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Abstract: Chronic diseases are increasingly major threats to older persons, seriously affecting their
physical health and well-being. Hospitals have accumulated a wealth of health-related data, including
patients’ test reports, treatment histories, and diagnostic records, to better understand patients’
health, safety, and disease progression. Extracting relevant information from this data enables
physicians to provide personalized patient-treatment recommendations. While collaborative filtering
techniques and classical algorithms such as naive Bayes, logistic regression, and decision trees have
had notable success in health-recommendation systems, most current systems primarily inform users
of their likely preferences without providing explanations. This paper proposes an approach of
deep learning with a local interpretable model–agnostic explanations (LIME)-based interpretable
recommendation system to solve this problem. Specifically, we apply the proposed approach to two
chronic diseases common in older adults: heart disease and diabetes. After data preprocessing, we
use six deep-learning algorithms to form interpretations. In the heart-disease data set, the actual
model recommendation of multi-layer perceptron and gradient-boosting algorithm differs from the
local model’s recommendation of LIME, which can be used as its approximate prediction. From the
feature importance of these two algorithms, it can be seen that the CholCheck, GenHith, and HighBP
features are the most important for predicting heart disease. In the diabetes data set, the actual
model predictions of the multi-layer perceptron and logistic-regression algorithm were little different
from the local model’s prediction of LIME, which can be used as its approximate recommendation.
Moreover, from the feature importance of the two algorithms, it can be seen that the three features
of glucose, BMI, and age were the most important for predicting heart disease. Next, LIME is
used to determine the importance of each feature that affected the results of the calculated model.
Subsequently, we present the contribution coefficients of these features to the final recommendation.
By analyzing the impact of different patient characteristics on the recommendations, our proposed
system elucidates the underlying reasons behind these recommendations and enhances patient trust.
This approach has important implications for medical recommendation systems and encourages
informed decision-making in healthcare.

Keywords: medical recommendation system; LIME; RF algorithm; gradient boosting; deep learning

1. Introduction

In recent years, the proportion of the elderly in China has increased rapidly, and the
elderly themselves are the main population seeking medical treatment and medicine in
hospitals. Therefore, in recent years, the health problems of the elderly have gradually
attracted wide attention from the public. Various healthcare products for the elderly are
becoming popular, but the related healthcare costs are also increasing. These costs are
related to conditions that cannot be cured in a short time or that cannot be cured at all.
Therefore, to improve the quality of life of the elderly and reduce their disease troubles,
experts propose that chronic diseases of the elderly should be prevented. By changing
people’s negative behaviors, the incidence of diseases among the elderly can be reduced
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to improve their living standards. Improvements in negative living habits and specific
drug treatments are the most economical approaches. Therefore, in recent years, the
recommendation system based on medical care has gradually entered people’s lives and
progressively gained in attention, especially in rural and remote mountainous areas with
relatively poor medical conditions [1,2]. This can play a more significant role and be
more beneficial to the improvement of the living standards of the elderly. For hospitals,
chronic diseases of the elderly [3] are difficult to cure, have long treatment periods, and are
prone to relapse. The treatment of such diseases tends to be more diversified and requires
more attention. As a result, physicians need rich treatment experience, which has led to
a shortage of physicians in the field. The healthcare system can make recommendations
based on patients’ medical data and current diagnostic reports, which can reduce the
level of treatment for chronic diseases among the elderly and enable more elderly people
to receive timely treatment from physicians. Therefore, the emergence of the medical
recommendation system is expected to help treat chronic diseases affecting the elderly.
Of course, medical recommendations cannot completely replace physicians. The system
gives certain suggestions to patients and physicians and helps patients to correct negative
behaviors in the disease-prevention and -treatment stages. At the same time, using the
healthcare system can also reduce treatment times and resources required in emergencies.

The recommendation system was introduced to solve the data explosion. The system
is convenient for users to find their own information from among large volumes of data
quickly, reducing users’ time consumption. With the rapid development of network infor-
mation in recent years, the recommendation system plays an increasingly important role
in network information. Many effective and professional recommendation methods have
appeared and are widely used in e-commerce, news reports, video recommendation [4],
social networks, and other fields. Unlike traditional machine learning, recommendation
systems can effectively process and analyze data and recommend the results that current
users desire most. Although recommendation systems have many advantages, they are not
widely used in medicine to take advantage of their potential and benefits. Many methods
can make medical recommendations, including collaborative filtering technology [5–7],
naive Bayes, decision trees, random forest, multi-layer perceptron, and other technologies.
While all of these methods can help users find items they might desire, they fail to explain
why recommendations are made to users.

In order to solve the problem of unexplainable recommendation systems, LIME-based
explainable technology is used in this paper. This system realizes modularization by imple-
menting a LIME-based interpretable recommendation system. This method overcomes the
unexplainable problems in the recommendation system and evaluates the recommended
medical outcomes based on multiple evaluation indicators. Through the proposed system
the following contributions are made:

1. The application performances of different classical algorithms in medical recommen-
dation systems is compared.

2. The interpretability of medical recommendations is realized through the LIME algo-
rithm.

The rest of this article includes the following sections. Section 2 briefly introduces
the related work on the medical recommendation system. Section 3 details the proposed
recommendation system. Details of the experiment setup, including the data set and results,
are described in Section 4. Finally, conclusions and future work are discussed in Section 5.

2. Related Work

In recent years, the proportion of elderly people suffering from age-related chronic
diseases has gradually increased, and age-related chronic diseases are also among the main
causes of death in the elderly. Common chronic diseases in the elderly include diabetes,
hypertension, hyperlipidemia, coronary heart disease, stroke, gout, chronic kidney failure,
chronic bronchitis, etc. Recent enhancements in computer technology and innovations in
machine-learning techniques have contributed to the development of effective predictive
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and decision-making tools [8,9] that help medical experts to make effective prevention and
treatment choices for various chronic diseases of aging at an early stage [10]. The prediction
of chronic diseases of the elderly and their associated recommendations mainly rely on
patients’ diagnostic reports, physicians’ diagnostic results, and corresponding treatment
methods. Therefore, by calculating the degrees of influence of various patient character-
istics on various diseases, we can infer related diseases from which patients may suffer
and recommend corresponding treatment methods. The rapid development of machine-
learning technology can solve this prediction problem. Data-fusion technology [11,12] has
been applied to predict diabetes and make appropriate recommendations [13]. Using data
fusion, the irrelevant burden of system computing power can be eliminated, and the per-
formance of the proposed system can be improved to predict patients’ diseases and make
recommendations more accurately. In order to explore a drug-recommendation method
based on elderly patients with diabetes, hypertension, and cardiovascular disease [14], the
collaborative filtering method was combined with a traditional machine-learning classifier
to form a collaborative-filtering hybrid model, which improved the recall rate and accuracy
rate, and the experimental results also showed that collaborative-filtering technology was
always worse than traditional classifiers.

Assisting physicians in making medical diagnoses and reducing the likelihood of mis-
diagnosis is one of the main categories of the medical referral system. To reduce the risk of
physicians prescribing incorrect drugs [15], based on machine-learning algorithms (neural
networks, Bayesian networks) and data mining (clustering, classification) algorithms, a vari-
ety of decision-support systems or recommendation systems have been developed to assist
physicians in obtaining better diagnostic results and to remind physicians of some easily
ignored problems [16]. A diabetes-prediction and -diagnosis model (IFIR_PDDM) based
on intelligent fuzzy inference rules was proposed to provide content recommendations
for diabetes patients and predict the likelihood that current patients have diabetes [17]. A
disease-diagnosis-and-treatment recommendation system (DDTRS) was proposed, which
combines the DPCA algorithm and the Apriori algorithm to realize disease prediction and
recommend appropriate diagnoses and treatment plans for patients and inexperienced
physicians. The authors of [18] presented a simple algorithm that uses classification al-
gorithms to help physicians predict a patient’s multivariate heart-disease risk. Currently,
the healthcare-system model should have high accuracy and sensitivity, so that patients
are not misdiagnosed, and help healthcare workers and patients better prevent disease
and its diagnosis [19]. This emphasizes the need for skills to solve health problems with
the help of AI-related technologies. Combining ML, DL, NN, the Internet of Things, and
CC can help inexperienced medical staff to better predict the direction of diseases and
devise corresponding treatment plans based on the current diagnoses of patients, and help
medical staff identify potential dangers to patients more accurately and in a more timely
manner. Timely intervention helps patients to overcome physical diseases and reduce the
pain they suffer.

Healthcare is also an important application area for medical recommendations [20].
A new algorithm, fb-kNN, is proposed as a recommendation algorithm based on human-
disease-rule analysis and then implemented in Healthcare 4.0 for the recommendation of
diagnoses and treatments [21]. A reminder-care system was proposed to help Alzheimer’s
patients live safely and independently at home. The proposed recommendation system
was developed based on a contextual slot-machine approach to address the dynamics
of human activity patterns to provide user-needs recommendations without user feed-
back. The experimental results proved the feasibility and effectiveness of the proposed
reminder-care system in a real-world intelligent home application based on the Internet
of Things. The authors of [22] proposed an efficient community recommendation system
based on the Internet of Things to diagnose heart diseases and their types and provide
suggestions related to body and diet plans to solve the difficulty of accessing doctors in
remote mountainous areas [23]. A new system architecture was proposed that combines
several future technologies, such as artificial intelligence (AI), machine learning (ML) and
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deep learning (DL), virtual reality (VR), augmented reality (AR), mixed reality (MR), and
the haptic Internet (TI). The whole system involves the clinical care of patients, immediate
medical testing, the diagnosis of patients’ physical conditions, and timely manual treat-
ments, which reduces the workload of medical staff and helps them to make and accurate
diagnoses. This vision of the future provides a direction for the future development of
healthcare systems.

Although we have carried out many studies on medical recommendation systems
in recent years, there are always some corresponding defects in these systems, such as
unreasonable data collection, a lack of balance, and the fact that the importance of some
features is not apparent. The non-interpretability of recommendation results is a further
drawback; physicians are not involved in the process of medical recommendations, which
makes patients lack trust in the system. All these aspects led us to question the recom-
mendation results of the medical recommendation system, and we are eager to solve these
problems in future research.

3. Proposed Method

The proposed method realizes the interpretability of the recommendation results of
the traditional medical recommendation algorithm, can assist physicians and patients in
making corresponding decisions in relation to disease diagnosis, explain the main factors
causing the current situation, and remind patients to pay attention to related physical con-
ditions and living habits in daily life. The proposed method is mainly aimed at solving the
inexplicable problems of the traditional medical recommendation system. The architecture
of the proposed interpretable model is shown in Figure 1. Data preprocessing was applied
to the disease data of patients collected from Kaggle, deleting partial data, incomplete,
digitized text data. Next, the processed data were respectively trained by naive Bayes algo-
rithm [24], logistic-regression algorithm [25], decision-tree algorithm [26], random-forest
algorithm [27], gradient-enhanced-tree algorithm, and multi-layer perceptron [28]. Finally,
the results after training were analyzed by LIME algorithm [29,30] to explain the reasons
for recommending the results. The details of each method are described in the subsequent
sections of this chapter.

3.1. Data Preprocessing

Data preprocessing is a critical step in the data-analysis process, as the quality and
accuracy of the final recommendation results depend on the information contained in the
data. To ensure reliable and accurate analyses, several preprocessing techniques are applied.
Firstly, duplicate data, which refers to identical or highly similar records, is identified and
removed from the dataset. This eliminates bias and prevents inflated accuracy. Secondly,
missing data are addressed by imputing missing values or excluding records with excessive
missing data, thus maintaining the dataset’s integrity. Unrealistic data, such as outliers,
are detected and treated to mitigate their influence on subsequent analyses. Additionally,
text data are digitized using one-hot encoding or word-embedding techniques, allowing
numerical representation. Although the preprocessed data are ready for model training,
to prevent overfitting, the zero-mean normalization method is employed to normalize the
data, ensuring comparability between different features. This approach, mentioned in [31],
aids in standardizing the data and improving the performance of subsequent modeling
tasks. These data-preprocessing steps enhance the analysis results’ reliability, consistency,
and quality, enabling robust and accurate recommendations.

3.2. Method

The normalized data set is mapped to the training model, and the algorithm learns
the relationship between each data feature and label in the training set to achieve disease
prediction. Experts labeled the data set used in this study, and the target variables have
two classes. A 0 means no diabetes or heart disease, and 1 implies diabetes or heart disease.
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This process helps discover a patient’s likelihood of developing a condition based on their
selected key characteristics.
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This study uses six different classical algorithms to train the model: naive Bayes
algorithm, logistic-regression algorithm, decision-tree algorithm, random-forest algorithm,
gradient-enhanced-tree algorithm, and multi-layer perceptron. Next, the test data set is
applied to the trained model to obtain the test performance of the model. By running the
model repeatedly and changing the data in the test set and training set, the accuracy of the
model is determined. Precision indexes are used to evaluate the prediction results. These
classical algorithms are briefly discussed in the following sections.

3.2.1. Naive Bayes (NB) Algorithm

Bayesian algorithm is a method to classify sample data sets based on Bayesian princi-
ple, using the relevant knowledge of probability statistics. Because the Bayesian algorithm
has a solid mathematical and theoretical foundation, the error rate of the algorithm is
relatively low. The Bayes formula is as follows:

P(X|Y) = P(XY)
P(Y)

=
P(Y|X)P(X)

P(Y)
, (1)
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In other words, the posterior probability is expressed by prior probability and condi-
tional probability to calculate the posterior probability. However, because of its complex
dependent relation, the difficulty in using Bayes algorithm in real operations increases
sharply, especially in multi-feature conditions, so naive Bayes algorithm [32] is applied.
Naive Bayes algorithm is a classification method based on Bayes’ theorem and the assump-
tion of independence of characteristic conditions; that is, it is assumed that all attributes
associated with a given target value are independent of each other [33,34]. Thus, the condi-
tional probability function is converted into the product form of characteristic conditions
of each dimension. The formula is as follows:

P(x|yk) = P(x1, x2, · · · , xd|yk) = ∏d
i P(xi|yk), (2)

Therefore, the naive Bayes formula can be derived as follows:

P(yi|x1, x2, · · · , xd) =
P(yi)∏d

j=1 P(xj|yi)

∏d
j=1 P

(
xj
) , (3)

where yi represents the category and xj represents the item’s fourth characteristic. In other
words, no characteristic variable has an absolute proportion in the decision result, and
no characteristic variable has a small proportion in the decision result. Although this
simplified method reduces the accuracy and reliability of Bayes classification algorithm to a
certain extent, it greatly simplifies the complexity of Bayes method in practical application
scenarios, so the naive Bayes algorithm can really be applied in complex scenarios, and
shows powerful computing performance.

3.2.2. Logistic Regression (LR) Algorithm

Logistic regression (regression) [35,36] is a widely used binary algorithm for machine
learning. It is the simplest of all machine-learning algorithms, featuring fast prediction
speed, and easy learning and understanding. Logistic regression is similar to linear re-
gression in that linear regression requires the dependent variable to be continuous, while
logistic regression requires the dependent variable to be categorical. Logistic-regression
algorithm mainly includes the following steps.

First, the corresponding logistic-regression multivariate equation is constructed as the
hypothesis function according to the number of sample features in the data set. The input
data features of samples are expressed as the independent-variable form of the function to
obtain the importance of each feature to the classification results and the corresponding
function bias. The specific formula is as follows:

z = w0x0 + w1x1 + · · ·+ wnxn + b, (4)

The second step is to input the data features obtained in the previous step into
the logistic-regression model to calculate the classification probability. Sigmoid logistic-
regression model is commonly used in classical logistic-regression models. The regression-
model formula of specific series is as follows:

S(z) =
1

1 + e−z , (5)

The sigmoid function is an S-shaped curve that can map any real number to a value
between 0 and 1.

The third step is to update the linear-regression parameters using cross entropy,
other loss functions, and gradient-descent algorithm. The cross-entropy loss function is
as follows:

L(w, b) = ∏m
i=1(S(z))

yi (1− S(z))1−yi , (6)
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where yi represents the classification of results (Examples: yi = 1 represents a positive
example, yi = 0 represents a negative example).

According to the above steps, appropriate model parameters can be trained, and
then the trained parameters can be used to achieve the logistic-regression classification of
data features.

3.2.3. Decision Tree (DT) Algorithm

Decision tree algorithm [37] is a method to approximate the value of discrete function.
It is a typical machine-learning algorithm that first processes data, uses inductive algorithms
to generate readable rules and decision trees, and then uses decision to analyze new data.
A decision tree is a process of classifying data by a set of rules. The decision-tree algorithm
constructs a decision tree to find the implied classification rules in the data. Construction
of a decision tree with high precision and on a small scale is the core aim of decision-tree
algorithms. There are various methods to construct decision trees, among which ID3 [38]
is a classic method, the core of which is to use the concept of “information entropy.” The
information-entropy formula is as follows:

Entropy(t) = −∑c−1
i=0 P(i|t)log2P(i|t), (7)

where P(i|t) represents the probability that node t is classification i, log_2 is logarithm base
two. Entropy(t) reflects the uncertainty of this information. The greater the uncertainty, the
greater the amount of information it contains, and the higher the entropy of information.
The ID3 algorithm calculates information gain, which refers to the increase in purity and
decrease in information entropy caused by partition. It is calculated by the information
entropy of the parent node minus the information entropy of all the children. The formula
is as follows:

Gain(D, a) = Entropy(D)−∑k
i=1
|Di|
|D| Entropy(Di), (8)

where D is the parent, Di is the child; a in Gain (D, a) is selected as the attribute of D node.
The process of decision-tree construction can be divided into two steps. The first

step is the generation of decision tree: the process of generating a decision tree through
training-sample data. In general, the sample data set must be real and reliable and contain
rich data features, and it is necessary to attempt to make the data features balanced and
comprehensive. The second step is pruning the decision tree: pruning the decision tree
is a method to prevent data overfitting in decision trees. It is a process of checking and
modifying the decision tree generated in the previous stage. It mainly uses the data in the
new test set to check the decision rules generated during the generation of the decision tree.
It cuts off some branches that affect the accuracy of the balance.

3.2.4. Random Forest (RF) Algorithm

Random forest is an integrated learning algorithm composed of multiple decision
trees and a supervised learning algorithm. Random forest is used as a classification and
prediction model in many fields. None of the decision trees in a random forest are connected
to each other. The entire random forest is constructed by importing the test set in the data
set into the random forest model for the generation of each decision tree [39]. Next, the test
set in the data set is imported into the random forest created in the previous stage, and
each decision tree in the forest is predicted in turn. Thus, the prediction result of the user in
the current decision tree is obtained. After stablishing the most frequently predicted result
of the current user from all decision trees, the result is taken as the final prediction result of
the random forest of the current user.

Although random forest appears similar to building blocks from this point of view, as
the classification tree grows, random forest only considers binary split points on random
subsets of contributing variables, so the accuracy is significantly improved over that of a
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single classifier, especially in relatively complex models. The size of randomly selected
subset variables is predefined.

3.2.5. Gradient Boosting (GB) Decision Tree

Gradient-enhancement decision tree [40] is a machine-learning algorithm for classifi-
cation and regression problems. It is one of the ensemble-learning algorithms that combine
multiple weak models to create a strong model that can make accurate predictions. This
algorithm is a very effective technique, which has been applied to various machine-learning
problems and obtained quite good results.

The gradient-enhancement algorithm is implemented by continuous training of some
weak models. It iteratively trains a series of decision-tree models, each attempting to correct
the errors of the previous model. In each iteration, the model adjusts the weight of the
sample based on the difference (gradient) between the current model’s predictions and
the true label, so that the next model pays more attention to the samples misclassified by
the previous model, so as to ensure that the objective function gradually improves the
performance of the overall algorithm with the progress of the calculation depth. This opti-
mization algorithm can reduce the calculation errors of the model by adjusting the weight
vector of the features in the model. The specific algorithm flow is shown in Algorithm 1:

Algorithm 1: Gradient Boosting

initialization F0(x) = arg minh⊂HLoss(yi, h(xi))
For k = 1:

Calculate the negative gradient of the cumulative model loss function gk = −δLoss(y,Fk−1(x))
δFk−1(x)

The fit weak learner makes ∑N
i=1

(
gi

k − h(xi)
)2

Updating cumulative model Fk = Fk−1 + αh(x) where α is the learning rate
Up to an iteration-termination condition, return F(x) = Fk(x)

The basic working principle of gradient-lifting decision tree is as follows. Firstly, a
simple model (such as a single decision tree) is used as the initial model. This initial model
is then used to predict the results of the training sample and calculate the residual (error)
between the predicted value and the true value. Next, based on the residual, a new model
(usually a decision tree) is trained to expect the residual. By adding the prediction result of
the new model to the prediction result of the previous model, an updated prediction result
is obtained. New models are trained iteratively, each time trying to correct the residuals of
the previous round of models until a specified number of iterations is reached or a certain
stop condition is met. Finally, all the trained models are combined to obtain the final model.
When forecasting, the final forecast result is obtained by adding the predicted results of
each model.

The key element in gradient-lifting decision tree lies in model training and updating
of prediction results in each iteration. Each new model tries to correct the residuals on
the basis of the previous model, constantly adjusting the weight of the model through the
method of gradient descent to minimize the residuals. Gradient-enhanced decision trees
have good performance and flexibility in ensemble learning, and can deal with complex
classification and regression problems. They can optimize a model’s performance and
robustness [41] by adjusting parameters such as learning rate, number of trees, depth of
trees, etc. However, it is easy to overfit training data with GPD, so it is necessary to adjust
parameters and use cross-validation methods to control the complexity and generalization
ability of the model.

3.2.6. Multilayer-Perceptron Algorithm (MLP)

Multilayer perceptron [42] is a famous feedforward artificial neural network, which
has achieved great success in data-classification applications. It consists of a simple node
called a perceptron, capable of producing a single output from multiple inputs by assigning
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weights to inputs and creating linear combinations of weighted inputs. The output is then
computed using a nonlinear kernel function.

The MLPS are trained using a backpropagation technique consisting of two stages.
The first stage is forward transmission, in which a given input datum is given a classified
output. The second stage is the reverse transfer, in which the partial derivative of the kernel
corresponding to the changing parameter is calculated and then diffused back into the
network. The weight of the network can then be adjusted using any gradient-enhancement
algorithm, and the process can be repeated until the weight of the network converges.

3.3. Interpretable Model Based on LIME

The key part of the hybrid model proposed in this study is the explainable model, and
the explainable method is independent of the explainable model. Its aims are to realize
the interpretation of the recommendation results of a variety of classical classification-
recommendation algorithms, to inform patients as to the reasons for the recommendation,
so that patients fully accept the recommendation, and to make the recommendation system
truly achieve the purpose of disease prediction and prevention.

In the previous recommendation system, the authors often used the recall rate and
accuracy rate of the test set to measure the quality of the model, but the vague recom-
mendation results prevented patients from trusting the recommendations of the system.
The system needs to explain the reason for its recommendation results. However, not all
models, such as convolutional neural networks, can explain the recommendation results.
The most commonly used interpretation methods are the use of the model coefficient of
linear regression or the feature importance of the decision tree to explain the recommen-
dation results. However, these methods are affected by the original algorithm model, and
when the algorithm model is relatively complex, they cannot be used to effectively explain
the recommendation results. Therefore, in order to realize the explainability of complex
models, we introduce an explainability method that models in this study do not constrain.

The explainable method used in this study is the LIME explainable model. The model
is a locally explainable method independent of the model itself. A trained local-agent
model is used to interpret a single sample. It is assumed that for a black-box model that
needs to be explained, a relevant instance sample is taken, a new sample point is generated
by perturbation near it, and the predicted value of the black-box model is obtained. The
new data set is used to train the interpretable model (such as linear regression and decision
tree), and a good local approximation to the black-box model is obtained.

The idea behind LIME is very simple. Its main purpose is to explain complex models
through simple models, and LIME simply explains each sample itself. It obtains a new
sample data set through data transformation on a certain text. It then performs simple
model training on this new sample data set, and it is hoped that the prediction results of
this simple model can approximate the prediction results of the more complex model on
the original data set. In order to be interpretable and unconstrained by the model, LIME
does not operate deep in the model.

Therefore, LIME’s steps are as follows: train the whole model (which itself is not
explainable); select the variables to be explained; and N perturbations can be made to the
data in the data set to generate local samples. The new local sample is weighted. The
weight is the distance between these data points and the data to be interpreted. According
to the new data, a simple model is fitted. Next, a simple model is used to explain the
complex model at a certain sample point.

4. Experimental Results and Discussion

The data set used in this experiment, the details of the experimental setup of the model,
and the experimental results obtained are explained in detail in the following sections.
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4.1. Data Set

In this study, two data sets were used, namely the heart-disease data set and the
diabetes data set, through which the prediction of corresponding chronic diseases of old
age was planned. The data set was from the Kaggle website. The aim was to calculate the
characteristics of the data set, which included a range of factors, such as the patients’ daily
habits, test reports, and environment, to predict whether the patients would have a disease
(heart disease or diabetes). The heart disease-dataset contained the characteristics of a total
of 46,783 patients with and without a diagnosis of heart disease. The heart-disease dataset
was a processed dataset, containing 253,680 survey responses to CDC BRFS 2015. The target
variable had two categories, no heart disease and heart disease, and the dataset contained
21 characteristics. The diabetes data set contained the medical records of 768 patients, and
the target variables included whether or not the patients had diabetes, with 0 representing
no diabetes and 1 representing diabetes.

With regards to the heart-disease data set, we adopted a stratified sampling technique
to collect the data set samples, mainly based on gender, age, blood pressure, heart history,
the amount of exercise, and the smoking habits of the patients. These features were selected
because they are known to play an important role in the diagnosis of heart-disease types
based on clinical evidence. The different nature of these data helps to provide a common
and adaptable system for medical specialists. The data set included 56% men and 44%
women, about 58% of whom had hypertension and about 42% of whom did not. Table 1
provides a detailed description of some of the features in the data set.

Table 1. Performance-evaluation results.

Feature Expression

Heart Attack 0 = diabetes-free
1 = diabetes

High BP 0 = nonhypertensive
1 = hypertension

High Chol. 0 = no high cholesterol
1 = high cholesterol

Chol. Check 0 = cholesterol was not tested in previous 5 years
1 = cholesterol tested within previous 5 years

Smoker Have you smoked at least 100 cigarettes in your life?
0 = no 1 = yes

Stroke Have you had a stroke?
0 = no 1 = yes

Diabetes coronary heart disease (CHD) or myocardial infarction (MI)
0 = no 1 = yes

Phys. Activity physical activity in the past 30 days—excluding work
0 = No 1 = Yes

Fruits eat fruit one or more times a day
0 = No 1 = Yes

The diabetes dataset was created by the National Institute of Diabetes and Digestive
and Kidney Diseases of the United States. The dataset was collected to predict whether a
patient would have diabetes based on certain diagnostic measures contained in the dataset,
but the sample size of the dataset was small. The dataset had an age range of between
25–65, and all the patients were female, with the same Pima Indian ancestry.

This model not only outputs the likelihood of a patient having a disease, but also illus-
trates the contribution rates of various features when the system makes a recommendation,
reminding the patient to make changes in the corresponding areas.

4.2. Evaluation Parameters

According to the research plan, the data set was divided into two parts, the training
set and test set, and the model as trained and tested, respectively. In the heart-disease data
set, the training set accounted for 80 percent of the total, comprising 37,426 patients, and
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the test set accounted for 20 percent of the total, comprising 9357 patients. The diabetes
data sets were also segmented in this way.

Six classical classification algorithms, such as random forest, multi-layer perceptron,
and logistic regression, were used for recommendations related to medical diseases. On
this basis, the LIME model was used to reconstruct the data set for predicting the charac-
teristics of the patients, so as to realize an interpretable analysis of the recommendation
results. Five properties were used for these evaluations: accuracy, computation time, LIME
computation time, the LIME interpretation model, and the LIME local predictions versus
the actual predictions.

The aims of this study are to make it easier for patients to understand the reasons
why the system recommends particular results by explaining the results of medical-disease
recommendations and to make it easier for patients to accept the recommended results
and take corresponding measures to solve their problems. The criteria used to measure
the performance of conventional recommendation systems include accuracy and coverage,
among others. In this study, we planned to realize make the recommendation results
interpretable without affecting or while only slightly affecting the criteria, such as accuracy.

4.3. Results

This section introduces the performance of a LIME-based interpretable recommenda-
tion system in terms of prediction accuracy, computational cost, white-box-model inter-
pretability, and LIME-based interpretability. The interpretable computational cost of the
black-box model and the performance comparison between the interpretation results of
the black-box model and the white-box model are calculated, and the model-interpretation
performance of LIME is explained.

4.3.1. Accuracy

Accuracy is an important performance indicator in recommendation systems, and it is
unacceptable to reduce the accuracy in all recommendation systems significantly. Accuracy
is an important indicator for the adoption of system recommendations. Relatively complex
models can be improved by relatively high accuracy; we conducted accuracy-analysis
experiments on six models, including decision tree and linear regression, and the results
are shown in Figure 2. It can be seen from the results that the more complex the model,
the higher its test accuracy. It can also be seen from the difference between its training
accuracy and test accuracy that the relatively complex model is also relatively stable. This
was consistent with our speculations.

Similar to the accuracy of the above experiments, we speculated that the more complex
the model, the higher the time cost would be. The experimental results are shown in
Figure 3. According to the figure, the more complex the model, the longer the training time
and the higher the training cost.

4.3.2. White-Box Interpretable Model

The medical-recommendation system is exceptional, and fundamentally different
from the recommendation systems of movies, books, searches, etc. Patients do not use
the recommendation system when their attitudes are inappropriate. For patients to fully
trust the recommendation system, it must be sufficiently persuasive. The system must
give a convincing reason for the recommendation. If this is the case, patients accept the
system’s recommendation results, and the medical-recommendation results provide value.
Due to the characteristics of the models themselves, some traditional recommendation
algorithms can make use of their own characteristic information to make recommendations
interpretable; the most common approaches is the model coefficient of the logistic regression
model and the linear regression model, whose coefficient itself can explain the degrees
of the contributions of different features to the results. The results are shown in Figure 4,
where the roles of various characteristics in this patient-recommendation outcome are
displayed. (a) The results showed that the current patient did not have heart disease,
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mainly due to the excellent performance of Genhlth, BMI, age, and HighBP. However, the
results should also alert patients to HvyAlcoholConsump. (b) The results showed that the
current patient did not have diabetes, mainly because the characteristics of glucose, BMI,
age, and diabetes pedigree function were good, but the patient should pay attention to
their blood pressure and insulin.
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Another way to explain the medical-recommendation system is the feature importance
of the decision tree. The explainable range of this method is called the regression model,
and its explainable range is relatively wide. Most models that use decision trees are
interpretable. The experimental results are shown in Figure 5, where (a) the interpretable
results of the heart-disease dataset and (b) the interpretable results of the diabetes dataset
are shown. It can be seen that the decision-tree method can analyze the feature importance
of the decision tree, random forest, and gradient-enhancement models and provide a
feature-importance analysis of the recommendation results in the data set, so as to explain
the degree of the contribution of each feature to the recommendation result, which can be
used as explanations for recommendation results and provide reasons for patients to accept
these results.

From the above, it can be seen that explainability exists, and that it is sufficient for
patients, which makes the recommendations acceptable. However, it can also be seen that
this approach has some limitations and cannot explain other models, limiting the explain-
ability scope. Therefore, LIME is introduced into medical recommendations to provide
explanations for relatively complex models and for models that do not offer explanations.

4.3.3. Interpretation Based on LIME

Although the models in the current medical-recommendation system are becoming
increasingly complex and their accuracy is gradually increasing, their non-interpretability
is also becoming prominent. Therefore, LIME is used in this study to realize the inter-
pretability of relatively complex models. The LIME model mainly interprets a single model
by training a local proxy model, takes concerned instance samples, generates new sample
points through perturbation near them, and obtains the predicted values of relatively com-
plex models. New data sets are used to train interpretable models (such as linear regression
and decision trees) to obtain good local approximations to these models. The interpretable
recommendations are then implemented using a similar model interpretation instead of
complex model interpretation.
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In this study, we implemented interpretability recommendations for a relatively sim-
ple classification model (naive Bayes) and interpretability interpretations for a relatively
complex multilayer-perceptron model through LIME based on data sets for heart disease
and diabetes. The experimental results are shown in Figure 6. We found that regardless of
whether it is a simple classification model or a relatively complex model, and of whether
it is self-explained or explainable by external models only, the LIME model can offer the
interpretation of its recommendation results. Although the essential features of the model
that different classification models can explain are varied, from the above, it can be seen
that the contribution of these features to the results is positive or negative and is about
the same as in the alternatives. This can help us understand which traits are essential and
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should be retained, and which traits make a low contribution to current disease and can
be removed.
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According to the information presented in the figure above, this paper summarizes the
important features and corresponding values of each algorithm in the data set of diabetes
and heart disease, so that the importance of each feature can be more clearly understood.
The specific data are shown in Table 2.

Table 2. Important eigenvalues based on LIME interpretation.

(a) Heart-disease dataset

MLP
Classifier

Gradient
Boosting

Random
Forest

Decision
Tree

Naive
Bayes

Logistic
Regression

GenHith 0.118 0.068 0.074 0.071 0.097 0.087
HighBP 0.079 0.065 0.083 0.071 0.099 0.081

HighChol −0.071 −0.052 −0.069 −0.070 0.002 −0.069
Heart disease or attack 0.065 0.041 0.075 0.056 0.481 −0.032

Chol Check −0.119 −0.082 −0.047 0.038 −0.26 −0.093

(b) Diabetes dataset

MLP
Classifier

Gradient
Boosting

Random
Forest

Decision
Tree

Naive
Bayes

Logistic
Regression

Glucose 0.278 0.348 0.224 0.348 0.229 0.284
BMI 0.208 0.194 0.143 0.127 0.179 0.211
Age 0.117 0.154 0.131 0.112 0.116 0.095

Diabetes pedigree function 0.061 0.015 0.014 0.062 0.081 0.014
Insulin −0.023 0.002 0.013 0.006 0.072 −0.022

Pregnancies 0.047 0.028 0.015 −0.028 0.089 0.042

Although we know from the above that the LIME model can implement the recom-
mended interpretation of the unexplainable model itself, we are focused not only the
interpretation itself, but also on the running cost of the interpretation. Not only must a
good model achieve its original practical purpose, but its operating cost must also be within
an acceptable range. Therefore, we also collected the running time of the individual test
data of the model in the interpretability experiment, and fully calculated the interpretability
result of the current model by timing it before creating the interpreter and ending with
the recommended interpretability. Thus, the running time of the entire LIME model’s
interpretation was obtained, representing the running cost of the model. As shown in
Table 3 of the experimental results, the time required for naive Bayes classifier in the heart-
disease data set was almost the same as that required for the multilayer perceptron. In
contrast, logistic regression requires the highest running costs, and the time required for
random-forest operations is even less than that required for decision trees. In the diabetes
data set, it can be seen that the gradient-enhancement algorithm and random forest take
significant time, and that the MLP takes a relatively short time. It can be concluded from
the above table that for complex models, the operation time required by LIME for local
interpretation does not increase significantly, the time required by different models is little
different, and the use time of single-test data are relatively small. Therefore, the LIME
model has relatively low operating costs and occupies fewer operating resources, making it
suitable for recommendation and interpretation in relatively complex models.

Table 3. Runtime (seconds) for single-test-data-instance LIME explanation.

Method Heart Disease Diabetes

MLP classifier 2.89 s 0.312 s
Gradient boosting 3.08 s 0.42 s

Random forest 3.11 s 0.433 s
Decision tree 3.57 s 0.368 s
Naive Bayes 3.64 s 0.366 s

Logistic regression 4.29 s 0.371 s

While LIME can explain the characteristic importance of these results, we are still
unable to draw conclusions. We need to check whether the local model really approximates
the original model closely, and to judge whether the LIME local model can replace the
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model of the recommendation system for recommendation by comparing the difference
between the LIME local prediction and the actual prediction. The experimental results
are shown in Figure 7a, where green represents the LIME local predictions and brown
represents the actual predictions. It can be seen that the actual predicted values of the naive
Bayes model, logistic regression, multilayer perceptron, and gradient-enhancement tree
were little different with the local prediction effect of LIME, and the trend was consistent
with the actual predicted value. Only the LIME prediction for decision tree was significantly
different from the actual predicted value. As shown in Figure 7b, the LIME local predicted
values of the logistic regression, random forest, gradient enhancement, and multilayer
perceptron were little different from the actual predicted values, so they can be used as
their approximate models. Therefore, from these experimental results, it can be inferred
that the local model can be approximated as an alternative to the original model in LIME
interpretation to ensure the interpretability of medical recommendations.
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In order to more clearly show the advantages of the current algorithm model for the
data sets of diabetes and heart disease, we compared the algorithm with other algorithms.
We found that few medical-recommendation algorithms about heart disease are used at
present and that, in the existing heart-disease recommendation system, there were almost
no corresponding explanations for the recommended results. Similarly, although more
research has been conducted on diabetes than on heart disease, the data sets on diabetes
were rarely able to explain the results related to the disease. The details are shown in
Table 4, below.

Table 4. Comparison with current studies.

Dataset Study Method Feature LIME Heart Disease Diabetes

Public dataset (PIMA) Nagaraj,
Palanigurupackiam [43] IFIR, K-NN Important signs, age, weight,

and pricing data, etc. × × √

Public dataset Shadi Alian; Juan Li,
et al. [44] Logic-based rules Saturated fat, dietary

cholesterol, trans-fat, etc. × × √

Hospital dataset Anam Mustaqeem,
et al. [45] Statistical analysis Diastolic blood, age, BMI etc. × √ ×

Hospital dataset Mengxing Huang
et al. [46]

CML-KNN, a
k-nearest neighbors CT, MRI, etc. × × ×

Public dataset (kaggle) Our method NB, MLP, GBDT, RF,
LR, DT

BMI, age,
high BP, etc.

√ √ √

4.4. Discussion

This paper proposes a deep-learning approach combined with local interpretable model–
agnostic explanations (LIME) to address the lack of explanations in health–recommendation
systems, particularly for chronic diseases in older adults, such as heart disease and diabetes.
The results obtained from applying this approach to the heart-disease and diabetes datasets
are discussed, highlighting the similarities between the actual model predictions and the local
model recommendations generated by LIME.

For the heart-disease dataset, both the multilayer perceptron and the gradient-boosting
algorithm demonstrated consistent predictions with the local-model recommendations of
LIME. This indicates that the local model generated by LIME can serve as an approximate
prediction for heart disease. Furthermore, the feature-importance analysis revealed that
the features CholCheck, GenHith, and HighBP were identified as the most important
factors for heart-disease prediction. These insights provide valuable information to medical
practitioners for understanding the key variables contributing to heart disease and making
informed treatment decisions.

In the case of the diabetes dataset, both the multilayer perceptron and the logistic-
regression algorithm showed similar predictions to the local-model recommendations of
LIME. This suggests that LIME’s local model can provide a reasonable approximation for
recommending treatment options for diabetes. The feature-importance analysis identified
glucose, BMI, and age as the most influential features in predicting diabetes. Understanding
the importance of these variables allows medical professionals to focus on the crucial factors
affecting diabetes and to personalize patient-management strategies accordingly. By using
LIME, this paper successfully determines the importance of each feature in influencing the
calculated model’s results. The contribution coefficients of these features are presented,
offering insights into the relative impact of different patient characteristics on the final
recommendations. This approach enhances patient trust by providing understandable and
transparent explanations for the recommendations made by the system. It bridges the gap
between the black-box nature of deep-learning models and the need for interpretability in
medical decision making.

The proposed system has significant implications for medical-recommendation sys-
tems and promotes informed decision making in healthcare. By elucidating the underlying
reasons behind recommendations, medical practitioners gain valuable insights into the
decision-making process and can engage in more effective communication with patients.
This approach fosters a collaborative and informed healthcare environment, empowering
patients and improving overall treatment outcomes. However, it is important to note
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that this paper lacks detailed descriptions of the modifications made to the LIME method
and the specific methodology employed. Further clarification and details regarding the
experimental setup, evaluation metrics, and comparison with existing approaches would
strengthen the study. The model studied aims to use LIME’s explanatory techniques to
provide explainable reasons for recommendations for more complex recommendation
models. The results show that the proposed method can provide interpretability for many
models that are not interpretable by themselves, with good accuracy and computation,
and that it has high scalability. This study is relatively reliable and accurate, because the
data set it uses was collected by professional institutions, and the experimental results
are trustworthy. In addition, most recommendation systems in the medical and health
fields only contain recommendation systems, and few systems can explain the reasons for
these recommendations.

5. Conclusions

In order to improve the unexplainable recommendation results in the field of medical
recommendations, this paper proposes an explainable medical-recommendation system for
age-related chronic diseases based on LIME. By combining the LIME explainable model
with traditional classification algorithms and applying it in the medical field, the reasons
for recommending results are explained on the basis of realizing predictions related to
chronic diseases in the elderly. In this study, the method was applied to data sets on heart
disease and diabetes in elderly patients with chronic diseases. Firstly, the data sets were
preprocessed and normalized to ensure that the data in the data set were true, effective,
and available. Next, the sorted data sets were input into six commonly used classification-
algorithm models, including decision tree, random forest, the linear-regression model,
multilayer perceptron, the gradient-enhancement-tree algorithm, and naive Bayes, to
propose recommendations for age-related chronic diseases. Finally, the processed data set
and recommendation results were trained through the LIME model to obtain the reasons for
the recommendation results and provide interpretations of these results. The experimental
results show that the proposed method can be used to interpret the recommended results
in both non-interpretable and interpretable classification models. In addition, in LIME,
the sample size affects the expected value and average forecast. Therefore, the number of
samples can be reasonably controlled to achieve a more accurate interpretation effect.

In the future, more complex classification models will be added to predict the outcomes
of chronic diseases in the elderly, since relatively complex models can have better prediction
accuracy. This idea will direct future research.
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