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Abstract: Bronchial asthma is a widely prevalent illness that substantially impacts an individual’s
health standard worldwide and has a significant financial impact on society. Global guidelines for
managing asthma do not recommend the routine use of antimicrobial agents because most episodes
of the condition are linked to viral respiratory tract infections (RTI), and bacterial infection appears
to have an insignificant impact. However, antibiotics are recommended when there is a high-grade
fever, a consolidation on the chest radiograph, and purulent sputum that contains polymorphs rather
than eosinophils. Managing acute bronchial asthma with sepsis, specifically the choice of whether or
not to initiate antimicrobial treatment, remains difficult since there are currently no practical clinical
or radiological markers that allow for a simple distinction between viral and bacterial infections.
Researchers found that serum procalcitonin (PCT) values can efficiently and safely minimize antibiotic
usage in individuals with severe acute asthma. Again, the clinical manifestations of acute asthma and
bacterial RTI are similar, as are frequently used test values, like C-reactive protein (CRP) and white
blood cell (WBC) count, making it harder for doctors to differentiate between viral and bacterial
infections in asthma patients. The role and scope of each biomarker have not been precisely defined
yet, although they have all been established to aid healthcare professionals in their diagnostics and
treatment strategies.

Keywords: asthma exacerbation; septicemia; biomarkers; disease prognosis; procalcitonin; C-reactive
protein; FeNO; blood eosinophil

1. Introduction

More than 300 million people worldwide have asthma, which poses an alarming
danger to public health. Bronchial asthma is a non-communicable disease that affects a
person’s standard of living and psychological and physical wellness. The consequences of
this illness can be severe and continue throughout the patient’s life, influencing caregivers,
family members, societies, and the healthcare sector. A precise diagnosis of this condition
is essential to track the health of those with severe asthma. The recently developed clinical
biomarkers have been determined to be a practical tool for disease diagnosis in the clinical
management of critical illness. Even though all biomarkers have been developed to assist
healthcare providers in their diagnostic and therapeutic approaches, their specific roles and
scope are still unclear. This review aimed to provide insight into the various biomarkers of
severe acute asthma with sepsis and determine their prognostic implications.
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The progression of an asthmatic episode in severe acute asthma typically occurs over
days or weeks, though in a few individuals, it may happen over hours or even minutes.
This condition is potentially fatal and is one of the “gateways” of access to asthmatic
deaths [1]. The diagnosis of severe acute asthma must be made at the emergency room
since it might rarely appear as an entirely novel problem in a patient unaware of asthma [2].
Therefore, morbidity and mortality are primarily caused by underestimating the severity of
the exacerbation, delaying hospital referrals, and/or providing insufficient emergency care.
Acute bronchial asthma is a paramount global healthcare concern regarding complications,
death [3,4], and economic impact. Episodes of coughing (especially at night or in the earlier
mornings), dyspnea, wheezing, or tightness in the chest that are linked to an extensive but
varying airflow restriction inside the lung are referred to as severe episodes of asthma [5].
This condition is frequently recoverable either spontaneously or with medical treatment. In
general care and emergencies, it is the source of a significant percentage of antibiotic pre-
scriptions [6]. Until now, antibiotic treatment has not been advised for viral and bronchial
infections. Antibiotics are recommended when there is a high-grade fever, a consolida-
tion on the chest radiograph, and purulent sputum that contains polymorphs rather than
eosinophils [7]. Bronchial asthma is caused by lower respiratory tract inflammation and
bronchial smooth muscle spasms that are usually mediated by IgE.

Since there are currently no feasible clinical or radiological signs that can easily distin-
guish between viral and bacterial infections, managing acute bronchial asthma with sepsis
is difficult. Again, the specific decision about whether or not to commence antimicrobial
treatment remains challenging [8]. The role and scope of each biomarker have not been
precisely defined yet, even though they have all been established to aid healthcare pro-
fessionals in their diagnostics and treatment strategies [9–11]. Since viral infections are
typically involved in asthma attacks brought on by a medical condition, antibiotics are not
recommended as a standard treatment [12,13].

Various inflammatory reactions with clinical suspicion or confirmation of a micro-
bial etiology are called sepsis [14,15]. Again, sepsis continues to be a significant cause of
morbidity and death and a global concern in various therapeutic contexts, despite rising
acknowledgment of its significance [16,17]. A simple bedside or fast laboratory evaluation
with highly accurate traits that could distinguish a bacterial cause that requires antimicro-
bial medication from a nonbacterial cause would be crucial for advising treatment involving
the start and stoppage of antimicrobial agents [18,19].

Cellular and organ functioning has been evaluated using biological markers, often
known as “biomarkers,” along with the spectrum of wellness and disease [20]. The goal of
biomarkers is to guide medical professionals in identifying the bacterial or viral cause of
acute respiratory infection to minimize or at least reduce the requirement for antimicrobial
medication [21].

As markers of airway or systemic inflammation, fractional exhaled nitric oxide (FeNO),
blood eosinophil counts (EOS), and neutrophil-to-lymphocyte ratio (NLR) have been
used to increase the precision of asthma diagnosis, direct asthma interventions, track
the effectiveness of inhaled corticosteroids (ICS) therapy, evaluate eosinophilic airway
inflammation, and determine the likelihood of acute exacerbation. FeNO [22], EOS [23],
and NLR [24] are efficient, feasible, consistent, and non-invasive inflammatory biomarkers.
Even so, elements like smoking and prescribed medicines impact all of them [25–28].

2. Objective of the Study

Various difficulties can be classified as impediments that prevent the accurate diagnosis
of sepsis, including patients, medical personnel, and others. Additionally, sepsis is a
primary cause of fatalities in intensive care units (ICUs), and it can be hard to foresee
the progression of the disease in patients. In the clinical management of critical illness,
the recently designed clinical biomarkers have been acknowledged as a feasible tool for
diagnosing diseases. The goal of this review was to illuminate the distinct biomarkers of
severe acute asthma with sepsis and figure out their prognostic relevance.
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3. Materials and Methods

This article explains common biomarkers for evaluating and managing severe acute
bronchial asthma with septicemia. Google Scholar, Science Direct, PubMed, and Research-
Gate were among the online archives reviewed for the scientific literature search (Figure 1).
The reference list of relevant works was reviewed to retrieve additional materials. Key-
words included acute severe bronchial asthma, sepsis, septicemia, biomarkers, bronchial
asthma prognosis, procalcitonin, C reactive protein, blood eosinophil in bronchial asthma,
neutrophil to lymphocyte ratio, and hydrogen sulfide. Additionally, predominant key-
words included: severe bronchial asthma and sepsis, described in Table 1, as PICO format.
Keywords also include insulin resistance, polyunsaturated fatty acids (PUFA), omega-fatty
acids, and omega-3 fatty acids. Papers written in languages other than English and released
prior to 2000 were not included. The papers’ eligibility was thoroughly considered before
they were included in the study. Duplicate publications were removed. After the recom-
mended works of literature were independently evaluated and included, an additional
discussion was organized to discuss any doubts, issues, inaccuracies, or prejudices relevant
to the individual article.
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Table 1. Depicted the Principal Keywords Severe Bronchial Asthma and Sepsis in the PICO
format [29–44].

Patient/Problem Intervention Comparison Outcome

Severe Bronchial Asthma

Biomarkers determine the
severity of disease and either
include or exclude
sepsis [29–33].

Clinical identification,
evaluation, and therapeutic
intervention of severe acute
asthma [34–36].

Unnecessary use of antibiotics
is avoided [37–39].

Sepsis

The mortality rate of sepsis
decreases when the
commencement of focused
therapy and therapeutic
interventions is delayed.
Biomarker assessment may
improve discrimination of
inflammation from
sepsis [40–42].

The early goal-directed
therapy aims to give early
antibiotics to those with
infection due to bacteria.
Compared biomarker
sensitivity to routine care [43]

Rapid detection and
implementation of relevant
measures may be achieved
with biomarkers. In the
patient group with bronchial
asthma and sepsis,
biomarkers improve
identification of sepsis [44].

4. Diagnosis of Asthma

Incorrect diagnosis could lead to adverse effects from asthma treatments. Therefore, it
is crucial to perform a thorough examination to determine whether the patient has severe
asthma. The initial step in the diagnostic process is comprehensive history-taking and
careful general physical examination [45]. Symptoms, how frequently they occur, and
their seriousness must be pointed out in the patient’s medical record. It is also essential
to assess the degree of exacerbations and related comorbidities and clarify the onset of
symptoms. Diagnosis of severe asthma exacerbations is of the utmost importance since
they are associated with adverse effects and involve regular surveillance and intensive
management. The history of medications could point to insufficient care or poor adherence
to a recommended course of therapy. Socioeconomic factors and the absence of a written
asthma action plan are also linked to an increased risk for severe exacerbation [46,47].

5. Pathophysiology of Bronchial Asthma

Severe acute asthma requires the most excellent attention, monitoring, and man-
agement skill to keep a patient’s asthma from becoming uncontrolled with fatal clinical
outcomes. Patients with harsh asthma experience notable troubles with everyday life, such
as decreased activity levels, less efficiency at work, and isolation from society. In addi-
tion, patients with severe asthma must cope with a higher incidence of complications [48].
Increased resistance to airflow, decreased expiratory flow, the accumulation of air with
each breath, and lung hyperinflation are all effects of small airway obstructions within the
lungs and make the expiration process an active process [49,50]. Additional mechanical
difficulties result from a flat diaphragm resulting from hyperinflation [51]. Forced vital
capacity and expiratory volume are reduced while total lung volumes are raised. Total lung
capacity (TLC) continues to rise in acute severe asthma exacerbations, aiding in keeping
narrowed airways open. At the same time, in physiological conditions, the quiet expira-
tion process occurs passively through the elastic recoil tendency of the lungs. The time
required for the inspired tidal volume to expire fully will increase with declined elastic
forces, and inspiration starts at a volume when the respiratory system displays a positive
recoil pressure due to incomplete exhalation of the given tidal volume. Moreover, positive
alveolar pressure at the end of expiration causes the flow, known as dynamic hyperinflation
of the lungs [52,53].

In addition, increased intrapulmonary shunt, increased dead space, and mismatched
ventilation-perfusion ratio (V/Q) are the causes of abnormal gas exchange [54,55]. Airway
inflammation and smooth muscle constriction, which may sometimes be severe enough
to cause a potentially fatal airway obstruction even without mucus plugging, are the
primary contributors to decreased airflow [56,57]. Asthma-related inflammation includes
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airway edema, eosinophilic cellular infiltration, activated CD4+ T lymphocytes and mast
cells, and intraluminal mucous plugs made of plasma proteins, mucin glycoproteins,
epithelial and inflammatory cells, as well as cellular debris [58,59]. A severe asthma attack
that results in considerable dynamic hyperinflation also has another crucial component
called hemodynamic impairment. In people with severe asthma, dynamic hyperinflation
can stretch the pulmonary vasculature, raising right ventricular afterload and vascular
resistance [60,61]. By reducing the proper heart preload and increasing the right heart
afterload, the development of positive intrathoracic pressures causes a decrease in the right
heart outputs. A significant reduction in systolic arterial pressure during inspiration and
the presence of the pulses paradoxes is acknowledged by the decreased right heart output
in conjunction with the left heart’s diastolic dysfunction and its incomplete filling [62,63]
(Figure 2).
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Figure 2. Schematic diagram showing the pathophysiology of bronchial asthma. This figure has
been drawn using the premium version of BioRender with the license number GD25JNBBY1. Image
Credit: Susmita Sinha.

6. The Emerging Role of Biomarkers

Biomarkers are observable traits that can be quantitatively assessed to determine
if a biological process is typical or pathological. There are four primary functions that
biomarkers play in therapeutic settings: (1) diagnostic; (2) disease grading; (3) continual
monitoring of the disease’s advancement; and (4) evaluation of the efficacy of treatment.
In addition to serving as a clinical reference, the technique of biomarker analysis enables
the identification of potential opportunities for innovative therapeutics and an in-depth
knowledge of the primary molecular pathways that contribute to disease progression [64].

In every aspect of medical management, the value of biomarkers is increasing. Whether
used to anticipate, identify, or track health conditions, biomarkers are helpful at every stage
of the course of treatment [65] (Figure 3). Biomarkers can be assessed by examining blood,
sputum, and urine samples [66,67]. All medical practitioners should understand biomark-
ers, their uses, and their potential consequences on patient outcomes when biomarker
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research is implemented into clinical practice [68]. The employment of biomarkers has
evolved into an integral component of the standard of care for several illnesses because
of considerable research and clinical evidence, which has increased the significance of
biomarkers in detecting and managing many diseases [69]. Advancement in the implemen-
tation of biomarkers for disease classification, monitoring, and assessment should lead to
more effective disease management and enhanced tailoring of therapy [70,71].
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6.1. Asthma Biomarkers

Asthma is a persistent breathing disorder caused by respiratory tract inflammation [72].
Regarding asthma, endotyping and phenotyping are intimately related to biomarkers. The
purpose is to anticipate a response to a specific treatment using a variety of signals, either
systemic, local, or clinical [73,74].

6.1.1. Fractional Exhaled Nitric Oxide (FeNO)

FeNO is the most frequently examined potential biomarker for asthma [75,76]. Nitric
Oxide (NO) is produced in the lungs in response to inflammation by the enzyme Nitric
Oxide synthase from the amino acid L-arginine [77,78]. Assessing FeNO is simple, rapid,
and noninvasive. FeNO values are influenced by height, age, weight, race, gender, and
exhaling flow rates [79,80].

6.1.2. Sputum Inflammatory Cell Analysis

The most reliable, precise, and non-invasive tool for determining airway inflamma-
tion is sputum inflammatory cell examination, which identifies the many inflammatory
phenotypes of asthma [81,82]. Again, its dependability, sensitivity, and authenticity are
established, and processing and evaluation are controlled [83].

Asthma characteristics have been reported to be related to higher sputum neutrophil
levels. In individuals with chronic asthma, prolonged narrowing of the airways and a
gradual decline in lung function have been linked to airway neutrophilia. It has also been
related to increased bronchial responsiveness unrelated to elevated eosinophil count [84].

Patients with asthma had considerably greater sputum periostin levels than non-
asthmatics. Periostin is a potential biomarker capable of identifying intensity and outcome
and serving as a possible treatment focus [85]. Sputum periostin has an inverse relationship
with forced expiratory volume in the first second (FEV1) and is highly associated with
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sputum TLC and age. It is linked to both the sputum eosinophil percentage and neutrophil
count [86]. Again, periostin is a matricellular protein expressed by lung fibroblast and
respiratory epithelium. In addition to this, periostin is a secondary product of type-2
immunological reactions’ distinguishing cytokines, interleukin-13 and interleukin-4 [87].

Th-1 and Th-17 actions are shifted due to neutrophil infiltration and engagement into
the respiratory passages, initiating toll-like receptor (TLR) activity and triggering innate
immunity. Again, this process produces elevated levels of neutrophil elastase, interleukin-8,
matrix metalloproteinase 9, and interleukin-17. IL-8 causes neutrophils to release enzymes
and other impacts on immunological monitoring and bacterial death. Neutrophil subgroups
may exert diverse effects on immunological monitoring and bacterial death. In addition,
bacteria, ozone, and viruses cause the release of cytokines and chemokines that ultimately
encourage neutrophil migration [88,89].

6.1.3. Blood Eosinophil (B-EOS)

Eosinophils have been playing a more important part as a biomarker in determining
the response to treatment in clinical practice for several years [90]. High B-EOS findings
were observed to be a significant indicator of treatment response. Contradictory findings
have been found regarding the proper B-EOS cut-off for estimating airway eosinophilia in
severe asthma [91,92].

6.1.4. Total Serum IgE Level

In severe asthma caused by allergies, this biomarker guides anti-IgE antibody treat-
ments. Blood eosinophil count (more than 260 per liter) and fractional exhaled nitric oxide
(FeNO) values above 19.5 parts per billion strongly indicate whether individuals with
severe allergic asthma are responsive to anti-IgE antibodies that will lower exacerbation
incidence in asthma patients [22,93,94].

6.1.5. Soluble Form of the Triggering Receptor Expressed on Myeloid Cells-1 (sTREM-1)

The immunoglobulin superfamily member sTREM-1 is represented on the outer
membranes of neutrophils, monocytes, and macrophages [95]. Its production is boosted by
extracellular bacteria, which also causes the release of cytokines that promote inflammation.
Thus, it amplifies the inflammatory response in contact with bacteria [95,96].

6.1.6. Neutrophil to Lymphocyte Ratio (NLR)

NLR could be utilized as a biomarker to differentiate and diagnose various forms of
obstructive illnesses since neutrophils and NLR, as markers for circulatory immune com-
plexes, can be significantly more prevalent among individuals with respiratory insufficiency
than in the healthy population [97,98].

Healthcare research on early diagnostic markers in asthma patients is an area of
interest. The study of readily available biomarkers for the diagnosis of asthma has drawn
more attention in the past few years. As an indicator of persistent infection, the blood
neutrophil-to-lymphocyte ratio (NLR) is a simple, easily accessible, and reasonably priced
index obtained from complete blood counts. The NLR has been considered to be a potential
indicator of episodes of inflammation in persistent illnesses and several other conditions in
a number of recent studies. In addition, a rise in neutrophils is a result of cytokines in the
pathophysiology of asthma. Additionally, patients with asthma exacerbations had greater
blood NLR values than those with stable asthma [24,99].

6.2. Sepsis Biomarkers

The prognosis of sepsis remains detrimental regardless of the increased use of modern
technologies for its management. Again, sepsis is one of the most common causes of
death across the world, and its fatality rates are particularly significant because there is no
accurate approach for predicting the course of the condition. Since sepsis has a mortality
rate between 10% and 50%, managing this medical condition remains complicated. One of
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the main reasons for fatalities in the ICU is sepsis; hence, sepsis biomarker development and
research are of utmost importance [100,101]. Since sepsis shares many clinical signs with
other disorders that develop in ICU patients, recognizing the condition can be challenging
for medical professionals [102,103]. The two most often utilized indicators for sepsis and
other bacterial illnesses are C-reactive protein (CRP) and procalcitonin (PCT) [104,105].

6.2.1. Procalcitonin

Procalcitonin (PCT) is a precursor of calcitonin, consisting of 116 amino acid peptides
synthesized in healthy people’s thyroid and adipose tissue [106]. To maintain calcium
homeostasis, it is cleaved to produce calcitonin, which is then stored and produced in a
controlled manner [107,108]. PCT has a serum value of 0.1 ng/mL in a healthy individ-
ual [109]. In addition to this, it was found to be more prevalent in patients with systemic
illnesses [110]. Other illnesses, like surgery and trauma, as well as systemic viral infections
to a much lesser amount, have also been linked to increased focus. The highest levels of
serum PCT are observed in multiorgan dysfunction brought on by trauma and bacterial
infection [111,112].

During trauma and surgery, PCT synthesis is induced throughout all parenchymal
tissues by the systemic inflammatory response, especially by inflammatory mediators such
as tumor necrosis factor-alpha (TNF alpha) [113]. Moreover, in reaction to an illness or
damage, procalcitonin rises within 4 h, peaks at 6 h with an 8–24 h plateau, and then falls
back to normal within 2–3 days. In contrast, CRP has an onset of 12–24 h, a plateau of
20–72 h, and a return to baseline of 3–7 days or more [114,115].

6.2.2. Prognostic Role of Procalcitonin

Even though PCT is more expensive, researchers have discovered that it helps separate
bacterial from noninfectious inflammation causes [116]. Randomized controlled research
revealed that serum procalcitonin (PCT) values could efficiently and safely minimize
antibiotic usage in individuals with severe acute asthma [117]. Patients with systemic
bacterial infections have elevated amounts of PCT in their blood. In contrast, patients
with viral infections or inflammatory disorders still have relatively low levels of PCT in
their blood. PCT levels may help clinical decision-making regarding the start and end of
antibiotic therapy [118,119].

6.2.3. C Reactive Protein

CRP was regarded as a generalized but sensitive indicator of the beginning of inflam-
mation [120]. The liver primarily synthesizes CRP in response to the cytokine interleukin-6,
which is secreted during infections and several inflammatory conditions [121]. By attaching
to the polysaccharides on pathogens, it begins a complement activation. Although sepsis is
under control, its extended half-life indicates that it stays positive for a long time [122].

It is difficult for clinicians in feasible healthcare environments to determine which
asthma patients with bacterial respiratory tract infection (RTI) will be effectively treated
with antimicrobial therapy [123,124]. Despite current clinical guideline warnings against
empiric antibiotic administration in severe asthma exacerbations, patients frequently re-
ceive antibiotics [125]. The clinical manifestations of acute asthma and bacterial RTI are
similar, as are commonly used test values, like C-reactive protein (CRP) and white blood
cell (WBC) count, making it harder for doctors to differentiate between viral and bacterial
infections in asthma patients [126]. Due to the increased morbidity and mortality associated
with severe exacerbations, patients are more typically managed with antibiotics.

Standard tests performed in laboratories, such as CRP level and WBC count, are
frequently used; however, this application appears to be influenced more by traditional
practices than by the diagnostic efficacy of these assays [127]. Furthermore, delayed peak
values and poor specificity of CRP level and/or WBC count, particularly in individuals
with systemic inflammation, limit their usefulness for directing antibiotic treatment [128].
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6.2.4. Type 2 Helper T-Cell (Th 2)

Th-2 immune responses, an essential causative process, primarily cause asthma. In-
creased circulating Th-2 concentrations have been reported in patients who survived than
in those who had passed away from Staphylococcus aureus infection [129]. In addition
to this Th-2 path, research on nonTh-2 pathways further points towards possible posi-
tive effects of asthma for predicting the outcome of infection. Again, toll-like receptors
(TLR) are crucial in the allergic response of the respiratory passageways because they are
the primary detectors of intruding microorganisms. Furthermore, the pathogenesis of
asthma involves the stimulation of interleukin 17 (IL-17), which is possibly significant in
causing the attraction of neutrophils to the infection site and, thus, minimizing disease
progression [130].

6.2.5. Omentin-1

A newly discovered adipokine with anti-inflammatory characteristics linked to sepsis
and inflammatory disorders is omentin 1, also known as intelectin 1. Omentin-1 primarily
appears in fat tissues of viscera, although it can be detected in the ovaries, endothelium,
the bloodstream, mesothelial cells, and respiratory goblet cells. Again, the concentration of
serum omentin-1 rises in sepsis, and the severity and 28-day mortality of sepsis correlate
with more significant levels and slower kinetics during the first week of the condition [131].

6.2.6. H2S

It has long been established that hydrogen sulfide (H2S), a toxic gas with a strong,
putrid egg odor that is linked to industrial and water pollution, counts as a harmful
gas [132]. In addition to this, the respiratory and central nervous systems are significantly
affected by H2S. Recent research, however, implies that H2S may belong to a unique class of
endogenous gaseous transmitters and, along with carbon monoxide and nitric oxide, may
constitute a third endogenous signaling transmitter that functions both as a vasodilator and
a neurotransmitter [133,134]. Furthermore, it has been found that increased H2S production
in endotoxemia contributes to the pathogenesis of organ damage [135]. Acting at the
junction of leucocytes and endothelium, endogenous H2S is a significant facilitator of acute
inflammatory processes [136]. In the etiology of sepsis, shock, cardiovascular injury, and
pancreatitis, endogenous H2S may have anti-inflammatory or pro-inflammatory impacts,
indicating that H2S may be linked to the development of systemic inflammation [137].
However, the diagnostic usefulness of serum H2S in bacterial infection in patients who are
not critically ill has not been examined.

7. Takeaway Message

Acute severe asthma with sepsis can be treated more rapidly, with better results, and
with less needless antibiotic therapy with an early diagnosis. Diagnostic biomolecular
markers have the potential to considerably optimize, speed up, and accurately represent
the entire recovery process, from diagnosis and management to confirmation and prompt
therapeutic adjustment. Procalcitonin (PCT) has variable cut-off limits in various clinical
circumstances, although it is still effective for the identification of sepsis in medical settings.
Moreover, procalcitonin is an intriguing biomarker for the diagnosis of bacteria-related
sepsis since it is capable of distinguishing culture-positive and culture-negative sepsis from
non-infectious illnesses [138].

Blood neutrophils may be helpful as sepsis biomarkers. The blood neutrophil-to-
lymphocyte ratio (NLR), which is derived from total blood counts, is a simple, easily
available, and relatively affordable index used as a marker of chronic infection. In a
number of recent studies, the NLR has been proposed as a potential marker of bouts of
inflammation in chronic diseases and various other illnesses. Furthermore, patients with
asthma exacerbations had greater blood NLR values than those with stable asthma [24,99].

Early sepsis causes a significant increase in the concentration of CRP, and because
of this, it has been employed to diagnose sepsis and its prognosis. Furthermore, the
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importance of circulating HS-CRP (high sensitivity C-reactive protein) in the diagnosis of
asthma is increased when paired with fractional exhaled nitric oxide (FeNO). In contrast,
procalcitonin (PCT) is beneficial in the diagnosis of bacterial infections in patients and
has an impact on decisions about antibiotic therapy. Most importantly, PCT is capable of
distinguishing severe acute asthma from sepsis. Additionally, Pearson correlation analysis
revealed that NLR, CRP, and PCT levels were conclusively correlated with graveness of
septicemic patients, especially those with bloodstream infections (r-values were 0.468, 0.456,
and 0.670, respectively; all p < 0.001) [139]. Furthermore, multiple studies reported that
NLR has been considered the top biomarker to diagnose sepsis [140–143]. It has been
reported that NLR levels are raised in any chronic systemic inflammatory state, including
severe acute asthma, cancer, atherosclerosis, and endocrine stress [26,144–146]. Multiple
studies reported that the integrated result of CRP level and NLR are considered propitious
biomarkers for recognizing bronchial asthma [147–149]. The global prevalence of bronchial
asthma is depicted in Figure 4.
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8. Conclusions

It can be challenging for medical professionals to determine the cause of sepsis because
it exhibits many clinical symptoms that are similar to other illnesses which might arise
in intensive care unit (ICU) patients. The introduction of antimicrobial therapy during
lower respiratory tract infections can be guided by the implementation of biomarkers (PCT
or CRP), and the excessive use of prescribing antibiotics in health care can be decreased.
PCT is a more applicable and accurate biomarker for identifying the bacterial (high PCT)
as opposed to viral (low PCT) origin of lower respiratory tract infections than CRP. The
advancement of PCT throughout time seems to be associated with patient mortality and
prognosis. The primary biomarkers regularly employed in everyday clinical practice for
diagnosing, phenotyping, and managing asthma are FeNO, blood eosinophils, and total
IgE. The demand for the generation of biomarkers to aid doctors in managing asthma
is growing due to the need to more accurately and rapidly phenotype asthma, foresee
complications, and determine whether or not interventions are responding.
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