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Abstract: COVID-19 is an ongoing global health pandemic. Although COVID-19 can be diagnosed
with various tests such as PCR, these tests do not establish pulmonary disease burden. Whereas
point-of-care lung ultrasound (POCUS) can directly assess the severity of characteristic pulmonary
findings of COVID-19, the advantage of using US is that it is inexpensive, portable, and widely
available for use in many clinical settings. For automated assessment of pulmonary findings, we
have developed an unsupervised learning technique termed the calculated lung ultrasound (CLU)
index. The CLU can quantify various types of lung findings, such as A or B lines, consolidations, and
pleural effusions, and it uses these findings to calculate a CLU index score, which is a quantitative
measure of pulmonary disease burden. This is accomplished using an unsupervised, patient-specific
approach that does not require training on a large dataset. The CLU was tested on 52 lung ultrasound
examinations from several institutions. CLU demonstrated excellent concordance with radiologist
findings in different pulmonary disease states. Given the global nature of COVID-19, the CLU
would be useful for sonographers and physicians in resource-strapped areas with limited ultrasound
training and diagnostic capacities for more accurate assessment of pulmonary status.

Keywords: ultrasound; machine learning; COVID-19; unsupervised learning; POCUS; computer
vision; treatment effectiveness

1. Introduction

SARS-CoV-2, also known as COVID-19, is a global pandemic that has led to over six
hundred million documented cases and 6.8 million deaths, and it has resulted in devas-
tating economic damage as of early 2023 [1]. Radiological imaging is useful for assessing
pulmonary disease burden, assessing disease severity, and tracking the disease course [2].
Although X-rays are both portable and inexpensive, they lack sensitivity compared to CT,
with a reported sensitivity of 69% [3]. While CT provides excellent anatomic imaging, its
use in the United States is typically limited to acute cases, it is not portable, and it may be
difficult to access for longitudinal monitoring due to logistical concerns, cost, and cumu-
lative radiation dose [4,5]. However, ultrasound (US) is relatively inexpensive, portable,
and widely available, and it has successfully been used to monitor lung diseases [6]. In
fact, recent studies have shown lung ultrasound findings to demonstrate high diagnostic
sensitivity and accuracy, comparable to CT [7]. Due to its portability, ultrasound can be
taken directly into a patient’s room, and modern ultrasound scanning devices, such as
Butterfly iQ, can be used as point-of-care devices connected to a smartphone [8]. Conse-
quently, many emergency departments (ED) have made ultrasound a mainstay for early
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COVID-19 diagnosis in patients presenting with flu-like symptoms [9]. For instance, the
CLUE (COVID-19 lung ultrasound in the ED) protocol includes a lung ultrasound scoring
system (LUSS) for rating the severity of pulmonary findings [10]. LUSS has previously
shown utility for COVID-19 and other respiratory illnesses [11]. Several authors have
proposed scoring systems for lung ultrasound in COVID-19 [12–14].

Various pulmonary findings are evident on ultrasound, including A-lines, B-lines, con-
solidations, and pleural effusions, with characteristic lung ultrasound findings associated
with COVID-19 [15]. Ultrasound can be performed at the patient’s bedside, whether in an
ED, inpatient floor, intensive care unit, or field hospital. Its inexpensive cost and deployable
nature dramatically increase US potential for worldwide availability. Nevertheless, ultra-
sound does have potential challenges. First, it is operator-dependent, relying on the skills
of the sonographer. Second, lung US has not traditionally been performed as frequently as
other forms of ultrasound, such as abdominal, pelvic, and obstetric ultrasound.

Although sonographers have become better versed with lung ultrasound during
the COVID-19 pandemic, there still exists a potential problem regarding quantifying the
different US lung findings. To address this problem, we have developed a technique that
uses an unsupervised learning technique, a patient-specific model, that does not require
a large patient cohort, which is typically required for successfully training supervised
artificial intelligence (AI) algorithms.

Although COVID-19 is diagnosed with PCR, this test does not establish the extent of
disease within the lungs, only the presence of the virus. This is crucial since pulmonary
involvement is important for determining disease severity and response to treatment. There
are now several treatments for COVID-19, such as nirmatrelvir-ritonavir, a combination of
oral protease inhibitors that are used in symptomatic outpatients at risk for progression to
severe disease [16]. Patients under treatment will need to be monitored longitudinally to
ensure that their pulmonary disease burden is improving. We have developed a technique
termed the calculated lung ultrasound (CLU) that quantifies several imaging characteristics
(Figure 1). CLU can be used to estimate the extent of lung involvement, especially important
for the initial staging of COVID-19, as well as the longitudinal disease course, and it
provides a method to evaluate if treatment is working. When used in conjunction with
clinical data, the information about pulmonary disease burden could help guide patient
management by highlighting specific lung tissue characteristics, such as A or B-lines,
pleural effusions, and consolidation.
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The objectives of this study were to describe the CLU technique and evaluate its
performance in identifying key lung ultrasound findings related to COVID-19 on an initial
dataset of 52 ultrasound examinations.
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2. Materials and Methods
2.1. Clinical Information

This is a retrospective study involving several institutions and public databases.
The multi-institutional retrospective data used in this paper were read by board-certified
physicians. All data were deidentified. There were 52 ultrasound examinations scanned
with multiple US scanners including Siemens, Philips, GE, Butterfly iQ, and SonoSite. For
lung ultrasound imaging, curvilinear or phased-array 5–9 MHz probes with a small convex
tip are typically used to examine the lung, as they can easily be placed in the intercostal
space. However, a linear probe with a higher frequency (6–13 MHz) can be used to assess
soft tissues, ribs, lung sliding, and the pleura. On the other hand, a convex probe with a
low frequency (3–5 MHz) can be used to assess depth for effusions, consolidations, and
extension of B-lines [17].

Ultrasound findings were verified by using the reports of radiologists with expertise
in identifying lung ultrasound findings associated with COVID-19.

2.2. Lung Ultrasound Features

Lung US assesses different artifacts termed A-lines and B-lines. A-lines are horizontal
lines that represent normal aerated lungs (dry interlobular septa), representing a rever-
beration artifact caused by sound waves bouncing off highly echogenic pleura and back
to the probe [18]. B-lines represent the correlate of Kerley B-lines on chest radiograph;
they are vertical lines of hyperechoic artifact, originating from water-thickened pulmonary
interlobular septa; they have been compared to the beam of a flashlight and are commonly
seen in lungs with interstitial edema. They originate at the pleural line and traverse the
entire ultrasound screen vertically to the bottom of the screen. Potential causes of unilat-
eral B-lines include pneumonia and pulmonary contusion. For an ultrasound exam to be
deemed positive, there are typically greater than three B-lines per view [19]. C-lines are
seen when there is an area of echogenicity arising below a subpleural consolidation [20].
Figure 2 illustrates examples of various ultrasound findings evaluated by CLU.
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2.3. Calculated Lung Ultrasound Algorithm

The CLU, which was developed using MATLAB, is outlined below:

1. Computer Vision and Image Segmentation: This component of CLU uses image seg-
mentation and video processing techniques, which include clustering methods and
non-linear manifold learning, to detect lung features used by radiologists on lung
ultrasound exams [21–24]. These features were described in Figure 2 and Section 2.2,
including A-lines, B-lines, consolidation, pleural effusion, and other findings. The
generalized technique for segmentation is described in detail by Akhbardeh (2012)
and was previously applied to the topic of breast MRI segmentation [21]. CLU uses
the lung ultrasound video series to generate a single image, termed the “integrated
image”, which highlights findings within the ultrasound video. Potentially patho-
logical tissue is color-coded, ranging from cyan to orange-red, with normal tissue
and background in dark blue. Ultrasound findings were also verified by radiologists
with expertise in identifying lung ultrasound findings associated with COVID-19 and
other pulmonary disorders.

2. Analysis of Orientation and Shape: This step extracts orientation and shape features
that include the following: area, bounding-box, circulatory, convex area major and
minor axis length, and orientation [25,26].

3. Decision-Making: The clinically significant findings and segmentations are retained
—A-lines, B lines, pleural irregularity and effusion, consolidation, etc. using both the
“integrated image” (the step 1 computer vision component that generates a single
image) and the geometric/shape features (step 2). This step quantifies each finding:
A-lines, B-lines, consolidation, and pleural effusion.

4. Calculated Lung Ultrasound Score: The final step calculates the “CLU Score”,
with a normalized range from 0–100, by integrating the aforementioned shape and
statistical features.

2.4. Performance Evaluation

Performance of the CLU was used to determine the presence or absence of the fol-
lowing findings: A-lines, patchy B-lines, confluent B-lines, thickened/irregular pleural
lines, pleural effusion, subpleural consolidations, and consolidations with air bronchogram.
The concordance of these findings was evaluated with board-certified clinical radiologists
who are experts in pulmonary ultrasound serving as the gold standard. The results were
recorded from the patient reports and used in the testing of the CLU index; they were
verified by a board-certified radiologist.

2.5. Example Patient with Longitudinal Monitoring of COVID-19

We were able to obtain a patient that underwent longitudinal monitoring for COVID-19.
A 35-year-old male patient was followed over a 20-day hospital course at La Paz University
Hospital in Madrid, Spain [27]. After a diagnosis of COVID-19 via RT-PCR, the patient’s
lungs were imaged via ultrasound each day for 20 days after a COVID-19 diagnosis. On
days 1, 5, 10, and 20 after the COVID-19 diagnosis, CLU was applied to the ultrasound
imaging, and the CLU score was calculated and compared to the reports.

3. Results
3.1. Comparison of CLU with Different Pathologies

Out of the 52 ultrasound examinations, we found the typical CLU US findings as
shown in Figure 3, which shows the CLU algorithm outputs for the following lung ultra-
sound findings: A-lines, tiny (narrow) B-lines, confluent B-lines, pleural effusion, thick
B-lines, and B-lines with consolidations. These results are summarized in Table 1.
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Figure 3. The ML-based POCUS CLU score. (Top row) Lung POCUS images in different pathologies
in the “POCUS” row, with characteristic findings highlighted under the “machine leaning” row.
Associated findings are color-coded, ranging from cyan to orange-red, with normal tissue and
background in dark blue. (Bottom row) CLU score derived from POCUS. A normal-appearing
CLU is ~10, whereas other findings increase the score above 10. POCUS = point of care ultrasound,
CLU = calculated lung ultrasound.

Table 1. Imaging findings on lung ultrasound for 52 ultrasound examinations, as well as CLU
concordance with the radiologist report.

Finding CLU Finding Radiologist Finding

A-Lines 12 12
Patchy B-lines 19 19

Confluent B-lines 17 17
Thickened, Irregular Pleural Lines 13 13

Pleural Effusion 6 6
Subpleural Consolidations 12 12

Consolidations with Air Bronchogram 9 9

Importantly, the CLU areas that captured normal tissue resulted in a lower score closer
to blue, while the CLU areas that imaged increased pulmonary disease burden resulted in
a higher score in the orange-red range.

3.2. The Use of CLU for Monitoring Pulmonary Disease Burden Longitudinally

Figure 4 demonstrates the longitudinal use of CLU from days 1, 5, 10, and 20
for a 35-year-old male after being diagnosed as positive for COVID-19. The top row
shows that on day one, there were no significant lung POCUS abnormalities. After
five days, COVID-19 had progressed within the lungs to include typical findings of B-7
lines (B-lines ≥ 7 mm apart) confluent with subpleural consolidations bilaterally in the
posterior lower lobes. By day 10, there were extensive thick pleural lines and focal B-lines.



Diagnostics 2023, 13, 2692 6 of 11

Finally, by day 20, there was significant improvement with remaining thickened pleura and
B-lines. The patient had a negative COVID-19 PCR test on day 20.
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Figure 4. POCUS for monitoring COVID-19 over a 20-day hospital stay. Snapshot of frames from
ultrasound videos from a COVID-19 case for days 1, 5, 10, and 20 after a polymerase chain reaction
(PCR) positive test. After day 19, a negative PCR result was obtained. (Top and middle rows) Middle
frames from POCUS with the CLU “integrated image” that highlights findings from POCUS including
A/B-lines and consolidations (normal in dark blue, abnormal in orange to red). (Bottom row) The
CLU metric after day 1: confluent/focal B-lines on days 5 and 10, consolidation on day 5, and thick
pleural lines from days 10 to 20.

3.3. Comparison of Performance between CLU and Radiologists

The imaging findings using CLU demonstrated excellent concordance with radiolo-
gists for all findings (Table 1). These included A-lines (12), patchy B-lines (19), confluent
B-lines (17), thickened/irregular pleural lines (13), pleural effusion (6), subpleural consoli-
dations (12), and consolidations with air bronchogram (9). For each finding in each row of
Table 1, CLU demonstrated concordance in identifying the relevant radiological findings in
the 52-ultrasound examination dataset.

4. Discussion

We have developed and tested the CLU method on an existing cohort of COVID-19 ul-
trasound data, with excellent performance in identifying the pulmonary patterns associated
with COVID-19.

With further clinical validation, this tool has the potential to save radiologists time and
increase their efficiency in reading studies, by quantifying findings and creating preliminary
reports, pre-populated with findings of interest that the radiologist can quickly verify. CLU
was able to detect areas of interest in COVID-19 and quantify relevant findings, such as
A/B-lines, consolidation, pleural effusion, etc. There are several lung ultrasound findings
associated with COVID-19, and ultrasound has been shown to be of utility due to its
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safety, lack of radiation, low cost, repeatability, and use in point-of-care settings [28]. This
technique does not rely upon a particular ultrasound device, operating system, or hardware
configuration. Hence, it can be rapidly scaled up and applied to any ultrasound scanner
worldwide, from traditional devices to point-of-care scanners attached to smartphones.

However, not all sonographers and physicians have significant prior experience with
lung ultrasound for COVID-19, especially in resource-limited regions with a dearth of
trained sonographers and radiologists. For instance, healthcare providers in the developing
world, including physicians, nurses, and technicians, have identified a lack of training as
a primary barrier to the use of ultrasound in their practice [29]. Ultrasound evaluation
is also operator dependent. Detecting A- or B-lines on ultrasound examinations is not
always straightforward, and there is a learning curve for radiologists to become sufficiently
familiar with performing lung ultrasound.

Both traditional machine learning and deep learning have previously been applied
to analyzing lung ultrasound images for COVID-19. Wang et al. analyzed 27 patients
using features such as B-lines and pleural lines in conjunction with a support vector
machine to classify patients as severe or non-severe, achieving an area under the curve
(AUC) of 0.96 [30]. Diaz-Escobar et al. adapted pre-trained deep learning architectures
(VGG19, InceptionV3, Xception, ResNet50) on 3326 pulmonary ultrasound frames from the
POCUS dataset; InceptionV3 performed best, achieving an AUC of 0.971 for distinguishing
COVID-19 from bacterial pneumonia and healthy lungs [31]. Mento et al. used a standard-
ized imaging protocol for lung ultrasound in COVID and applied it to 314,879 frames from
1488 lung ultrasound videos in 82 patients; they evaluated performance on a video level
by aggregating frame-based scores from deep learning, and the agreement between deep
learning and lung ultrasound experts for the stratification of patients as high versus low
risk for clinical worsening was 86.0% [32].

Interestingly, there may be issues with analyzing individual frames rather than patients.
Roshankhah et al. analyzed 1863 B-mode images from 203 videos [33]. Signs of lung
damage were manually segmented, and lungs were scored on a 0–3 scale. They used a
U-Net neural network and performed a simple 90:10 percent train-test split either at the
individual image (or frame) level or at the patient level (ensuring that the same patient does
not have frames in both the training and testing tests). While the accuracy at the image level
was 95%, the accuracy at the patient level was lower at 63–73% under different scenarios.
It is essential that any frame-based analyses in the literature establish the training and
testing sets appropriately, as otherwise algorithmic performance can be falsely elevated.
In addition, the manual segmentation involved in training several models presented in
the literature could be time-consuming and tedious, particularly for a large dataset. Both
issues are avoided in our method.

Finally, other techniques for COVID lung ultrasound have been performed. For in-
stance, Barros et al. combined a convolutional neural network (CNN) with a long short-term
memory (LSTM) component to learn the temporal dependence of the data [34]. This hybrid
CNN-LSTM had an average accuracy of 93% and sensitivity of 97% for COVID-19, outper-
forming purely spatial models. Horry et al. created a multimodal dataset that combined
X-ray, CT, and ultrasound to address potential issues related to having limited data on
a particular modality [35]. They used publicly available data and well-established deep
learning models in conjunction with transfer learning. Using ultrasound, they achieved
a sensitivity of 97% and a positive predictive value of 99% for classifying COVID-19 and
pneumonia versus normal. Karnes et al. used few-shot learning to distinguish between
healthy controls, pneumonia, and COVID-19, with satisfactory initial results using small
dataset sizes [36]. Additional studies using variations of the aforementioned techniques
have been described [37].

The CLU method has several features that render it novel: (1) it is software-only and
does not require specific ultrasound hardware, facilitating its use on any platform, including
PC, smartphone, and tablet; (2) it employs a patient-specific, unsupervised learning model
that does not require training on a large dataset; (3) it can quantify disease burden by
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establishing the presence or absence of key ultrasound findings and monitor them through
the course of clinical treatment. This patient-specific approach, compared to conventional
artificial intelligence and machine learning/deep learning, does not need to be trained,
as it is fully unsupervised. This obviates the need for largescale datasets for training an
algorithm, although we do plan future studies to clinically validate the algorithm’s results.

Compared to X-ray and CT, applications of AI to ultrasound have been comparatively
fewer. Ultrasound presents unique challenges for applying AI, including operator depen-
dence and differences in image acquisition techniques. X-ray and CT, on the other hand,
consist of either 2D or 3D images collected using a more uniform imaging protocol. Medical
imaging startup Buttery Network, the creator of the Butterfly iQ portable ultrasound device,
has collected data from portable ultrasounds performed using its device via a cloud-based
system, and it believes that as it obtains more data, its image analytics toolset will pro-
gressively become more accurate [38]. However, this analysis focuses on one ultrasound
manufacturer, detailed information regarding its performance is not available, and image
analytic techniques are typically more robust if they work across different platforms and
scanner imaging techniques, a key strength of our technique.

This technique has worldwide utility, including individuals with a COVID-19 di-
agnosis who may require longitudinal monitoring of treatment response. Although the
pandemic has continued for a few years, the emergence of variants such as delta and
omicron, the large number of individuals who refuse vaccination, and continued outbreaks
in places with limited vaccines or poor-quality vaccines result in many potential patients
who may need to be evaluated for COVID-19. This technique, used in conjunction with
POCUS, could be used to monitor patients for treatment response, quantitatively assess-
ing pulmonary disease burden and informing healthcare workers regarding the extent
of pulmonary findings within the lungs. Due to the inexpensive nature of ultrasound,
this software can be deployed in hospitals worldwide, from top academic institutions to
resource-limited regions, such as rural India and Africa.

Even now, when the acute phase of the COVID-19 pandemic is over, this technology
could be adapted to other diseases, such as pneumonia and COPD exacerbation. For
instance, a recent meta-analysis showed that lung ultrasound could diagnose pneumonia
with high accuracy (AUC = 0.95), outperforming chest radiography and correlating highly
with chest CT, which involves an ionizing radiation beam [39]. In addition, both pneumonia
and COPD exacerbation are part of the BLUE-Protocol, a decision tree that incorporates
findings from the lung ultrasound exam [6]. Pneumonia and COPD have significant global
morbidity and mortality. A total of 212 million cases of COPD were reported in 2019, with
3.3 million deaths and 74.4 million disability-adjusted life years [40]. According to the
World Health Organization, pneumonia accounted for 14% of all deaths in children under
five, resulting in 740,180 deaths in 2019 [41]. We also anticipate that these techniques could
be extended to other pulmonary diseases in the future [42,43].

With respect to the CLU score, Figure 3 showed that there was a general increase in
this score in pathological disease states compared to normal (A-lines), and Figure 4 shows
one patient example in which the CLU score generally worsened and then improved with
the disease state. However, further clinical validation and fine-tuning are needed for this
scoring aspect of the algorithm. For instance, in Figure 3, the score for pleural effusion
was higher than that for A-lines, but it was not substantially higher, as were the other
findings. Also, it will be necessary to have more longitudinal cases that track pulmonary
disease severity. Nevertheless, this does not obviate the algorithm’s success in identifying
characteristic lung ultrasound findings in this patient cohort.

Regarding future research, a logical next step would be to apply this technique to publicly
available datasets that have proliferated over the past few years, which contain hundreds of
ultrasound examinations with video [37]. We also plan further clinical validation using a large
amount of prospective patient data. This could include examining the concordance between
the lung ultrasound findings determined by radiologists and the CLU score [10]. It could
also include having the same sonographer image the same patient twice on the same day to
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assess intra-observer variability, as well as having two different sonographers image the same
patient to assess inter-observer variability. While having a diverse and heterogenous dataset
(with different scanners and patient populations) was important for the development of this
algorithm for the purposes of model generalizability, for future clinical validation, especially
for use at any particular clinical site, it will be essential that there is a homogeneous scanning
method with optimal settings that mirrors the high-level clinical practice at that site in order
to have the most robust clinical performance metrics [44].

To test the robustness of the CLU technique in low-resource settings, we will assess
the CLU’s performance with low-resolution and low-framerate video, including video
captured from a cellphone camera. We will also consider extending CLU to other diseases,
such as tuberculosis, interstitial lung disease, or congestive heart failure, or diseases in-
volving specific patient populations, such as neonatal respiratory distress syndrome. In
addition, future directions include extending this analysis to patients with long-COVID,
residual clinical symptoms long after the initial disease episode; these patients will have
a longstanding need to monitor pulmonary disease burden. Lung ultrasound has shown
utility for the follow-up of these patients [45]. Although COVID-19 may be better controlled
in the future, new variants, vaccine resistance, and distribution issues in developing nations
can complicate the situation. As a result, there is utility in adapting CLU to quantitatively
assess pulmonary disease burden for other illnesses.

5. Conclusions

This preliminary study demonstrated excellent concordance between the CLU tech-
nique and radiologist readings for seven lung ultrasound findings, noting that future
validation is needed on a larger dataset. This concordance between the radiologist and
CLU serves as a promising starting point, suggesting that with future development this
technique could be of utility when making care decisions about patients with respiratory
illness, facilitating early and proper intervention.

6. Patents

A.A. and M.A.J. have the patent, “Multiparametric non-linear dimension reduction
methods and systems related thereto”, US Patent 9,256,966 [46]. A.A. under Ambient
Digital LLC has a patent application for CLU.
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