication selection.

2. Fundamentals of TMJ
2.1. Diseases and Diagnostics

The temporomandibular joint is a sophisticated joint comprising different elements,
such as bones, cartilage, ligaments, muscles, and a small cushioning disc between the
bones. Its intricate structure and frequent use make it vulnerable to various issues and
disorders. TMJ-related diseases encompass a range of medical conditions affecting the
TMJ and its associated structures. These conditions can lead to jaw joint pain, dysfunction,
and discomfort in the surrounding areas. Some of the typical TMJ-related diseases include
TMD, TMJ OA, and JIA.

TMD is a comprehensive label that includes different conditions impacting the TMJ,
such as joint inflammation, disc displacement, and degenerative alterations. These condi-
tions can lead to symptoms such as jaw pain, restricted jaw movement, clicking or popping
noises, and muscle stiffness. TMD is more common in individuals between the ages of
20 and 40, and it is also more prevalent in women than in men [11–14]. TMJ osteoarthritis
is a degenerative joint condition marked by the deterioration of the cartilage within the
TMJ. This ailment can result in discomfort, swelling, and limited jaw mobility. JIA is a
chronic inflammatory condition that can impact the TMJ in children and adolescents. This
disease may lead to joint pain, swelling, and deformities, potentially affecting jaw function.

The diagnosis of TMJ-related diseases requires a thorough evaluation by a healthcare
professional, commonly a dentist, oral and maxillofacial surgeon, or orofacial pain specialist.
The assessment typically encompasses medical history analysis, clinical examination, and
the use of imaging techniques. The diagnosis process may include the following steps:

• Gathering Medical History: the healthcare professional will start by obtaining a com-
prehensive medical history from the patient, including any past jaw-related problems,
dental procedures, or recent injuries that could be pertinent to the current symptoms.

• Comprehensive Clinical Assessment: a detailed examination of the jaw, face, head, and
neck will be performed to evaluate the extent of movement, joint sounds, tenderness,
and any indications of inflammation or swelling.
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• Diagnostic Imaging: X-rays, Computed Tomography (CT) scans, or Magnetic Reso-
nance Imaging (MRI) can be employed to capture detailed images of the TMJ and
adjacent structures. These imaging modalities have the capability to detect any irregu-
larities, such as joint degeneration, disc displacement, or fractures [15].

• Occlusion Assessment: the dentist will examine how the upper and lower teeth fit
together (occlusion) to identify any malocclusion or teeth alignment issues that may
contribute to TMJ problems.

• TMJ Function Tests: specific tests will be conducted to assess the functioning of the
TMJ and jaw muscles. These tests aid in detecting any limitations or irregularities in
jaw movement.

• Palpation: a gentle examination of the jaw area will be performed to locate tender
points or areas of muscle tension.

• Pain and Symptom Evaluation: the patient will be asked about the location, intensity,
and duration of pain, as well as any accompanying symptoms such as headaches
or earaches.

• Exclusion of Alternative Causes: due to the potential overlap of TMJ-related symptoms
with other conditions, the healthcare provider will carefully eliminate other potential
causes of jaw pain or dysfunction.

Rapid completion of the diagnostic process is vital for effective treatment. Automated
systems are well-suited for addressing such concerns. This study focused on investigating
computer-based methods used for TMJ-related diseases, as previously mentioned. All
diseases were searched using the following keywords: “artificial intelligence”, “machine
learning”, and “deep learning”. For instance, the search terms used were “temporo-
mandibular joint artificial intelligence”, “temporomandibular joint machine learning”,
“temporomandibular joint deep learning”, “temporomandibular joint disorders artificial
intelligence”, “temporomandibular joint disorders machine learning”, and “temporo-
mandibular joint disorders deep learning”. Similar combinations were used for other
diseases, such as TMJ OA, and JIA, during the screening process. In addition to these, TMJ
segmentation, decision support systems, review articles, and publications based on sound
data were included in this study.

2.2. Independent Variables and Data Capturing

The TMJ is a complex joint that plays a crucial role in various functions, and several
independent variables can influence the development and health of the temporomandibu-
lar joint. These variables can include demographic factors (age, gender, ethnicity, and
socioeconomic status), medical history, lifestyle habits (teeth grinding (bruxism), clenching,
nail-biting, or chewing gum), genetic predispositions, and various other biological and
environmental factors. Understanding these variables helps in developing comprehensive
models for the early detection and diagnosis of TMDs. Farook et al. [16] explored the
digitization of jaw movement patterns using devices and analyzed how physiological
factors and device-specific variables influenced jaw movements. The outcomes of their
study demonstrated that factors such as mandibular and condylar growth, kinematic ir-
regularities in the neuromuscular system, reduced dental arches, previous orthodontic
interventions, variations in habitual head posture,TMDs, fricative phonetics, partially para-
functional habits, and imbalanced occlusal contact played a role as influencing factors on
jaw movement paths as variables that could cause complications. However, these factors
showed limited correlation with age, gender, or dietary habits.

TMJ image capture involves obtaining detailed images of the temporomandibular
joint using various advanced imaging methods. X-rays, CT scans, MRIs, and Cone Beam
Computed Tomography (CBCT) are commonly employed to visualize the TMJ and its asso-
ciated structures. X-rays provide two-dimensional images that allow visualization of the
bones and aid in identifying joint degeneration, osteoarthritis, or structural abnormalities
in the joint. CT scans offer three-dimensional images, enabling a more comprehensive
assessment of the TMJ’s bony structures, cartilage, and surrounding tissues. MRI, on the
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other hand, provides detailed soft tissue images, making it suitable for detecting disc
displacement, inflammation, and joint effusion. CBCT combines the advantages of CT and
panoramic X-rays, delivering high-resolution 3D images with reduced radiation exposure
compared with traditional CT scans. These advanced imaging techniques play a crucial
role in diagnosing TMJ-related diseases and guiding treatment decisions, as they provide
essential information about the joint’s anatomy, function, and any potential abnormalities.

In the context of MRI, images of patients’ bilateral temporomandibular joints are
typically captured in both sagittal and coronal oblique planes, with the jaw in both open
and closed positions. This imaging is facilitated through the use of specific sequences,
such as T1-weighted, MERGE, and Proton Density (PD) sequences. Within the realm of
MR images focusing on the temporomandibular joint, comprehensive insights are drawn
bilaterally. Experienced radiologists assess critical aspects such as the positioning of the
disc, the identification of degenerative changes in the joint’s osseous structures, and the
determination of effusion presence. This assessment involves the meticulous interpretation
of slices ranging from 1 to 3 mm in thickness. The application of Magnetic Resonance
Imaging devices operating at strengths of 1.5 to 3 Tesla yields detailed depictions of the
intricate structures comprising the TMJ. Notably, the articular disc, an essential compo-
nent of the TMJ, manifests as a distinctive biconcave image with a discernible low signal
intensity in MRG. The mandibular condylar bone marrow showcases its characteristics in
various sequences. Specifically, it produces a uniformly high signal intensity image in both
T1-weighted and PD-weighted sequences while presenting a moderately graded signal
intensity image in T2-weighted sequences. Conversely, bone marrow edema is visually
indicated through low signal intensity in T1-weighted or PD-weighted sequences, and a
contrastingly high signal intensity in T2-weighted sequences. In the domain of TMJ-related
conditions, the presence of sclerosis and fibrosis is highlighted through the projection of
low signal intensity images in T1-weighted, PD-weighted, and T2-weighted sequences. In
contrast, osteonecrosis showcases a heterogeneous signal image, distinguishing itself from
the other conditions under investigation [17–19].

In the realm of tomographic imaging, for a comprehensive radiographic assessment of
the TMJ, it is imperative to execute two distinct scans, specifically in the closed and open
mouth positions. The closed-mouth scan serves the purpose of establishing the functional
position of the condyle within the mandibular fossa, a position defined by dental criteria.
Depending on the clinician’s preference, the initial imaging should exhibit a medium level
of resolution (with a nominal voxel size of 0.3 mm or smaller), while ensuring that the
teeth are aligned in either maximum intercuspidation or centric relation. The field of view
(FOV) should stretch roughly 1 cm above the glenoid fossa’s foundation (approximately
at mid-orbital level), including the mandibular dentition, for the purpose of validating
the occlusal alignment of the teeth. When there are concerns regarding alterations on the
joint surface, it is advisable to enhance the voxel resolution (using a nominal voxel size of
0.25–0.125). To counteract the potential loss of cortical definition due to motion artifacts, it is
crucial to maintain the stability of the patient’s head during the scanning process. The open
mouth scan, on the other hand, serves to ascertain the extent of motion of the condylar head
during mouth opening. For this purpose, a low-resolution scan with a reduced dose should
be performed, employing a narrow FOV that encompasses the glenoid fossa base and
the neck of the moving mandibular condyle. Ensuring the stability of the patient’s jaw is
paramount during this open-scan phase. During the image reformatting process, adopting
a standardized approach is indispensable to reconstructing and exhibiting the anatomical
alterations in the shape and size of the TMJ’s bone components using sectional images.
This method effectively minimizes discrepancies arising from parallax on the image screen
and simplifies the comparison process across diverse patients or even across varying time
intervals within the same patient. Protocols devised for the reformatting of TMJ images
should guarantee a comprehensive assessment of articulation in standardized jaw positions
(such as closed or open mouth), effectively preventing any instances where vital diagnostic
information could be inadvertently disregarded. Opting for a TMJ protocol for radiological
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examination does not preclude the possibility of generating additional images, such as
volumetric or shaded surface displays and Maximum Intensity Projections (MIPs). The
primary objective of this protocol is to establish the minimum approach essential for a
comprehensive interpretation. The foundational basis for reconstructing TMJ images is the
creation of Multiplanar Reformat (MPR) images, oriented obliquely sagittal (or parasagittal)
to the line perpendicular to the axis or plane positioned between the medial and lateral
poles of the condyle, as based on the axial plane [18,20].

In ref. [21], Ahmad et al. presented a concise summary of TMJ-related disorders
and the most suitable imaging methods. For more detailed information, this study can
be examined.

The data collected for automated diagnosis of TMDs plays a crucial role in ensuring
the accuracy and reliability of the diagnostic process. The type and quality of data utilized
for training and testing machine learning or deep learning algorithms significantly influ-
ence the system’s performance in identifying and categorizing TMD-related conditions.
Automated TMD diagnostics employ diverse data types, including clinical examination
results, patient medical history, imaging data (e.g., X-rays, CT scans, MRI), and patient-
reported symptoms. Each data type contributes unique information about the TMJ and its
associated structures, allowing the algorithm to detect specific abnormalities and patterns.
The quality of the data, encompassing accuracy, completeness, and relevance, is pivotal
in building robust diagnostic models. The use of clean and reliable data minimizes the
risk of false positives or false negatives and enhances the overall system performance. The
dataset’s size utilized for training the algorithm is of utmost importance. Larger datasets
often lead to more accurate and generalizable models, while a limited dataset may result
in overfitting, where the algorithm performs well on the training data but fails to gener-
alize to new, unseen data. Ensuring diversity in the dataset, encompassing a wide range
of TMD-related cases, is crucial for enabling the algorithm to handle various conditions
and manifestations. A diverse dataset prevents bias towards specific types of TMDs and
improves the system’s ability to recognize fewer common disorders. Currently, researchers
are actively exploring the potential of machine learning and deep learning algorithms to
automate the diagnostic process for TMDs. Studies have extensively investigated various
data types, such as radiographic images, clinical findings, and patient-reported symptoms,
to develop accurate and effective diagnostic models.

3. Fundamentals of AI

AI is a branch of computer science focused on the creation and development of
intelligent systems that can execute tasks commonly linked with human intelligence. The
aim of AI is to develop systems that can learn, reason, and adapt to new situations, similar
to how humans do. Through training on vast amounts of data, AI systems can recognize
patterns, make predictions, and identify relationships in the data.

3.1. ML

ML is a branch of AI that allows machines to learn from data and enhance their
performance without explicit programming. Its main objective is to create systems that can
automatically identify patterns, make predictions, and make decisions based on data.

Machine learning consists of three main categories: “supervised learning”, “unsu-
pervised learning”, and “reinforcement learning”. The model undergoes training using
annotated or labeled data, where each input is paired with its corresponding output. In
contrast, unsupervised learning operates with unlabeled data and seeks to uncover patterns
and relationships within the data. Conversely, reinforcement learning entails instructing
an agent to interact with its environment and acquire knowledge through feedback in the
form of rewards or penalties.

Traditional ML algorithms, also known as classical machine learning techniques pre-
dating the emergence of deep learning, rely on statistical methods and do not utilize deep
neural networks. Some examples of these classical ML approaches are: Linear Regres-
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sion, Logistic Regression (LR), Support Vector Machines (SVM), Decision Tree (DT) etc.
Although traditional ML algorithms have yielded successful results, they have not exhib-
ited the desired performance when dealing with image and audio data. The emergence
of DL algorithms garnered attention following Krizhevsky and colleagues’ triumph in
the 2012 ILSVRC. Subsequently, researchers have frequently employed DL approaches in
their studies.

3.2. DL

DL is a subfield of ML, a branch of AI that focuses on training algorithms to learn
patterns and representations from data. The ability to automatically learn complex features
from raw data has made it a powerful and popular tool. In DL, algorithms known as
Artificial Neural Networks (ANNs) are used to mimic the neural connections in the brain.
These nets comprise layers of nodes (interconnected), also known as neurons, which process
data and transmit it to the subsequent layer. The term “deep” refers to the existence of
multiple layers in these networks, allowing them to learn increasingly abstract and complex
representations of the input data as they go deeper. Deep learning has demonstrated
impressive achievements across diverse applications, encompassing tasks such as image
processing, speech recognition, as well as Natural Language Processing (NLP). Its ability to
handle complex patterns and large-scale data has contributed to its widespread adoption
in numerous domains.

4. Literature on TMJ
4.1. Segmentation of TMJ

Image segmentation is a vital process in computer vision where an image is divided
into multiple segments or regions, each with similar visual characteristics. Its main purpose
is to extract meaningful objects or areas of interest from the original image. Accurate seg-
mentation empowers machines to comprehend visual data and enables the development of
advanced and intelligent systems. DL techniques, specifically Convolutional Neural Net-
works (CNNs), have significantly improved image segmentation by automatically learning
relevant features from data and handling complex visual patterns. This technique holds
great importance in various computer vision applications such as object detection, image
recognition, medical imaging, and autonomous driving. In summary, image segmentation
plays a pivotal role in computer vision and remains a critical method for analyzing images
in real-world scenarios.

Automated TMJ segmentation involves employing computer algorithms and artificial
intelligence methods to automatically detect and outline the boundaries of the temporo-
mandibular joint in medical images. This process is essential in medical imaging analysis, as
it assists healthcare professionals in diagnosing and treating TMJ-related diseases and dis-
orders more effectively. Therefore, in this study, we have also examined the segmentation
studies conducted on TMJ.

Ref. [22] presented an automatic system for detecting and segmenting articular discs
on magnetic resonance images, with the purpose of supporting the diagnosis of temporo-
mandibular disorder. The proposed technique employed DL-based semantic segmentation
and utilized 217 resonance images from patients exhibiting either normal or displaced artic-
ular discs. Three semantic segmentation approaches based on deep learning were assessed:
3DiscNet, U-Net, and SegNet-Basic. Moreover, two specialist orthodontists with 12 and
6 years of experience, an expert oral, and a 25-year-experienced maxillofacial radiologist
independently and manually segmented TMJs from MR images. Among these algorithms,
SegNet-Basic and 3DiscNet exhibited comparable results in the sensitivity, dice coefficient,
and Positive Predictive Value (PPV) metrics.

An open-source web-based software called “The Data Storage for Computation and
Integration (DSCI)” was introduced in ref. [23]. DSCI introduced novel management
advancements for securely storing data, deploying algorithms, and executing tasks in a web-
based environment. Its design enabled the incorporation of plugins to facilitate functions
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such as uploading, browsing, sharing, and task execution within remote computing grids.
The software offered an automatic image processing tool for TMJ segmentation using
high-resolution volumetric images, automated segmentation of the mandible from CBCT
images using the U-Net architecture, and automatic segmentation of digital tooth models
using a model known as RUNET. Digital dental models were obtained through intraoral
scanners. The model used was a modified U-Net with residual links similar to ResNet.
Figure 3 [23] depicts the steps involved in segmenting small field of view scans.

Figure 3. The processing workflow of TMJSeg for segmenting small field of view scans [23].

Precise segmentation of the mandibular condyles and glenoid fossae is essential
for quantitative analysis of TMJ volume and shape from CBCT. In ref. [24], a DL-based
automated segmentation tool was presented for the exact 3D reconstruction of TMJ. They
composed a 3D U-net-based three-step approach to segment the condyles and glenoid
fossae. They trained and validated this method on 154 manually segmented CBCT images.
Another study focusing on TMJ reconstruction is presented in ref. [25]. Additionally, for
other research related to segmentation, references can be found in ref. [26–33].

4.2. Audio and Image-Based Diagnostic
4.2.1. Juvenile Idiopathic Arthritis

JIA is a persistent form of arthritis that begins before the age of 16 and lasts longer
than 6 weeks. The exact cause of the disease is not known. In dentistry, it is considered a
chronic inflammatory disease that can affect the TMJ and lead to facial growth disorders,
pain, and/or deterioration in jaw functions [34].

Diagnosing JIA involves a thorough assessment of the patient’s medical history, a
physical examination, and laboratory tests to eliminate other potential conditions and
confirm the presence of joint inflammation. Early detection and suitable treatment are
crucial in preventing joint damage and enhancing long-term outcomes.

Even though MRI is widely regarded as the definitive method for diagnosing this
condition, electromyography (EMG) recordings offer an alternative method for this pro-
cedure [35]. EMG provides the advantage of enabling early and immediate diagnosis.
Perpetuini et al. conducted research to investigate the effectiveness of a multivariate data-
driven method based on the general linear model. They examined the feasibility of this
method in predicting the EMG ratio from fIRI features, where the EMG ratio (sEMG− M/T)
represents the ratio between masseter and temporalis muscles. Additionally, they used the
model output to distinguish between sick and healthy controls.

Among the studies conducted on JIA, refs. [36,37] are also included.

4.2.2. TMJ Osteoarthritis

Temporomandibular joint osteoarthritis, a subtype of TMD, can cause various com-
plaints, including pain, chewing dysfunction, crepitation, and dentofacial deformity [38].
It affects 5% to 12% of the population. Aging influences the increase in chronic disability
in TMJ osteoarthritis, making it crucial to diagnose the condition before morphological
degeneration occurs.

Bianchi et al. introduced a novel visualization approach in their study [39], aiming to
thoroughly investigate interactions between disease and health-related biomarkers. Their
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data-driven approach integrated knowledge models, aiming to gain new perspectives
on the intricate origins of TMJ OA. The study involved data management, clinical and
biomolecular data acquisition, standardized imaging, pairing OA patients and individuals
without the condition (healthy controls) based on standardized demographics, and cross-
checking patient data collected from various data repositories. They evaluated 52 variables
using machine learning methods to determine the condition of TMJ OA. The most relevant
integrative feature pools were identified by leveraging machine learning algorithms. Stan-
dardized patient characteristics from various resources were combined using statistical
machine learning algorithms, which they believed would enable an accurate diagnosis of
TMJ OA condition. Figure 4 illustrates the flow chart of the method used by [39].

Figure 4. The spectrum of Data Science to advance TMJ OA diagnosis includes Data capture and
acquisition, Data processing with a web-based data management, Data Analytics involving in-depth
statistical analysis, machine learning approaches, and Data communication to help the decision-
making support in TMJ OA diagnosis [39].

In the literature, various studies on TMJ OA utilizing AI approaches can be found, as
referenced in the following studies: [40–48].

4.2.3. TMD

TMD, in general terms, refers to the inconsistent movement of the disc on the articular
surface of the jaw. It can be caused by various factors and may present with different
symptoms, such as severe headaches, difficulty opening the jaw, and tinnitus. Patients
with different articular disc displacements and deformations constitute the most significant
sub-group of joint abnormalities in people with TMD.

In this section, we review studies that utilize artificial intelligence approaches in the
diagnosis of TMD. Unlike other sections, we present all of the studies related to TMD since
our research in this area began. Therefore, we will provide an individual explanation for
each of these studies.

The first reviewed study is [49]. autonomously identify Anterior Disc Displacement
(ADD) in TMJ MR images. The main goal of this system was to mitigate the potential for
severe complications following treatment. The study utilized 9009 sagittal TMJ MRIs, and
accuracy and Area Under the Curve (AUC) were utilized as comparison metrics. The deep
learning architecture employed was ResNet, and techniques such as 5-fold cross-validation,
oversampling, and data augmentation were implemented. An overview of the study can
be seen in Figure 5.



Diagnostics 2023, 13, 2700 10 of 34

Figure 5. The general stages of the study [49].

A study was conducted by Orhan et al. in ref. [50], where they investigated the
effectiveness of a proposed machine learning model in classifying TMJ pathologies on
MR images. The study utilized 214 TMJs from 107 patients exhibiting TMJ signs and
symptoms. They employed a radiomic platform to extract imaging features related to
temporomandibular joint pathologies, condylar bone changes, and disc displacements.
Subsequently, feature selection, classification, and prediction were carried out by applying
various ML algorithms, including Logistic Regression (LR), to the radiomic features. A total
of six classifiers were employed to predict temporomandibular joint pathologies. These
classifiers included DT, k-Nearest Neighbors (k-NN), SVM, logistic regression, Random
Forest (RF), and XGBoost. To evaluate the efficiency of the approaches, sensitivity, speci-
ficity, and Receiver Operating Characteristic (ROC) curve metrics were utilized. Based on
the experimental results, it was determined that the k-nearest neighbors and random forest
classifiers proved to be the most suitable ML models for predicting temporomandibular
joint pathologies.

Upon reviewing the study by Diniz et al. [51], their primary objective was to determine
the efficacy of three machine learning approaches, namely SVM, k-NN, and Multi-Layer
Perceptron (MLP), in feature extraction for the detection of TMD on Infrared Thermography
(IT) images. For this study, a group of 78 patients was chosen according to the Fonseca
questionnaire and RDC/TMD criteria. This group consisted of 37 control patients and
41 individuals who were diagnosed with TMD. In the process, the IT lateral projections of
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each patient were obtained, and subsequently, the masseter and temporal muscles were
specifically chosen for the feature extraction procedure.

Another study examined in this review is by Kim et al. [52], which focused on the
topic of temporomandibular joint disc perforation. In this research, a deep learning-based
algorithm was developed to estimate the presence of TMJ disc perforation based on MRI
findings. The obtained results were then compared with findings from previous studies,
and the performance of the algorithm was evaluated. A total of 299 temporomandibular
joints from 289 patients who were confirmed to have disc perforation during surgery
were categorized into two groups based on the presence or absence of disc perforation.
Expert observers interpreted temporomandibular joint magnetic resonance images to
extract relevant features for the algorithm. The performances of different approaches were
assessed using the ROC AUC. The MLP achieved the highest performance with an AUC
of 0.940, followed by the random forest with an AUC of 0.918. In comparison, using disc
shape alone resulted in a lower AUC of 0.791.

In the study conducted by Lee et al. [53], the primary objective was to employ artificial
intelligence techniques to ascertain whether biological and psychosocial factors play a
significant role in the development of TMDs. The study investigated factors such as stress,
socio-economic status, and working conditions as potential determinants of TMDs. The
dataset utilized in this research encompassed information from 4744 participants, includ-
ing details on their TMD status, demographic factors, socio-economic status, working
conditions, and determinants of health. To identify the factors associated with temporo-
mandibular disorders, the researchers employed six AI methods, namely random forest,
logistic regression, decision trees, naïve Bayes, SVMs, and ANN. Subsequently, the accuracy
of these models was compared with evaluate their predictive performance.

Temporomandibular joint sounds, a common disorder associated with the temporo-
mandibular joint, have drawn significant attention. In the article by Tacskiran et al. [54],
a novel decision support system was proposed for diagnosing TMDs. This system relied
on the integration of DL and ANN technologies. An innovative, non-invasive device was
developed to record temporomandibular joint sounds, complemented by a user-friendly
interface for ease of use. The dataset used in this study consisted of left and right TMJ sound
recordings, ambient noise, clinical symptoms, physician’s notes regarding the patient, as
well as diagnosis and treatment information. To effectively classify these measurements and
determine the patient’s condition, a comprehensive approach employing signal processing,
ANN, and DL algorithms was formulated. The classification success of algorithms based
on frequency, statistical methods, and DL was compared. Remarkably, the DL algorithm
consistently achieved success rates above 94.5%, outperforming the other two approaches.
Overall, the proposed decision support system demonstrated promising capabilities in
efficiently diagnosing TMDs based on temporomandibular joint sounds, showcasing the
superior performance of the DL algorithm in this context.

In the study conducted by Sharma et al. [55], a neural network model was proposed
to aid in understanding whether patients were experiencing temporomandibular joint
disorders based on their risk factors and symptoms.

Ebadian et al. [56] investigated 200 patients aged between 20 and 50 years, with
temporomandibular disorders. They explored the association of occlusal factors and
parafunctional habits with TMD by utilizing Chi-square tests and an independent sample t-
test. Additionally, they conducted binomial logistic regression analysis, taking confounding
variables into consideration. Ref. [57] is another illustrative study that utilized logistic
regression analysis to explore potential risk factors associated with temporomandibular
joint disorders.

Another method frequently employed in studies related to TMD is Bayes’ theorem.
In a study by Iwasaki [58], a Bayesian Belief Network (BBN) was applied to analyze MR
images to ascertain the advancement of TMDs. The primary focus of the study was to
investigate the interrelationships and impact of individual findings on one another. The
dataset consisted of 295 1.5-T MRIs, representing 590 sides of the temporomandibular joint.
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The accuracy of the bayesian belief network was evaluated by comparing it with 11 algo-
rithms (“necessary path condition, maximum log likelihood, path condition, Chow-Liu
tree, Rebane-Pearl poly tree, greedy search-and-score with Bayesian information criterion,
tree augmented naive Bayes model, K2, and C4.5, minimum description length, Akaike
information criterion”), a multiple regression analysis, and an ANN using resubstitution
validation and 10-fold cross-validation. Additionally, a different study utilizing the Bayes
method in the context of TMD can be referenced, as cited in Ashraf et al. (2022) [59].

Lee et al. [60] conducted a study focused on the automatic detection of ADD in
patients with TMD using deep learning. They acquired sagittal MRI images of 2520 TMJs
and implemented data augmentation techniques to mitigate the risk of overfitting. ADAM
was employed as the optimizer during the training process.

In a study by Jung et al. [61], the aim was to determine which findings on MR images of
patients with TMJ Internal Derangement (ID) could serve as reliable indicators of limitations
in mouth-opening and pain. Multiple logistic regression analyses were performed on the
data from a total of 48 patients (96 TMJs), comprising 39 women and 9 men.

The stomatognathic system, which encompasses the digestive, sensory, and respiratory
tracts, plays a significant role in the human body [10]. In the study conducted by [10], the
objective was to assess the effectiveness of TMJ rehabilitation in patients. Vibration analysis,
sEMG recordings of the masseter muscles, and hypertension of the masticatory muscles
were employed in the evaluation process. The participants whose data were utilized in the
study suffered from locking of the TMJ articular disc. Additionally, the study presented the
initial findings of the k-NN method for TMD diagnosis. The research involved a group of
15 patients, comprising 10 females and 5 male individuals.

Ref. [62] employed the Self-Organizing Map (SOM) to classify patients based on their
temporomandibular joint muscle activation. The application of the SOM technique was
employed on a patient cohort. Together with a cross-correlation strategy, it was utilized to
predict the processed surface electromyography signal acquired during TMJ muscle testing.

Another noteworthy investigation is presented in ref. [63]. The study focused on
conditions that simulate TMD by exhibiting TMD-like symptoms due to non-TMD-related
issues. These non-TMD symptoms arise from various pathologies and developmental
or genetic abnormalities. Utilizing text mining methods including NLP and recursive
segmentation, ref. [63] detected evidence-based clinical indicators that distinguish these
imitative TMD conditions from genuine TMD. They examined the medical histories of
29 patients diagnosed with TMD-mimicking symptoms and contrasted them with the
records of 290 patients diagnosed with authentic TMD. The study involved comparing
the frequency of word usage by pre-processing the main complaints and medical histories
through natural language processing. Additionally, recursive partitioning was utilized
to determine the optimal mouth opening size to distinguish between fake TMD and true
TMD cases.

Nocera et al. [64] conducted an implementation focused on the automatic diagnosis
of patients presenting at an OroFacial Pain (OFP) clinic with various pain, headache, and
TMD symptoms, employing several ML approaches. In collaboration with an expert in the
field, they compiled a dataset of 451 cases by examining available electronic patient notes.
The ML algorithms utilized for analysis included random forest, SVM, logistic regression,
and k-NN classifiers.

Jeon et al. [65] introduced an automatic motion tracking approach for analyzing
mouth opening and closing videos, investigating the relationship between the obtained
results from this system and the disc position in MRI. The study used mouth opening and
closing videos of 91 patients who had undergone MRI scans, captured with a digital camera.
The system they devised consisted of two main phases: automatic bookmark detection
of upper and lower lips from videos and graphical representations of detected locations
with automatically calculated monitoring results (height and width). Disc position groups
determined from MRI data were used to evaluate all monitored results. Based on the results
obtained, the system was deemed reliable.
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In the work of Kreiner and Viloria [66], they designed a MLP comprising a single input
layer, five hidden layers, and an output layer that was trained using a backpropagation
algorithm. The results for various orofacial pain categories and TMD clinical cases were
compared with the diagnoses made by 12 general dental clinicians.

Furthermore, the papers [67,68] were reviewed. In ref. [67], Kao et al. conducted
a study where they applied various architectures, including Inception, ResNetV2, In-
ceptionV3, DenseNet169, and VGG16 to a dataset comprising 300 images. This dataset
encompassed 52 patients with temporomandibular disorder and 32 healthy individuals.
Their approach involved initially identifying the articular space between the temporal bone
and the mandibular condyle through the use of the U-Net model, which was applied to
100 sagittal MRIs of the TMJ. Following this, they engaged in classification tasks employing
the previously mentioned architectures. InceptionV3 achieved sensitivity, positive predic-
tive value, accuracy rate, and F1 score metrics values of 1.0, 0.81, 0.85, and 0.9, respectively,
while DenseNet169 produced values of 0.92, 0.86, 0.85, and 0.89.

Lastly, in ref. [68], the authors employed the algorithms InceptionV3, ResNet-101,
Xception, MobileNetV2, ConvNeXt, DenseNet-121, and Vision Transformer (ViT) for TMD
diagnosis. The dataset contained 2576 diagnostic MR images from 200 patients, categorized
into four groups: “at closed mouth, articular disc position normal\in front”, “at open
mouth, articular disc position normal\in front”, “joint cavity effusion”, and “mandibular
condyle degeneration”. Notwithstanding the restricted availability of data, the investiga-
tion deduced that DL-based methodologies exhibited efficacy.

4.2.4. Studies Using Audio Data

The investigation of TMJ sounds can provide insights into potential relationships be-
tween dental malocclusions and various sound types [69]. In their research, Akan et al. [69]
recorded temporomandibular joint vibrations using accelerometers during jaw opening
and closing cycles in patients presenting with lateral crossbite and Class II Division 1
malocclusion. Subsequently, the recorded signals were subjected to discrete evolutionary
transformation, and time-frequency moments of the signals were derived from the evolu-
tionary spectrum. These calculated joint time-frequency moments were utilized as features
in a neural network to facilitate the classification of TMJ vibrations.

Furthermore, a separate investigation of temporomandibular joint sounds is evident
in the work of Djurdjanovic et al. [70]. The assessment of sounds such as clicking and/or
crepitation in the TMJ during its functional motions carries diagnostic significance. Their
objective was to identify the best signal representation and pattern recognition technique
for categorizing TMJ sounds. In particular, they examined and contrasted the effectiveness
of time-shift invariance with and without scale invariance.

Other studies focusing on joint sound can be found in the references cited as [71–73].

4.3. Decision Support Systems

A decision support system is a computer-based information system that aids in select-
ing among various options, expediting the problem-solving and decision-making processes.

Due to the rapid progress of technology, there has been a substantial rise in the
quantity of accumulated data. Data originating from diverse sources, such as medical
devices, health records, clinical examinations, imaging, and experimental and biological
data, generates a vast amount of information [74]. Effective management and analysis
of this data allow for the extraction of meaningful insights that contribute to improving
population health and well-being. In the study by Al et al. [74], data science approaches
applied in clinical decision support systems for orthodontics were investigated. The authors
also introduced a web-based data management system tailored for TMJ and dental clinical
decision support systems.

The integration of developing technologies has also found application in various areas
of dentistry [75]. These applications, embracing digitalization in dentistry, significantly
contribute to treatment and diagnosis. Given that the diagnosis and treatment planning
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largely depend on the expertise of specialists, pattern recognition methods hold great
promise for both physicians and patients. Machoy et al. [75] conducted an analysis of
artificial intelligence applications such as Genetic Algorithms (GAs) and Clinical Decision
Support Systems (CDSS) in both research and clinical dentistry.

Aiming to establish a prediction model through classification tree statistical analysis
for determining the occurrence of TMD, Waked et al. [76] categorized the sample into high-
and low-risk groups for disease progression. The dataset encompassed 776 individuals
seeking medical or dental services from the “Family Health Units in Recife, PE, Brazil”.
The samples underwent anamnesis utilizing the Research Diagnostic Criteria device for
TMDs. The data underwent analysis using the software “Statistical Package for the Social
Sciences 20.0”. Bivariate analysis was conducted using the Pearson Chi-square test, while
multivariate analysis was performed through the utilization of the classification tree method.
The occurrence of TMD was determined to be influenced by factors such as age, orofacial
pain, and depression.

In addition to the aforementioned studies, other research works focusing on clinical de-
cision support systems in dentistry include those by Mago et al. [77], Polavskova et al. [78],
and Mendonca et al. [79].

4.4. Review Studies on TMJ

In this article, we have also explored various review studies, the first of which was
conducted by Farook et al. [80]. In their work, Farook et al. investigated the clinical impact,
success, limitations, and comparative results of machine learning applications in several
areas of dentistry. These areas include periodontal diseases, dental diseases, cysts and
tumors, trauma and neuralgias, glandular disorders, and bone and TMDs associated with
dental and orofacial pain. Two reviewers systematically searched the Scopus, PubMed, and
Web of Science databases until 29 October 2020. They conducted a comprehensive scan and
narrative synthesis of relevant articles following the PRISMA-DTA guidelines. Moreover,
the articles were evaluated by comparing them to reference tests performed by clinicians
using the MI-CLAIM checklist.

Another review article under examination is authored by Bianchi et al. [81]. In this
study, artificial intelligence and machine learning techniques for diagnosing temporo-
mandibular joint osteoarthritis were reviewed, with a particular focus on data science
methods employed for image processing. The authors utilized a web-based system for data
storage, management, and processing.

Additional examples of studies exploring artificial intelligence applications in dentistry
include those by Chen et al. [82], Shan et al. [83], Almuasan et al. [84], and Grischke et al. [85].
Moreover, Corbella et al. [86] examined deep learning applications in dentistry. Further-
more, Brickley et al. [87] investigated the applications of artificial neural network-based
systems in dentistry. Additionally, review articles focusing on TMJ were considered in the
works by Jha et al. [88] and Farook et al. [89].

5. Discussion

In recent times, there has been a notable surge of interest in the application of artificial
intelligence approaches, particularly with the advent of deep learning architectures, across
various sectors. The medical field has witnessed the widespread adoption of deep learning
models due to their ability to achieve remarkable results, thanks to their multi-layered
architecture. As a result, these models have found extensive use in medical data analysis.
However, upon reviewing the literature, it becomes evident that the dental sector has seen
relatively fewer studies utilizing AI methodologies.

Temporomandibular joint diseases, being among the most common disorders affecting
the human body, present a complex diagnostic challenge. The diagnosis of TMJ-related
diseases typically relies on the observations and interpretations made by physicians, where
the expertise of the practitioner significantly influences the diagnostic process. It is impor-
tant to note that these diagnostic processes are time-consuming and require a considerable
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amount of time from the physicians. Hence, the development of an automated diagnostic
system holds great importance.

The current study explores computer-based approaches, particularly artificial intelli-
gence methods, applied to temporomandibular joint and TMJ-related diseases. To ensure
comprehensiveness, this research also encompasses applications in segmentation, decision
support systems, and studies involving voice data, in addition to focusing on specific
diseases. To gather relevant literature, the Web of Science, PubMed database, and Google
Scholar search engine were employed. Additionally, reference lists of the most pertinent
studies were searched. Notably, articles published during the preparation and submission
process of this study, after the initial literature search, were not included.

Given the widespread popularity of artificial intelligence methodologies in the medical
field, the primary objective of this study is to contribute to the dental literature. Further-
more, by providing an overview of the majority of relevant studies, this research aims
to offer valuable insights to aid in the development of future studies and streamline the
literature search process.

In Table 1, the studies are presented in groups, while Table 2 provides a more de-
tailed presentation.

Table 1. Summary of studies.

Segmentation JIA TMJ OA TMD Decision Support Systems Review Sound

[22] [37] [39] [49] [74] [80] [69]
[23] [36] [40] [50] [75] [81] [70]
[26] [35] [41] [51] [77] [82] [71]
[27] [42] [52] [78] [83] [72]
[28] [43] [53] [79] [86] [73]
[29] [44] [62] [76] [84]
[24] [45] [54] [85]
[25] [46] [55] [87]
[30] [47] [56] [88]
[31] [48] [57] [89]
[32] [58]

[59]
[60]
[61]
[10]
[63]
[64]
[65]
[66]
[67]
[68]
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Table 2. Summary of data sets and methods (Seg.= Segmentation).

Author Data Set Method Outcome Category

[22]

217 MRIs (106 from the 10 patients
(between 19 and 39 years) and 111
from the 10 control subjects
(between 18 and 41 years)).

3DiscNet, U-Net, Seg-Net Basic.
No preprocessing, no augmentation.
For 3DiscNet, ADAM optimizer,
1.0 × 10−3 learning rate.
For all algorithms, 2000 epoch.

For normal, 3DiscNet had (0.76 ± 0.08) dice,
(0.73 ± 0.12) sensitivity, and (0.81 ± 0.11) PPV
For displacement, 3DiscNet had (0.70 ± 0.17)
dice, (0.72 ± 0.19) sensitivity.
SegNet-Basic had (0.76 ± 0.16) PPV

Seg.

[23]
CBCT scans with small FOV and
large FOV. %20 for test, 10-fold
cross validation.

U-Net, RUNET (UNET with residual
connections similar to RESNET).
Contrast adjustment, Canny edge
detection, and contour techniques.
No augmentation, 60 epochs, batch
size of 8, and 10−5 learning rate.

Average 0.95 Dice coefficient Seg.

[26]
187 3D CBCTs scans of 95 patients.
94 left condyles, 93 right condyles

Denoising, 3D active contour and
morphological operations.

A Dice coefficient of 0.9461 accompanied
by a standard deviation of 0.0888 Seg.

[27] CBCT images of 20 adolescent subjects. Marker-based watershed transform. The Dice coefficient was 0.97 ± 0.01 Seg.

[28]

1200 MRIs (600 TMJs of 357 patients).
1000 MRIs from Hospital A (800 of
them for training, 200 of them for
internal validity test).
200 MRIs from Hospital B (All of
them were used for external validaiton).

U-Net (from a Neural Network Console)
No preprocessing, no augmentation.
300 epochs, 0.001 initial learning rate,
and ADAM solver.

The evaluation of effectiveness utilizing
data from Hospital B revealed
reduced sensitivity compared with
Hospital A, with both achieving
accuracy rates exceeding 80%.
Precision was diminished in utilizing
Hospital A’s test data for ascertaining
the anterior disc displacement position.
In terms of classifying intra-articular
TMD, a greater ratio of accurately
categorized TMJs was observed with
the utilization of images from Hospital A,
surpassing those obtained from Hospital B.

Seg.
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Table 2. Cont.

Author Data Set Method Outcome Category

[29]
160 training MRIs of 4 persons
(80 positive and 80 negative).
10-fold cross validation

19 different approaches (Viola-Jones,
Auto Color Correlogram measure,
CEDD, Color Layout, Edge histogram,
FCTH, Fuzzy Colour Histogram, Gabor,
General Color Layout, IPEG Coefficient
Histogram, Simple Color Histogram,
Tamura, Scalable Color, SVM comb-radial
kernel, SVM comb-dot kernel, SVM comb
-linear kernel, k-NN (k = 1, Canberra
measure), Decision trees, SVM comb.
-Gaussian kernel, SVM comb.-Neural
network, SVMcomb.-Anova).
No augmentation

The highest accuracy was attained by
employing a Gaussian kernel-based SVM
method (accuracy: 98.16 ± 2.81%).

Seg.

[30]

A total of 206 CT scans with reduced
radiation dosage were employed.
Of these, 123 3D images were utilized
for training, 42 for validation, and 41
for the test dataset. Subsequently,
the images were divided into individual
2D slices, resulting in 10,313 2D images for
train, 3502 for val.,
and rest 3351 for the test.

U-Net+tracking-based algorithm.
Normalization, horizontal flip and random
rotation were applied.
ADAM algorithm, 0.01 initial learning rate,
discard rate is 0.5 for dropout layer, and
model was obtained after 43 iteration.

DCs = 0.92 ± 0.03 (condyles) and 0.90 ± 0.04
(glenoid fossae), and MSDs = 0.20 ± 0.19 mm
(condyles) and 0.19 ± 0.08 mm (glenoid fossae).

Seg.

[31]

12,800 CBCTs from 25 subjects,
18 subjects (9216 slices) for the training,
5 subjects (2560 slices) for the validation,
2 subjects (1024 slices) for the test set.

U-Net-based model.
Adam optimizer with a fixed momentum
(0.9, 0.999), weight decay of 10−4, a batch
size of 0.1, learning rate of 10−4.
50 experiments using Monte Carlo cross
validation with 30 epochs.

The IoU and Hausdorff distance accuracy
were 0.870 and 0.928 for marrow bone and
0.734 and 0.247 for cortical bone, respectively.

Seg.

[32]
49,094 CBCTs of 102 patients (aged
18–90 years).
6:2:2 ratio for train:validation:test.

U-Net, SegNet.
For 2D network, 600 epochs, ADAM optimizer,
learning rate and decay (0.01, 0.005) for SegNet,
and (0.0001, 5 × 10−4) and a momentum of 0.9 for
U-Net. For 3D network, 100 epochs, ADAM optimizer,
learning rate 5 × 10−4(decay factor 5), batch size of 8.
No augmentation, preprocess was applied.

The accuracy achieved by the 2D U-Net
utilizing neighboring images was 0.82.
The 2D SegNet exhibited an accuracy of
0.96, while the 3D U-Net demonstrated
the highest accuracy of 0.99.

Seg.
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Table 2. Cont.

Author Data Set Method Outcome Category

[24]
130 manually segmented CBCTs for train
24 for validation, and 8 CBCTs for test.

3D U-Net model.
ADAM optimizer, decaying triangular cyclic
learning rate, 5 × 10−3 the base learning rate,
2 × 10−3 the max learning rate, 2000 step size.
Batch size of 8 for the first 3D U-Net, batch
size of 4 for the other two 3D U-Nets.
Batch normalization with a momentum of
0.9, a dropout rate of 0.2.

The condyles and glenoid fossa achieved
IoU scores of 0.955 and 0.935,
respectively.

Seg.

[25] Patient’s frontal face photograph AI-based method - Seg.

[35]
EMG data, 23 healthy participants and
9 TMD patients (18 males, age range
5–17 years, mean 12.4 years)

Multivariate data-driven approach based on
General Linear Model (supervised ML).
Bootstrap (1000 iterations) was applied.
No augmentation, no preprocessing

AUC of 0.71 JIA

[37]

Immune signature
85 patients diagnosed with JIA
and 43 controls matched for age.
10-fold cross validation

Random forest, ANN, SVM
Hyperparameters for the algorithms were
determined by experiment.
No preprocessing, no augmentation.

A ∼90% accuracy was achieved
in distinguishing patients with JIA
from healthy controls.

JIA

[39]

CBCT
92 patients, 46 TMJ OA and 46 control
subjects matched for age and gender
5-fold cross (10 times) validation

Logistic regression, random forest,
LightGBM, XGBoost.
No augmentation

The XGBoost and LightGBM ensemble
model attained an accuracy of 0.823,
an AUC of 0.870, and an F1-score of 0.823
for the diagnosis of TMJ OA condition.

TMJ
OA

[40]
314 patients, 3514 sagital CBCTs for
train
300 images in total (2 sets) for test

a Single-Shot Detector (SSD) model
No augmentation, no preprocessing

For the two test sets, the mean
accuracy, precision, recall, and F1 score
were 0.86, 0.85, 0.84, and 0.84.

TMJ
OA

[41]
1189 OPG, 2378 joints, 800 are normal,
779 are indeterminate, and 799 are OA
(based on the CBCT)

Inception ResNet V2
Data augmentation was done by image
rotation,image shift, brightness, and
contrast, no preprocessing.
700 epochs, learnin rate of 1.0 × 10−6,
ADAM optimizer

Accuracy: 0.78, sensitivity: 0.73, and
specificity: 0.82 (When the indeterminate OA
was removed).

TMJ
OA
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Table 2. Cont.

Author Data Set Method Outcome Category

[42]

A collective sum of 858 panoramic images
of the TMJ were included, comprising 395
images classified as normal and 463 images
categorized as TMJ-OA. These images were
obtained from a cohort of 518 individuals.
Ratio of train, validation, and test was (6:2:2).

Resnet152 and EfficientNetB7
learning rate of 10−4, 1000 epochs,
ADAM optimizer, and a weight decay of 10−4.
Augmentation techniques: Horizontal flip,
color jitter, random affine, random rotation.
ROI preprocessing.

The classification accuracies of ResNet152
and EfficientNetB7 were 0.87 and 0.88,
respectively.

TMJ
OA

[43]
17 TMJOA patient, 17 control subjects
259 condyles were used for training,
34 for test.

a NN, No augmentation.

The accuracy of the NN’s staging of TMJOA
in comparison to the repeated clinicians’
consensus was found to be 73.5% and 91.2%,
respectively.

TMJ
OA

[44]

293 CBCTs in total (259 training set and
34 testing set).
In training, 105 control subjects and 154
patients of TMJ OA.

The shape variation analyzer (implemented as
a deep neural network) utilized a NN
architecture consisting of 4 hidden
layers with neuron counts of (4096, 2048,
1024, 512), along with a dropout layer
with a dropout probability of 0.5.
The network also incorporated a softmax
layer with 7 output units. The learning
rate was configured as 1−5, and
the training process spanned 100 epochs,
employing a batch size of 32.
Augmentation was applied, no preprocessing

They achieved an exact classification accuracy
of 47%. However, if they allowed for an error
of +/−, the accuracy increased to 91%.

TMJ
OA

[45]
92 subjects, 46 TMJ OA patients, and 46
healthy controls
5 fold cross valiation

TMJOAI (a diagnostic tool) has three parts:
The feature preparation, selection and model
evaluation.

The optimal performance was attained by
averaging the predictions of the XGBoost and
LightGBM models. Furthermore, the
incorporation of an additional 32 markers
from the mandibular fossa of the joint
resulted in an enhancement of the prediction
performance of the AUC, increasing it from
0.83 to 0.88.

TMJ
OA
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Table 2. Cont.

Author Data Set Method Outcome Category

[46]

Panoromic images, 1292 patients
For condyle detection (800 train, 167 test)
For condyle discrimination (2066 train,
518 test) For condyle detection
(1154 train, 778 test)

R-CNN for learning, VGG16 for condyle
discrimination
Duplicating and rotating. No preprocessing

The R-CNN achieved an average precision of 99.4%
(right side) and 100% (left side) for condyle detection
at intersection over union (IoU) > 0.5. As for the
TMJ OA classification algorithm using a CNN, its
sensitivity, specificity, and accuracy were 0.54, 0.94,
and 0.84, respectively.

TMJ
OA

[47]

CBCT
The training dataset included 259 condyles,
with 105 condyles sourced from control
subjects and 154 from TMJ OA patients.
For testing purposes, 34 condyles (17 right
and 17 left) from a total of 17 patients were used.

A classifier based on a deep neural network
for 3D condylar morphology (referred to as SVA),
along with a versatile web-based system designed
for data storage, computation, and integration
(referred to as DSCI).
1 hidden layer, 2001 iterations, 50 epochs

The SVA classifier achieved a close agreement of 91%
with the clinician consensus. TMJ

OA

[48]

A total of 2000 sagittal sections
were extracted from CBCT DICOM images of
290 patients. These sections consisted of 500
images each for the categories of
healthy, erosion, osteophyte, and flattening.

YOLOv5, 500 epoch
No augmentation, no preprocessing

The model’s sensitivity, precision, and F1 scores for
TMJ OA classification were 1, 0.7678, and 0.8686,
respectively, with an accuracy value of 0.7678.
The classification model’s prediction values were 88%
for healthy joints, 70% for flattened joints, 95% for
joints with erosion, and 86% for joints with osteophytes.
As for the YOLOv5 model for TMJ segmentation, its
sensitivity, precision, and F1 score are 1, 0.9953, and
0.9976, respectively, while the AUC value is 0.9723.

TMJ
OA

[10]

Vibration and sEMG signals, a measurement
system was developed, and sample outcomes
from the rehabilitation process of a 27-year-old
female patient with temporomandibular joint
articular dysfunction are showcased.
15 patients(ten women and five men) for test.

k-NN k = 1

The k-NN algorithm produced results ranging from
62.5% to 82.1%. In the opening with protruding
exercise, effectiveness of 71.1% and 75.0% was
achieved using vibration and EMG, respectively,
while the combined classification achieved 79.1%
effectiveness. After data fusion, the recognition
efficiency for fast opening increased from 73.6% to
85.3%. However, the results for the remaining
exercises, slow opening, and slow protruding, were
not as promising.

TMD
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Table 2. Cont.

Author Data Set Method Outcome Category

[49]
507 patients (426 female, 81 male) 9009 MRI
%80 train, %10 validation, %10 test 5-fold
cross validation

ResNet34, learning rate 0.001, 20 rounds of
training
Horizontal flipping, 10% zooming, 10%
shifting

Theopen mouth position model exhibited accuracy and
AUC of 0.970 (±0.007) and 0.990 (±0.005), respectively.
The closed mouth position models, diagnostic Criteria 1
demonstrated higher accuracy and AUC with values of
0.863 (±0.008) and 0.922 (±0.009), respectively, which
were significantly superior to those of diagnostic
Criteria 2 (0.839 ± 0.013, p = 0.009; AUC 0.885 ± 0.018,
p = 0.003).

TMD

[50]
MRI, 214 TMJs from 107 patients
%80 train, %20 test

Logistic regression, random forest, decision tree,
k-NN, XGBoost, SVM

The k-NN and RF classifiers were identified as the most
effective machine learning models for predicting TMJ
pathologies.

TMD

[51]
IT, 78 patients (37 control and 41 TMD)
%70 training, %30 test cross validation used

k-NN, SVM and MLP k = 5 (for k-NN),
The 2. layer has 8 neurons, the 3. and 4. layers
have 6 neurons, the 5. has 4 (for MLP)
Hopkins’s statistic, Shapiro–Wilk, ANOVA and
Tukey tests were used, the significance level was
5% (p < 0.05).

Statistically significant differences were observed
in the accuracy, precision, and sensitivity values
between the semantic and radiomic-semantic
associations compared with the radiomic features
(p = 0.008, p = 0.016, and p = 0.013, respectively).

TMD

[52]
MRI, 299 joints from 289 patients (168 non
perforated, 131 perforated)
%80 train, %20 validation

Random forest, MLP
No augmentation, no preprocessing

The MLP demonstrated the
highest performance with an AUC of 0.940, followed
by random forest with an AUC of 0.918, and disc
shape alone with an AUC of 0.791.

TMD

[53]

4744 participants’ 37 independent variables of
TMDs (demographic factors, working conditions,
socioeconomic status, and health-related determinants).
%75 train, %25 test

Decision trees, logistic regression, random forest,
naïve Bayes, SVM and an ANN
The decision tree employed GINI,
the random forest consisted of 1000 trees,
radial basis function was utilized as the
kernel for the SVM, and the ANN featured 2
hidden layers (10-10) with quasi-Newton (lbfgs)
as the weight optimization method.

It has been observed that the factors selected by the
Random Forest algorithm are similar to those chosen
by the doctor.

TMD
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[54]

Sound data 48 different individuals (21 healthy
and 27 TMJ patients).
76 data (48 healthy, 28 TMD)
For ANN, 54 training, 11 validations, 11 test
For DL, the data was divided by 3 and the
number was tripled.

Signal processing, ANN, DL
For ANN, 10 hidden layers, sigmoid activation
function
For DL, each intermediate layer consists of a
Convolution2DLayer, a ReLU-Layer, and a
Maxpooling2DLayer. After the intermediate layers,
there is a fully connected layer, a softmax layer,
and a classification output layer.

The average success rate of the frequency-based
feature extraction method using ANN classification
is 78.6%. For the statistical-based feature extraction
method, the average success rate with ANN
classification is 89%. Additionally, the average success
rate of the deep learning-based method is 94.5%.

TMD

[55]

The dataset comprises information from
2300 patients with TMJ syndrome, presenting
symptoms such as locking of the jaw
or limited movement, painful clicking, popping,
or grating sounds, alterations in the
fitting of upper and lower teeth, radiating
pain in the face, jaw or neck, aching
pain in and around the ear, jaw muscle
stiffness, and underlying factors like
genetic predisposition, diabetes, parathyroid issues,
and vitamin D deficiency.

ANN 17 epoch, 20 neurons in hidden layer
(1 hidden laye)

98.9% of the correlation coefficient in terms of
regression curve for the TMJ disorder prediction TMD

[56]

200 patient (patients between 20 and 50 years)
Demographic information includes variables such as
age, gender, and education level. Parafunctional
aspects encompass bruxism and clenching behaviors,
as well as habits such as nail biting and gum chewing.
Occlusal factors involve dental relationships,
lateral occlusion scheme, horizontal disparities
between centric occlusion and maximal intercuspation
(MI), as well as discrepancies between MI and
the mandibular resting position.

The analysis of TMD was conducted using
Chi-square tests and independent sample
t-test at a significance level of α = 0.05.
Additionally, binomial logistic regression
analysis was carried out, taking into account
potential confounding variables.

The prevalence of TMD was found to be 58.9%.
Among the parafunctional and occlusal factors
examined, only bruxism demonstrated a statistically
significant difference between the TMD and non-TMD
groups (p < 0.05). However, other parafunctional and
occlusal factors did not exhibit significant influence
on the occurrence of TMD.

TMD
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[58]
MRI 295 cases, and 590 right and left sides of
TMJs (54 male; 241 female)
10-fold cross-validation

The accuracy of the Bayesian Belief Network
(BBN) was evaluated by comparing it with 11
different algorithms, (including “necessary path
Rebane–Pearl poly tree, condition, Chow–Liu tree,
path condition, greedy search-and-score
with Bayesian information criterion,
tree augmented naive Bayes model,
minimum description length, maximum
log likelihood, Akaike
information criterion, K2, and C4.5),
a multiple regression analysis and
an ANN” using resubstitution validation
and 10-fold cross-validation.

The BBN path condition algorithm using
resubstitution validation and 10-fold cross
validation was 0.99% accurate.

TMD

[59]

Survey (9922 invited participants aged 18 years
or older) The main dataset utilized in the study
consisted of 530 individuals (information of
clinical oral examination, severe headaches).
From the main dataset, they created dataset 1
(n = 345) and dataset 2 (n = 464)

Bayesian logistic regression models

The presence of migraine at follow-up was not
associated with either of the baseline TMD-related
pain variables (posterior effect estimates: −0.12,
95% credible interval [CI] −0.49– 0.24, and 0.11,
95% CI −0.38–0.59, for mTMD and jTMD,
respectively). However, mTMD at baseline
was associated with the presence of tension-type
headache (TTH) at follow-up (posterior effect
estimate 0.36, 95% CI 0.02–0.69), whereas jTMD
at baseline was not significantly associated with
TTH at follow-up (posterior effect estimate −0.32,
95% CI −0.94–0.25).

TMD

[60]

MRI images of 2520 TMJs (861 men, 399
women; average age 37.33 ± 18.83 years).
2051 for train, 468 for test, %20 of train
for validation

VGG16 (fine-tuning, from scratch and freeze were
evaluated separately)
3 different augmentations (randomly flip in vertical
and affine transform image. Contrast changes:
randomly changed contrast values and applied
histogram equalization. Brightness changes:
randomly changed brightness of image).
Learning rate of 1 × 10−4 for the fine-tuning and
from-scratch (their epochs were 15 and 30
respectively), the freeze model utilized 5 × 10−4 with
150 epochs. All 3 had the ADAM optimizer.

The fine-tuning model achieved a
prediction performance with an AUC of
0.8775 and an accuracy of 0.83%. The AU
C values for the from-scratch
and freeze models were 0.8269 and 0.5858,
respectively.

TMD
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[61]

MRI, clinical examinations for pain and
mouth opening limitation.
96 TMJS (48 patients, 39 female and
9 male)

Multiple logistic regression

The data analysis revealed statistically significant
correlations between pain and the degree of disc
displacement on MR imaging (p < 0.05). The
likelihood of experiencing pain in moderate to
significant cases was 9.69 times higher compared
to normal cases.

TMD

[62]
sEMG signals from the TMJ muscles during
jaw movements
42 volunteers participated

Self-Organizing Map (SOM) combined with
cross-correlation analysis

Intra cross-correlation coefficient (CC) provided
information about muscle activity similarity within
and between patients, indicating TMJ function
stability.
SOM analysis helps interpret muscle activation and
assess TMJ health, while cross-correlation identifies
similarities in sEMG data between patients,
potentially aiding clinical TMD diagnosis and
treatment assessment

TMD

[64]

451 cases (320 females and 131 males) from
patient notes between 8 and 93 years old, average
age is 43.4 years. 141 variables (3 continuous,
138 dichotomous: age, pain severity and max
mouth opening in millimeters)
5-fold cross validation

High Frequency Value (HFV) multilabel,
random forest multilabel, random forest,
Logit, SVM, and k-NN
HFV method used THF = 0:67, random
forest had 100 trees, SVM used a slack
variable cost C = 1 and Logit used a
SAG solver.

The accuracy varies between 75.60% and 96.8%,
recall varies between 46.27% and 98.21%,
precision varies between 52.40% and 97.38%
and the F-1 score ranges from 0.56 to 0.96.

TMD

[63]

Medical records of 290 patients (61 male and 229
female; average age, 31.2 ± 15.8)
with genuine TMD and 29 patients (14 male and
15 female; average age, 39.5 ± 23.2)
with TMD-mimicking conditions.
10-fold cross validation

natural language processing and
recursive partitioning.

The model exhibited a predictive performance
of 96.6%, achieving a sensitivity of 69.0%
and a specificity of 99.3% in anticipating
TMD-mimicking conditions.

TMD

[67]

MRI of 52 patients with TMJ Disc displacement
(TMJDD) and 32 healthy controls.
300 images (105 normal, and 195 patient)
5-fold cross validation
100 MRI used for U-Net

U-Net for joint cavity detection and
InceptionResNetV2, InceptionV3,
DenseNet169, and VGG16 for
classification.

Among the models evaluated, InceptionV3 and
DenseNet169 demonstrated the best performance.
In the case of InceptionV3, the recall, precision,
accuracy, and F1 score were 1, 0.81, 0.85, and 0.9,
respectively. Similarly, for DenseNet169, the
corresponding values were 0.92, 0.86, 0.85, and 0.89.

TMD
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[65]

Mouth opening and closing videos of 91 patients
(17 males and 74 females; mean age, 38.42 years
old)
The graph paths were: straight, sideways-skewed,
and limited-straight line graphs

The automated model encompasses the following
components: (I) the creation of an automated
system for detecting landmarks on both the
upper and lower lips within the video footage;
and (II) the generation of a visual representation
of the tracing graph and the subsequent automatic
computation of both the graph’s height
(indicating mouth opening length) and width
(representing sideways values).

Subjects with a normal disc position exhibited
mainly straight line graphs in 85.72% of cases.
The presence of sideways skewed or limited
-straight line graphs was identified in 85.0%
of cases within the anterior disc displacement
with reduction group and in 89.47% of
cases within the anterior disc displacement
without reduction group.
This observation exhibited a statistically
significant correlation of (χ2 = 38.113, p < 0.001)
between the two groups.

TMD

[66] Clinical cases

MLP consisted of an input layer with
18 neurons, followed by 5 hidden layers,
and concluded with 1 output layer.
Backpropagation training

The accuracy of the MLP outperformed
that of the general dental clinicians, with
a statistically significant difference (p = 0.0072).

TMD

[68]

2576 MR images of 200 patients (4 classes)
%80 for train, %20 for test and %20 of training
for validation
Contrast, flip and rotation augmentation methods
were applied.

Performance of a CNN, fine-tuned Xception,
ResNet-101, MobileNetV2, InceptionV3,
DenseNet-121 and ConvNeXt, and transformers
were evaluated.
100 epochs, binary cross-entropy loss function,
ADAM optimizer and 1 × 10−6 learning rate.

It was determined that MobileNetV2 exhibited
the best performance for the “closed mouth
disc position” group, while Xception
performed the best for the “open mouth
disc position” group. In terms of
“joint cavity effusion,” ResNet-101
showed superior results, and for the
“mandibular condyle degeneration”
group, MobileNetV2 demonstrated the highest
performance.

TMD

[57]

Gender, economic class, age and marital status.
1000 patients (aged 15 to 70, 57% were over
30 years of age and 83% were women. 53%
were not married) were divided into 3 class
which were Class A (high social class), Classes
B/C (middle class) and Classes D/E (very poor
social class).

Pearson’s chi-square test for proportions, fisher’s
exact test, nonparametric mann-whitney test and
binary logistic regression analysis

No participants belonged to Class A, 72%
belonged to Classes B/C and 28% belonged
to Classes D/E

TMD
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[69]

TMJ sound data
11 orthodontic patients (22 joints) aged
between 9 and 13 years old with
lateral cross-bite, as well as 21
orthodontic patients (42 joints) within
the age range of 9 to 13 years
old with Class II Division I type
malocclusions.

Discrete evolutionary transform, MLP
16 input neurons, (corresponding to each
joint moment), a hidden layer, and an
output layer containing 4 neurons
(TMJ signal class). Back-propagation learning,
5000 iterations.

The classification of TMJ sounds based on recorded
signals agreed to some extent with physician
examination methods (palpation and auscultation).
The accelerometer recordings provided additional
detail in crepitation signals not detected by physical
examination. In patients with lateral cross-bite, 6
out of 11 showed a decrease in TMJ vibrations after
treatment, while 2 patients had increased vibrations
and 5 showed no change. In Class II Division I patients,
6 out of 21 showed a decrease in vibrations, 17 had
increased vibrations, and 5 showed no change after
treatment. More patients demonstrated increased TMJ
vibrations in the Class II Division I group, and
decreased vibrations in the lateral cross-bite group.

Sound

[70]
Soundscoming from the TMJs during
opening/closing motion

Nearest linear combination (NLC), Nearest
neighbor (NN), and Nearest constrained linear
combination (NCLC) were used on either only
time-shift, or both time-shift and scale-invariant
representations of the signal Reduced Interference
distribution (RID)’s

The automated analysis techniques yielded
classification outcomes comparable to the
previous manual sound classification. Excluding
scale invariance significantly enhanced the
performance of the classifier. Scale invariance
was found to interfere with the frequency content
of the signal

Sound

[71]

Set of simulated data was generated and tested
by the algorithm. Then TMD data were used.
14 subjects (4 with TMD, 10 healthy)
Each subject was captured performing four
cycles of chewing motion using color video
camera. 400 video frames were obtained
per subject.

Singular spectrum analysis
It was interpreted that the SSA technique can be
successfully used as a detection method, or at
least for extraction of the main signal.

Sound
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[72]

26 patients (21 female, 5 males. Aged between
21 and 57.) with 44 TMJs (25 left, 9 right).
Patients were used Anterior Repositioning Splint
(ARS) for 6 weeks
3 classes (disc displacement (19), disc dislocation
with reduction (4), acute disc dislocation without
reduction (3))

Evolutionary spectral analysis
Parameters (sound type, amplitude, duration
and energy) were evaluated

The results showed that 6-week ARS usage reduced
amplitude and energy parameters of TMJ sounds Sound

[73]
35 type 1 (0 to 600 Hz), 31 type 2 (600 to 1200 Hz)
and 38 type 3 (above 1200 Hz) TMJ clicks

The Nearest Neighbor (NN), Nearest Linear
Combination (NLC) and Nearest Constrained
Linear Combination (NCLC)

Linear combinations improved classification
of the Reduced Interference Distributions (RID)’s
of TMJ sound.

Sound
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Upon scrutinizing Table 1, a comprehensive compilation of 66 studies was identified,
encompassing a range of topics. This includes 11 studies that delve into segmentation,
3 that focus on JIA, 10 dedicated to TMJ OA, 21 centered around TMD, 6 investigating
decision support systems, along with 10 review articles and 5 examining sound analysis.
Turning to Table 2, an array of methodologies was employed across these studies to
tackle the research questions. However, it is conspicuous that DL-based algorithms found
application in only 7 of the segmentation studies, 4 research papers concerning TMJ
OA, and 5 articles pertaining to TMD. This indicates a relatively selective adoption of
DL methodologies within these domains, warranting further exploration and potential
integration in future investigations.

In the realm of segmentation studies, the U-Net architecture has risen to prominence
due to its noteworthy efficiency and accuracy, being implemented in 6 out of 7 cases.
Additionally, the SegNet architecture was employed in two studies, with an expected
broadening of its utilization in forthcoming investigations. Concerning segmentation
studies, it was predicted that there would be a prevalence of DL-based approaches due to
the limitations of classical machine learning methods. The research landscape on juvenile
idiopathic arthritis is marked by scarcity, with only a handful of studies predominantly
relying on machine learning approaches. Within the domain of TMJ OA research, deep
learning methodologies have gained a stronger foothold compared with traditional machine
learning techniques. Conversely, in TMD investigations, traditional machine learning
approaches have held a more dominant presence, whereas the utilization of deep learning
approaches has been relatively less frequent. This field demonstrates an evident shift
towards embracing deep learning-based methodologies over traditional machine learning
models. When examining studies pertaining to voice analysis, the deployment of signal
processing approaches is discernible. However, the concurrent utilization of both imagery
and audio for diagnostic purposes lacks substantial exemplars within the current literature.
It is worth noting that certain ML and DL approaches have not been applied at all, leaving
room for exploration. For example, architectures such as Xception [90] and Inception [91]
can be considered for TMJ OA and JIA.

Another notable point is that transformers and ViTs were only used in a single study.
The ViT stands for an innovative deep learning architecture that translates the foundational
principles of transformers into the realm of computer vision. Initially conceptualized
for natural language processing tasks, transformers gained notable prominence for their
transformative impact. Subsequently, this architectural paradigm was extended to diverse
fields, encompassing computer vision, which led to the formulation of ViT. Transformers
epitomize attention-based [92] neural network structures, meticulously devised to appre-
hend intricate associations among components within sequential data. The foundational
transformer architecture encompasses an attention mechanism, facilitating the computation
of a weighted summation of values across the sequence. This mechanism empowers the
model to concentrate on pertinent facets of the input while concurrently accounting for
all elements. This inherent capability endows transformers with the adeptness to capture
extensive contextual dependencies within data, rendering them adept for tasks entailing
sequential or contextual comprehension. In the context of computer vision, the ViT ar-
chitecture orchestrates the division of images into non-overlapping patches of consistent
dimensions. These patches are subsequently subjected to linear embedding and treated as
sequences. Augmenting the patch embeddings with positional embeddings confers spatial
awareness upon the model. The embedded patches then undergo processing within the
transformer framework, featuring self-attention mechanisms that apprehend interrelations
among distinct patches. The conclusive output of this model is then harnessed for a spec-
trum of visual tasks, encompassing image classification, object detection, and segmentation.

It is evident from the tables that the number of publications on TMJ and TMJ-related dis-
eases is relatively limited. However, with the increasing popularity of artificial intelligence-
based approaches, especially deep learning, we can anticipate a growth in this number in
the coming years.
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The main reason for the lower number of studies in this field compared with other
areas is the data. The effectiveness of neural networks heavily relies on the availability
of diverse and high-quality data. To learn and generalize effectively, neural networks
typically require a substantial amount of labeled data. However, the limited availability
of data for training can lead to overfitting, where the network performs poorly on unseen
data. Moreover, the generalization capability of neural networks improves when the
training data encompasses various scenarios and variations, making diversity in the data
crucial. Without diversity, the network’s capacity to handle unseen situations may be
limited. Ensuring a diverse and representative training data set is essential for achieving
reliable and accurate neural network models. A major challenge in this field is the difficulty
in creating a data set, as data access is restricted by data protection measures, resulting
in an insufficient number of samples. To overcome data challenges in neural networks,
researchers and practitioners adopt several strategies, including data augmentation, transfer
learning, pre-trained models, and adversarial training. Data augmentation artificially
expands the training data by applying diverse transformations to existing samples. These
transformations are typically designed to be realistic and relevant to the domain of the
data. Common data augmentation techniques in the context of computer vision include
image rotation, flipping, scaling, translation, shearing, zooming, and color jittering. In
addition to this, another data augmentation method is the generation of synthetic data with
Generative Adversarial Networks (GAN). Data augmentation using GANs is an innovative
and advanced approach that exploits GANs’ capabilities to produce realistic and diverse
synthetic data for data augmentation. This cutting-edge technique shows great potential
for improving the training of deep learning models and addressing data scarcity in various
fields, including NLP, computer vision, and medical imaging. GANs are composed of two
competing networks, the generator, and the discriminator, trained together to generate
synthetic data. However, it is important to acknowledge that data augmentation with
GANs presents some challenges. Generating high-quality synthetic data requires a well-
trained GAN, and at times, GANs may generate unrealistic or noisy samples. Ensuring the
reliability and diversity of the generated data is essential for the success of this approach [93].
The studies by Chlap et al. [93] and Mikolajczyk et al. [94] have extensively examined data
augmentation techniques, providing comprehensive discussions on the subject. Researchers
interested in acquiring insights into data augmentation methods may find these studies
valuable resources for exploration and understanding. Transfer learning involves utilizing
knowledge gained from one task or domain to improve performance on another task or
domain that is related but different. Pre-trained models involve utilizing networks trained
on extensive datasets for general tasks, such as image recognition, and fine-tuning them for
specific tasks with smaller datasets. Adversarial training aids in enhancing the model’s
robustness to minor perturbations and improving its overall generalization capability.

Another issue is that artificial networks are black boxes. Traditional neural networks,
especially deep learning models, are often regarded as “black boxes” due to their utilization
of intricate mathematical transformations and high-dimensional data, leading to challenges
in comprehending their decision-making process. Despite their remarkable performance
in tasks such as image recognition, NLP, and speech recognition, the growing complexity
of networks poses challenges in comprehending their predictions. As the networks learn
from input data and desired outputs, they adjust their internal parameters (weights and
biases), resulting in highly intricate structures that are hard to interpret. This complexity
hinders the identification of specific features or patterns in the data that contribute to
specific predictions. The lack of interpretability poses a significant concern in critical fields
such as healthcare, finance, and autonomous vehicles, where transparent and explainable
decision-making processes are crucial. To address the black box problem, researchers
have proposed “Explainable AI” (xAI), an area of AI research focused on enhancing the
transparency and interpretability of AI systems for humans. The primary aim of xAI is to
provide meaningful explanations for the decisions and predictions made by AI models,
empowering users and stakeholders to better comprehend the reasoning behind the results.
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This becomes especially vital in domains where the consequences of AI decisions have
substantial impacts on individuals and society. Some common techniques employed in xAI
include feature visualization, feature attribution, rule-based models, saliency maps, and
contrastive explanations. These techniques aim to shed light on the inner workings of AI
models and provide insights into the factors influencing their predictions, enabling users to
build trust and confidence in the AI systems’ decisions. By incorporating xAI approaches,
AI systems can become more interpretable, transparent, and trustworthy, ensuring their
responsible and effective application across various critical applications.

Although there are some challenges to overcome, it is anticipated that DL algorithms
will play a more noteworthy role in this field. The future holds promise for the automation
of inferences through the implementation of DL applications on dental images. Our
current work is focused on TMD, aiming to contribute to the existing literature and support
dentists in making accurate diagnoses. As this study centers on TMD, we have provided an
overview of all computer-assisted or artificial intelligence-based studies related to TMD in
this article. However, in future review articles, we can delve into the individual successes
of each study, evaluating their effectiveness and identifying any limitations they may have.
By comparing similar subjects and highlighting shortcomings, we can assess the overall
progress in this field. Furthermore, AI, particularly ML and DL-based algorithms, has had
a significant impact on medical applications. The rapid development of new algorithms
in this domain has been remarkable. We believe that our research will serve as a starting
point for future studies to create more accurate and reliable models for TMJ-based diseases.
These advancements will undoubtedly improve patient care and contribute to the field of
dental healthcare.

6. Conclusions

In recent times, rapid advancements in technology have revolutionized various fields,
including the medical domain, where computer-based investigations and AI-based al-
gorithms have gained substantial importance. The prevalence of TMJ-related diseases
affecting a frequently utilized joint in the human body should not be underestimated. The
present study aimed to explore computer-based and artificial intelligence-based approaches
employed in TMJ and TMJ-related diseases, aiming to contribute to the existing literature
and pave the way for future research endeavors. However, upon evaluation, it became
evident that the number of studies conducted in this area remains insufficient. The under-
lying reasons for this limitation were examined, and potential solutions were elucidated.
Encouragingly, considering the recent increase in published papers and the ongoing efforts
to address these challenges, it is anticipated that novel studies in this domain will emerge,
leading to a promising growth in their quantity and quality.
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