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Abstract: Deep learning (DL), often called artificial intelligence (AI), has been increasingly used in
Pathology thanks to the use of scanners to digitize slides which allow us to visualize them on monitors
and process them with AI algorithms. Many articles have focused on DL applied to prostate cancer
(PCa). This systematic review explains the DL applications and their performances for PCa in digital
pathology. Article research was performed using PubMed and Embase to collect relevant articles. A
Risk of Bias (RoB) was assessed with an adaptation of the QUADAS-2 tool. Out of the 77 included
studies, eight focused on pre-processing tasks such as quality assessment or staining normalization.
Most articles (n = 53) focused on diagnosis tasks like cancer detection or Gleason grading. Fifteen
articles focused on prediction tasks, such as recurrence prediction or genomic correlations. Best
performances were reached for cancer detection with an Area Under the Curve (AUC) up to 0.99
with algorithms already available for routine diagnosis. A few biases outlined by the RoB analysis
are often found in these articles, such as the lack of external validation. This review was registered on
PROSPERO under CRD42023418661.

Keywords: prostate cancer; deep learning; digital pathology; Gleason grading; convolutional neural
networks; artificial intelligence

1. Introduction
1.1. Prostate Cancer

Prostate cancer (PCa) is one of the most prevalent cancers among male cancers, espe-
cially aging [1]. The gold standard for diagnosing and treating patients is the analysis of
H&E histopathology slides [2]. The observation of the biopsy tissue enables pathologists to
detect tumor cells and characterize the aggressiveness of the tumor using Gleason grading.
This grading is based on gland structure and ranks 1 to 5 according to the differentiation [3].
When more than one pattern is present on the biopsy, the scoring is defined by the most
represented pattern (primary) and the highest one (secondary). For instance, a biopsy
with most of pattern 3 and some patterns 4 and 5 will be scored 3 + 5 = 8. To improve the
prognosis correlation among these scores, an update of Gleason grading called the ISUP
(International Society of Urological Pathology) Grading system, was proposed in 2014,
which assigns patients into a group depending on the Gleason score (see Table 1) [4]. These
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groups have varying prognoses, from group 1 corresponding to an indolent tumor to group
5 having a poor prognosis [5].

Table 1. Correspondence between Gleason score and ISUP Gleason group.

Gleason ISUP Group Gleason Score

1 Score = 6

2 Score 7 (3 + 4)

3 Score 7 (4 + 3)

4 Score 8 (4 + 4, 5 + 3, 3 + 5)

5 Score 9 or 10

1.2. DL Applied to WSI

Glass slides are digitized with scanners to form whole slide images (WSIs). These
images can be used to train DL algorithms. The principle is to teach an algorithm to
correlate WSIs to a target provided by the user called the ground truth (GT). Once training
is over, it is essential to test (or validate) the algorithm on other WSIs to validate it on other
images. All studies must therefore have a training and a testing (or validation) cohort.
Additionally, to comprehensively evaluate a model, it is common to use cross-validation
(cross-val), i.e., splitting the training dataset into n parts, called folds, to train a model with
(n − 1)/n of all data and evaluate it with 1/n of all data, n times. Finally, the algorithm can
be evaluated on an external dataset.

Two main types of algorithms are discussed in this paper: segmentation and classifica-
tion algorithms. Segmentation algorithms aim at precisely delineating regions of interest in
WSIs (see Figure 1A). For instance, a common segmentation task is to localize stroma and
epithelium. The most popular architecture is U-Net [6]. Classification algorithms intend to
estimate labels, called classes, associated with images. In pathomics, WSIs are divided into
tiles that are then encoded into features representing a summary of the tiles. A classification
process is then learned from the features (see Figure 1B). These features are deep-learned
with convolutional neural networks (CNN). The main architectures that are used for classi-
fication are Inception [7], ResNet [8], VGG [9], DenseNet [10], and MobileNet [11]. Those
classic architectures can be trained and customized, but it is also possible to use models
pre-trained on other data and fine-tune these models on the desired data. This is called
transfer learning.

A significant difficulty in pathomics is the very large size of WSIs which prevents
them from being processed all at once. This requires tiling WSIs in many tiles and dealing
with data of different sizes. Most architectures need the same size of input for every image.
The number of tiles selected must therefore be the same for each image. The magnification
at which the image is tiled is also a key parameter in handling the input data. Additionally,
this leads to potentially very large amounts of data to manually annotate to create the GT, a
time-consuming task for pathologists. Strategies such as weak supervision, where only one
label per patient is assigned from the pathologists’ report, have emerged to speed up this
work.

1.3. Applications and Evaluation of Algorithms

In pathomics applied to PCa, DL algorithms are applied for pre-processing, diagnosis,
or prediction. Pre-processing algorithms evaluate input data quality and staining nor-
malization. Diagnosis methods focus either on cancer detection or on Gleason grading.
Prediction approaches focus on predicting survival and cancer progression or genomic
signatures. Algorithms are evaluated with different metrics that are summarized in Supple-
mentary Table S1. The most used metric is the Area Under the Curve (AUC) which can be
used to evaluate diagnosis and prognosis tasks.
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Figure 1. DL applied to WSIs. (A) Segmentation algorithm, (B) Classification algorithm. WSIs are 
divided into many tiles, and every tile is encoded into features. Tiling can be performed at different 
magnifications, but an identical number of tiles per WSIs is generally required. The encoding into 
features can be trained or performed with a pre-trained algorithm. Features are then used to train a 
classification algorithm. 
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Figure 1. DL applied to WSIs. (A) Segmentation algorithm, (B) Classification algorithm. WSIs are
divided into many tiles, and every tile is encoded into features. Tiling can be performed at different
magnifications, but an identical number of tiles per WSIs is generally required. The encoding into
features can be trained or performed with a pre-trained algorithm. Features are then used to train a
classification algorithm.

1.4. Aim of This Review

This paper reviews the main articles mentioning DL algorithms applied to prostate
cancer WSIs until 2022. It highlights current trends, future perspectives, and potential
improvements in the field. It aims to be a thorough but comprehensive take on this subject
for everyone interested.

2. Materials and Methods

This systematic review followed the PRISMA guidelines, containing advices and
checklists to frame systematic reviews [12]. It was registered on PROSPERO, a website
identifying all existing and undergoing systematic reviews under CRD42023418661.
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PubMed and Embase, two biomedical databases, were used to look for articles until
1 September 2023 with the following keywords:

(‘prostate’ OR prostate OR prostatic) AND (cancer OR carcinoma OR malignant OR
lesions) AND (‘artificial intelligence’ OR ‘algorithm’ OR ‘deep learning’ OR ‘machine
learning’ OR ‘automated classification’ OR ‘supervised learning’ OR ‘neural network’)
AND (‘whole slide image’ OR ‘digital pathology’ OR pathomics OR ‘he’ OR ‘H&E’ OR
‘histological’)

Additionally, selected papers had to:

• be written in English,
• focus on prostate cancer,
• use pathology H&E-stained images,
• rely on deep learning.

The selection of papers was first evaluated with titles only. Abstracts were then
reviewed, leading to a collection of 45 selected papers. Finally, 32 articles that did not come
through the database search but were referenced in many of the 45 papers were manually
added. Additional searches via PubMed and Google were performed to check if conference
abstracts led to published articles. Figure 2 illustrates the selection process.
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A risk-of-bias study was performed for each paper, using an adaptation of QUADAS-
2 [13] (see Table 2) as the most suitable tool for AI papers. QUADAS-AI is not yet avail-
able [14]. Remarks made in this paper and criteria in the IJMEDI checklist [15] were used to
create a homemade checklist adapted to this review. This allowed us to evaluate all papers
on the same criteria to outline the main biases.
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Table 2. Checklist used to perform RoB analysis for every paper.

Quadas-2 Category Adaptation Criteria

Patient selection

Data source

Existence of exclusion criteria

Data publicly available

Reference to demographics and stratification

Sufficient amount of training data *

Data process
Normalization process properly described

Strategy for data imbalance

Index Test Model

Description of model task

Description of model output

Description of architecture

Definition of hyperparameter values

Code publicly available

Reference standard Ground truth

Ground truth defined in accordance with good
clinical practice

Ground truth defined by multiple experts

Flow and timing Analysis

Description of splitting methods

Definition of a metric appropriate to the analysis

Relevance of algorithms with state of the art

Use of external testing cohort

Explainability of the model
* For diagnosis and prediction tasks, a number of 200 WSIs was required.

3. Results

Data was collected for every article: first author name, year of publication, aim of
the paper, neural network used, number of slides in the training, validation (internal and
external) cohorts, sub-aims of the paper and their corresponding performances with an
Excel Sheet. All tables can be found in the Supplementary Materials with more detailed
information (Supplementary Tables S2–S8).

3.1. Pre-Processing

Out of the 77 selected articles, three proposed methods for WSI quality assessment
and 6 attended to correct for staining and/or scanning discrepancies across a set of WSIs
(Table 3).

Table 3. Papers focusing on pre-processing tasks.

First Author,
Year

Reference

DL
Architecture Training Cohort IV Cohort EV Cohort Aim Results

Schömig-
Markiefka, 2021

[16]
InceptionResNetV2 Already trained Subset of TCGA

slides 686 WSIs Impact of artifacts on
tissue classification

Tissue classification
performance decreases
with the appearance of

artifacts

Haghighat,
2022
[17]

ResNet18
PathProfiler 198 WSIs 3819 WSIs None

Prediction of tile-level
usability AUC: 0.94 (IV)

Prediction of
slide-level usability

AUC: 0.987 (IV)
PC: 0.889 (IV)
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Table 3. Cont.

First Author,
Year

Reference

DL
Architecture Training Cohort IV Cohort EV Cohort Aim Results

Brendel, 2022
[18]

ResNet34-IBN 4984 WSIs TCGA
(6 cancer types)

866 WSIs TCGA
(6 cancer types) 78 WSIs

Cancer and tissue type
prediction

F1: 1 (IV)
F1: 0.83 (EV)

Tumor purity above
70% AUC: 0.8 (IV)

Anghel, 2019
[19]

VGG-like
network 96 WSIs 14 WSIs None

Improvement of cancer
detection when using

poor-quality WSIs

F1 (base): 0.79
F1 (best): 0.87

Otàlora, 2019
[20]

MobileNet [21]
+ 2 layers 3540 TMAs 1321 TMAs 3961 TMAs

Impact of
normalization on GP

classification

AUC (base): 0.56 (IV)
& 0.48 (EV)

AUC (best): 0.84 (IV) &
0.69 (EV)

Rana, 2020
[22]

GANs 148 WSIs 13 WSIs None

Comparison of dye
and computationally

stained images

PC: 0.96
Structural similarity

index: 0.9

Comparison of
unstained and

computationally
destained images

PC: 0.96
Structural similarity

index: 0.9

Sethi, 2016
[23] Custom CNN 20 WSIs 10 WSIs None Epithelial-stromal

segmentation
AUC: 0.96 (Vahadane)

AUC: 0.95 (Khan)

Swiderska-
Chadaj, 2020

[24]

U-Net
GANs 324 WSIs 258 WSIs

85 WSIs Impact of
normalization on
cancer detection

AUC: 0.92
AUC: 0.98 (GAN)

50 WSIs AUC: 0.83
AUC: 0.97 (GAN)

Salvi, 2021
[25]

Inceptionv3
pre-trained on

ImageNet
400 WSIs 100 WSIs None

WSI-level classification
algorithm performance
adding normalization

and tile selection

Sens (base): 0.94
Spec (base): 0.68

Sens (best): 1
Spec (best): 0.98

IV: Internal Validation. EV: External Validation. TCGA: The Cancer Genome Atlas project. TMA: Tissue Micro
Array. CNN: Convolutional Neural Network. GP: Gleason Pattern. AUC: Area Under the Curve. PC: Pearson
Correlation. F1: F1-score. metric implies the mean of this metric (e.g., PC).

3.1.1. Quality Assessment

Two articles proposed to evaluate the quality of a collection of slides by using a purity
score (AUC of 0.8) [18] or a binary criterion of usability (AUC of 0.983) [17], attributed by
pathologists. A third study proposed to artificially alter a collection of WSIs with artifacts
and to evaluate the resulting impact on the tissue classification of tiles, which was perfectly
performed without artifacts (F1-score = 1) [16]. The authors demonstrated that the main
causes for the drop in performance are defocusing, jpg compression and staining variations.
Indeed, the latter topic has been the subject of quite some articles in the field.

3.1.2. Staining Normalization and Tile Selection

WSIs stained in different locations show differences in intensity observed in the three-
color channels (RGB). The scanners also influence the acquired WSIs. Many methods
were proposed to normalize staining and/or scanning to obtain more generic DL models.
Swiderska-Chadaj et al. evaluated the performance of their WSI normalization when
classifying patients for benign/malignant tissues [24]. First, they improved classification
performance with external datasets when images were scanned with the same scanner as
the one used to scan the training cohort. Then, they trained a generative model to normalize
WSIs for the external dataset, improving their classification performance (from an AUC of
0.92 to 0.98). Similarly, Rana et al. virtually stained with H&E non-stained WSIs with the
help of generative models. Then, they stained the same biopsies with H&E and compared
virtual and stained slides, reaching a high correlation (PC of 0.96) [22]. Salvi et al. focused
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not only on staining normalization but also on tile selection. Basing itself on segmentation,
it allows for better select tiles to represent the WSI and its tissue’s complexity [25]. The
model improvement (gain of 0.3 in specificity, reaching a sensitivity of 1) highlights the
need for preprocessing steps, such as stain normalization or segmentation-guided tile
selection.

3.2. Diagnosis

Most of the selected papers (n = 53) focused on diagnosis, whether it be about tissue
segmentation (n = 5), detection of cancer tissue (n = 21), attribution of a Gleason grading
(n = 10), or both detection of cancer tissue and Gleason grading (n = 19 with 2 in segmenta-
tion also). Diagnosis can be performed at the pixel level, tile level, WSI level or patient level.
Methods processing data at the pixel level are segmentation algorithms trained to localize
areas of clinical interest, e.g., malignant and benign epithelium. Methods processing data
at tile, WSI or patient level are classification algorithms trained to identify categories of
clinical interest associated with the input data.

3.2.1. Segmentation

Many segmentation studies (see Table 4) demonstrated high performance for gland
segmentation: a Dice of 0.84 [26], a Dice of 0.9 [27], an F1 score from 0.83 to 0.85 [28] and an
AUC of 0.99 [29]. Precisely annotating WSIs is time-consuming, and several approaches
focused on strategies to reduce the number of annotations. In [30], the authors trained
a model with rough annotations obtained with traditional image processing techniques.
Then they fine-tuned this model with a few precise annotations made by pathologists (AUC
gain of 0.04). In [28], slides were first stained with immunohistochemistry (IHC) for which
DL models were already trained. The slides were stained with H&E, and a new model was
trained using the annotations masks obtained from the IHC segmentation model.

Table 4. Papers focusing on segmenting glands or tissue to help future classification tasks.

First Author,
Year

Reference

DL
Architecture

Training
Cohort IV Cohort EV Cohort Aim Results

Ren, 2017
[26] U-Net 22 WSIs 5-fold cross

val None Gland Segmentation
in H&E slides F1: 0.84

Li, 2019
[29] R-CNN 40 patients 5-fold cross

val None Epithelial cell
detection AUC: 0.998

Bulten, 2019
[28] U-Net 20 WSIs 5 WSIs None

Epithelium
segmentation based

on IHC

IoU: 0.854
F1: 0.915

Bukowy, 2020
[30]

SegNet
(VGG16)

10 WSIs

6 WSIs None

Weakly- and
strongly-annotated

segmentation

AUC: 0.85 (strong)
AUC: 0.93 (weak

fine-tuned strong)

140 WSIs

Epithelium
segmentation with a

combination of
3 models

ACC: 0.86 (DL)

Salvi, 2021
[27]

U-Net + post-
processing 100 patients 50 patients None Gland segmentation

Dice: 0.901 U-Net +
post-processing

Dice: 0.892 U-Net
only

IV: Internal Validation. EV: External Validation. CNN: Convolutional Neural Network. AUC: Area Under
the Curve. F1: F1-score. IoU: Intersection Over Union. metric implies the mean of this metric. cross val:
cross-validation.
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3.2.2. Cancer Detection

Even if segmentation helps select tiles of interest, other processes can be used to
improve classification. There is the possibility of using multi-scale embedding to take in an
area at different magnifications at the same time (as a pathologist would do) [31]. To select
tiles and improve the explainability of the model, one of the most popular approaches for
patient classification in pathology is Multiple Instance Learning (MIL) [32–34]). From a
WSI divided into a high number of tiles, the goal is to associate to each tile a probability
for the considered classification task, e.g., the presence of cancer, and then use the most
predictive tiles to diagnose. This DL approach directly addresses the tile selection during
the training, allowing us to deal with WSIs of different sizes and identify the tiles used
to decide. This paradigm was notably used for cancer detection by Campanella et al. on
the largest training and external validation cohorts to date [32] and by Pinckaers et al. [33].
These articles achieve an AUC of 0.99 on internal validation cohorts and above 0.90 on
external cohorts. Indeed, many other approaches obtained AUC over 0.95 [31–46]. In 2021,
the FDA approved the deployment of PaigeProstate [34], based on the MIL architecture of
Campanella [32]. It was evaluated with three different external cohorts [47–49]. It showed a
high performance (sensitivity of minimum 0.94 and specificity of minimum 0.93), focusing
on a high sensitivity to avoid missing small areas of cancer. Other articles focused on
the detection of more specific patterns, such as cribriform patterns with an accuracy of
0.88 and AUC of 0.8 [50–52] or perineural invasion with an AUC of 0.95 [36]. To evaluate
the generalization of their model trained on biopsies for which they obtained an AUC of
0.96, Tsuneki et al. applied it to TUR-P (TransUrethral Resection of Prostate) biopsies with
an AUC of 0.80. After fine-tuning their model with colon WSIs, performance on TUR-P
biopsies increased to 0.85 AUC [53]. Wen fine-tuning their model with the TUR-P training
cohort, they obtained an AUC of 0.9 for every testing cohort [54]. All the articles focusing
on cancer detection are in Table 5.

Table 5. Papers focusing on cancer detection only.

First Author,
Year

Reference

DL
Architecture

Training
Cohort IV Cohort EV Cohort Aim Results

Litjens, 2016
[43] Custom CNN 150 patients 75 patients None Cancer detection at the

pixel level AUC: 0.99

Kwak, 2017
[44] Custom CNN 162 TMAs 491 TMAs None Cancer detection at the

sample level AUC: 0.974

Kwak, 2017
[45] Custom CNN 162 TMAs 185 TMAs None Cancer detection at the

sample level AUC: 0.95

Campanella,
2018 [46]

ResNet34 and
VGG11-BN

(MIL)
12,610 WSIs 1824 WSIs None Cancer detection at the

WSI level AUC: 0.98

Campanella,
2019 [32]

RNN (MIL)
12,132 WSIs 1784 WSIs 12,727 WSIs Cancer detection at the

WSI level

AUC: 0.991 (IV) &
0.932 (EV)

ResNet34
(MIL) AUC: 0.986 (IV)

Garcià, 2019
[55] VGG19

6195 glands
(from 35

WSIs)

5-fold cross
val None Malignancy gland

classification AUC: 0.889

Singh, 2019
[50] ResNet22 749 WSIs 3-fold cross

val None Cribriform pattern
detection at the tile level ACC: 0.88

Jones, 2019
[56]

ResNet50 &
SqueezeNet

1000 tiles
from 10 WSIs

200 tiles from
10 WSIs

70 tiles from
unknown number of

WSIs

Malignancy detection at
the tile level

ACC: 0.96 (IV) & 0.78
(EV)
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Table 5. Cont.

First Author,
Year

Reference

DL
Architecture

Training
Cohort IV Cohort EV Cohort Aim Results

Duong, 2019
[31]

ResNet50 and
multiscale

embedding
602 TMAs 303 TMAs None

TMA classification using
only ×10 magnification AUC: 0.961

TMA classification with
multi-scale embedding AUC: 0.971

Raciti, 2020
[34] PaigeProstate Pre-trained

[32]
Pre-trained

[32]
232 biopsies

Malignancy classification
at the WSI level

Sens: 0.96
Spec: 0.98

Improvement of
pathologist’s classification

Sens: 0.738 to 0.900
Spec: 0.966 to 0.952

Han, 2020
[38] AlexNet

286 WSIs
from 68
patients

Leave one
out cross val None Cancer classification at the

WSI level AUC: 0.98

Ambrosini,
2020
[51]

Custom CNN 128 WSIs 8-fold cross
val None Cribriform pattern

detection for biopsies AUC: 0.8

Bukhari, 2021
[57] ResNet50 640 WSIs 162 WSIs None Cancer/hyperplasia

detection at the tile level
F1: 1

ACC: 0.995

Pinckaers,
2021
[33]

ResNet-34
(MIL)

5209 biopsies 535 biopsies 205 biopsies
Cancer detection for

biopsies

AUC: 0.99 (IV) &
0.799 (EV)

Streaming
CNN

AUC: 0.992 (IV) &
0.902 (EV)

Perincheri,
2021
[49]

Paige
Prostate

Pre-trained
[34]

Pre-trained
[34]

1876 biopsies from
116 patients

Paige classification
evaluation

110/118 patients were
correctly classified

Da Silva, 2021
[48] PaigeProstate Pre-trained

[34]
Pre-trained

[34]
600 biopsies from

100 patients

Malignancy classification
for biopsies

Sens: 0.99
Spec: 0.93

Malignancy classification
for patients

Sens: 1
Spec: 0.78

Raciti, 2022
[47] PaigeProstate Pre-trained

[34]
Pre-trained

[34] 610 biopsies Cancer detection for
patients

Sens: 0.974
Spec: 0.948
AUC: 0.99

Krajnansky,
2022
[58]

VGG16-mode
156 biopsies

from
262 WSIs

Ten biopsies
from

87 WSIs
None

Malignancy detection for
biopsies FROC: 0.944

Malignancy detection for
patients AUC: 1

Tsuneki, 2022
[53]

EfficientNetB1
pre-trained

on colon 1182 needle
biopsies

1244 TURP
biopsies

500 needle
biopsies

767 WSIs Cancer detection for
classic and TURP biopsies

AUC: 0.967 (IV) &
0.987 (EV)

AUC (TURP): 0.845

EfficientNetB1
pre-trained

on ImageNet

AUC: 0.971 (IV) &
0.945 (EV)

AUC (TURP): 0.803

Tsuneki, 2022
[54]

EfficientNetB1
pre-trained

on ImageNet 1060 TURP
biopsies

500 needle
biopsies,

500 TURP
768 WSIs

Cancer detection in classic
and TURP biopsies

AUC: 0.885 (IV) TURP
AUC: 0.779 (IV) &
0.639 (EV) biopsies

EfficientNetB1
pre-trained

on colon

AUC: 0.947 (IV) TURP
AUC: 0.913 (IV) &
0.947 (EV) biopsies

Chen, 2022
[59] DenseNet 29 WSIs 3 WSIs None Classification of tissue

malignancy

AUC: 0.98 (proposed
method)

AUC: 0.90
(DenseNet-121)

IV: Internal Validation. EV: External Validation. TMA: Tissue MicroArray. CNN: Convolutional Neural Network.
MIL: Multiple Instance Learning. TURP: TransUrethral Resection of Prostate. AUC: Area Under the Curve.
FROC: Free Receiver Operating Characteristic. ACC: Accuracy. F1: F1-score. Sens: Sensitivity. Spec: Specificity.
metric implies the mean of this metric (e.g., AUC).
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3.2.3. Gleason Grading

When estimating Gleason grading, many papers only focused on classifying tiles or small
regions like TMAs by taking advantage of classical CNN architectures trained on large datasets
of natural images such as ImageNet [60]. In that context, tiles were encoded into features which
corresponded to the input data for classification [21,38,61–66]. One of the first papers in the
field used a cohort of 641 TMAs, obtaining a quadratic Cohen Kappa of 0.71 [21]. Similarly,
Kott et al. obtained an AUC of 0.82 [62]. A few articles directly addressed the localization
at the pixel level of Gleason patterns [28,29,41,67–71]. Performances vary between IoU of
0.48 [70,71] to IoU around 0.7 [28,29,68], Dice score of 0.74 [69], quadratic Cohen kappa of
0.854 [41], sensitivity of 0.77 and specificity of 0.94 [67] (see Table 6). Adding epithelium
detection greatly improved performance when properly segmenting areas depending on
Gleason grades (gain of 0.07 in mean IoU) [29]. Many articles used the same pipeline to
group Gleason scores according to ISUP recommendations [35,36,52,72,73]. These studies
relied on the annotation of glands according to their Gleason pattern. WSIs were then split
into tiles, and every single tile was classified according to the majority Gleason pattern
(GP). Once all tiles were classified, heatmaps were generated, and a classifier was trained
to properly aggregate ISUP grade groups or at least differentiate high from low grade [74].
Two algorithms based on this pipeline are now commercially available: (i) IBEX [36] (AUC
of 0.99 for cancer detection, AUC of 0.94 for low/high-grade classification); (ii) DeepDx [72]
(quadratic kappa of 0.90). DeepDx was further evaluated on an external cohort by Jung
et al. [75] (kappa of 0.65 and quadratic kappa of 0.90). A third algorithm capable of Gleason
grading (kappa of 0.77) was commercialized by Aiforia [42]. Another important milestone
in the field was the organization and the release of the PANDA challenge focusing on
Gleason grading at the WSI level without gland annotations [76]. This is an incredibly large
cohort (around 12,000 biopsies of 3500 cases) publicly available, including slides from 2
different locations and external validation from 2 other sites. Best algorithms reached a
quadratic Kappa of 0.85 on external validation datasets. One of the goals of Gleason grading
algorithms is the potential decrease of inter-observer variability for pathologists using the
algorithm. Some algorithms already have better Kappas than a cohort of pathologists
compared to the ground truth [21,41,77].

Table 6. Articles focusing on Gleason grading.

First Author, Year
Reference DL Architecture Training

Cohort IV Cohort EV Cohort Aim Results

Källén, 2016
[63] OverFeat TCGA 10-fold cross

val 213 WSIs

GP tile classification ACC: 0.81

Classify WSIs with a
majority GP ACC: 0.89

Jimenez Del Toro,
2017 [74] GoogleNet 141 WSIs 47 WSIs None High vs. Low-grade

classification ACC:0.735

Arvaniti, 2018
[21]

MobileNet +
classifier 641 TMAs 245 TMAs None

TMA grading qKappa: 0.71/0.75
(0.71 pathologists)

Tile grading qKappa: 0.55/0.53
(0.67 pathologists)

Poojitha, 2019
[64] CNNs 80 samples 20 samples None GP estimation at tile

level (GP 2 to 5) F1: 0.97

Nagpal, 2019
[73] InceptionV3 1159 WSIs 331 WSIs None

GG classification ACC: 0.7

High/low-grade
classification (GG 2, 3 or

4 as threshold)
AUC: 0.95

Survival analysis,
according to Gleason HR: 1.38
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Table 6. Cont.

First Author, Year
Reference DL Architecture Training

Cohort IV Cohort EV Cohort Aim Results

Silva-Rodriguez, 2020
[52] Custom CNN 182 WSIs 5-fold

cross-val

703 tiles from
641 TMAs

[21]

GP at the tile level
F1: 0.713 (IV) & 0.57
(EV) qKappa: 0.732

(IV) & 0.64 (EV)

GG at the WSI level qKappa: 0.81 (0.77
with [21] method)

Cribriform pattern
detection at the tile level AUC: 0.822

Otalora, 2021
[65]

MobileNet-based
CNN

641 TMAs
255 WSIs

245 TMAs
46 WSIs None GG classification wKappa: 0.52

Hammouda, 2021
[78] CNNs 712 WSIs 96 WSIs None

GP at the tile level F1: 0.76

GG F1: 0.6

Marini, 2021
[66] Custom CNN 641 TMAs

255 WSI
245 TMAs
46 WSIs None

GP at the tile level qKappa: 0.66

GS at TMA level qKappa: 0.81

Marron-Esquivel,
2023 [77] DenseNet121

15,020
patches

2612 patches None Tile-level GP
classification

qKappa: 0.826

102,324
patches

(PANDA +
fine-

tuning)

qKappa: 0.746

Ryu, 2019
[72] DeepDx Prostate 1133 WSIs 700 WSIs None GG classification qKappa: 0.907

Karimi, 2019
[61]

Custom CNN 247 TMAs 86 TMAs None

Malignancy detection at
the tile level

Sens: 0.86
Spec: 0.85

GP 3 vs. 4/5 at tile level Sens: 0.82
Spec: 0.82

Nagpal, 2020
[35]

Xception 524 WSIs 430 WSIs 322 WSIs

Malignancy detection at
the WSI level

AUC: 0.981
Agreement: 0.943

GG1-2 vs. GG3-5 AUC: 0.972
Agreement: 0.928

Pantanowitz, 2020
[36] IBEX 549 WSIs 2501 WSIs 1627 WSIs

Cancer detection at the
WSI level

AUC: 0.997 (IV) &
0.991 (EV)

Low vs. high grade (GS
6 vs. GS 7–10) AUC: 0.941 (EV)

GP3/4 vs. GP5 AUC: 0.971 (EV)

Perineural invasion
detection AUC: 0.957 (EV)

Ström, 2020
[37]

InceptionV3 6935 WSIs 1631 WSIs 330 WSIs
Malignancy detection at

the WSI level
AUC: 0.997 (IV)

0.986 (EV)

GG classification Kappa: 0.62

Li, 2021
[39]

Weakly
supervised
VGG11bn

13,115 WSIs 7114 WSIs 79 WSIs
Malignancy of slides AUC: 0.982 (IV) &

0.994 (EV)

Low vs. high grade at
the WSI level

Kappa: 0.818
Acc: 0.927

Kott, 2021
[62] ResNet 85 WSIs 5-fold

cross-val None

Malignancy detection at
the tile level

AUC: 0.83
ACC: 0.85 for

fine-tuned detection

GP classification at the
tile level

Sens: 0.83
Spec: 0.94

Marginean, 2021
[79] CNN 698 WSIs 37 WSIs None

Cancer area detection Sens: 1
Spec: 0.68

GG classification Kappa: 0.6
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Table 6. Cont.

First Author, Year
Reference DL Architecture Training

Cohort IV Cohort EV Cohort Aim Results

Jung, 2022
[75] DeepDx Prostate Pre-trained Pre-trained 593 WSIs

Correlation with
reference pathologist

(pathology report
comparison)

Kappa: 0.654 (0.576)
qKappa: 0.904 (0.858)

Silva-Rodriguez, 2022
[40]

VGG16 252 WSIs 98 WSIs None

Cancer detection at the
tile level AUC: 0.979

GS at the tile level AUC: 0.899

GP at the tile level
F1: 0.65 (0.75 prev.

Paper)
qKappa: 0.655

Bulten, 2022
[76]

Evaluation of
multiple

algorithms
(PANDA

challenge)

10,616 WSIs 545 WSIs

741 patients
(EV1)

330 patients
(EV2)

GG classification qKappa: 0.868 (EV2)
qKappa: 0.862 (EV1)

Li, 2018
[68] Multi-scale U-Net

187 tiles
from

17 patients

37 tiles from
3 patients None

Segment Stroma, benign
and malignant gland

segmentation

IoU: 0.755
(0.750 classic U-Net)

Stroma, benign and GP
3/4 gland segmentation

IoU: 0.658
(0.644 classic U-Net)

Li, 2019 *
[29] R-CNN 513 WSIs 5 fold cross

val None
Stroma, benign, low-

and high-grade gland
segmentation

IoU: 0.79 (mean
amongst classes)

Bulten, 2019 *
[28] U-Net 62 WSIs 40 WSIs 20 WSIs Benign vs. GP

IoU: 0.811 (IV) &
0.735 (EV)

F1: 0.893 (IV) & 0.835
(EV)

Lokhande, 2020
[69]

FCN8 based on
ResNet50 172 TMAs 72 TMAs None Benign, grade 3/4/5

segmentation
Dice: 0.74 (average
amongst all classes)

Li, 2018
[71]

Multi-Scale
U-Net-based

CNN
50 patients 20 patients None

Contribution of EM for
multi-scale U-Net

improvement

IoU: 0.35 (U-Net)
IoU: 0.49

(EM-adaptative 30%)

Bulten, 2020
[41] Extended Unet

5209 biopsies
from

1033 patients

550 biopsies
from

210 patients
886 cores

Malignancy detection at
the WSI level

AUC: 0.99 (IV) & 0.98
(EV)

GG > 2 detection AUC: 0.978 (IV) &
0.871 (EV)

100 biopsies None GG classification

qKappa: 0.819
(general pathologists)
& 0.854 (DL on IV) &

0.71 (EV)

Hassan, 2022
[70] ResNet50 18,264 WSIs 3251 WSIs None Tissue segmentation for

GG presence
IoU: 0.48
F1: 0.375

Lucas, 2019
[67] Inception V3 72 WSIs 24 WSIs None

Malignancy detection at
the pixel level

Sens: 0.90
Spec: 0.93

GP3 & GP4
segmentation at pixel

level

Sens: 0.77
Spec: 0.94

* Articles already in Table 4 for segmentation tissue performances. Double line separates classification (above)
from segmentation algorithms (below). IV: Internal Validation. EV: External Validation. TMA: Tissue MicroArray.
CNN: Convolutional Neural Network. GG: Gleason ISUP Group, GS: Gleason Score, GP: Gleason Pattern.
AUC: Area Under the Curve. ACC: Accuracy. F1: F1-score, combination of precision and recall. IoU: Intersection
over Union. q/wKappa: quadratic/weighted Cohen Kappa. Sens: Sensitivity. Spec: Specificity. metric implies the
mean of this metric (e.g., AUC).
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3.3. Prediction

Deep learning was also used to predict clinical outcomes such as recurrence status,
survival or metastasis (n = 10, see Table 7) or to predict genomic signatures from WSIs
(n = 5, see Table 8). This is the most complex task to perform as no visible phenotypes are
known by pathologists to make such decisions.

3.3.1. Clinical Outcome Prediction

When focusing on recurrence, AUC around 0.8 [80,81] and Hazard Ratios (HR) above
4.8 [42,82,83] were obtained. A couple of articles studied the probability of developing
metastasis [84,85]. The first article aimed to study if a patient developed lymph node
metastasis after treatment [84] within undisclosed time frame, achieving an AUC of 0.69.
The second article focused on distant metastasis, obtaining AUCs of 0.779 and 0.728 for
5- and 10-year metastasis. By combining image features and clinical data, the performance
was improved to reach an AUC of 0.837 for 5- and 0.781 for ten years [85]. Liu et al.
proposed to detect if benign slides belonged to a man who had no cancer or one who had
cancer but on other biopsies and reached 0.74 AUC [86]. In any case, DL allows to establish
decent survival models with HR of 1.38 for Nagpal et al. [73], 1.65 for Leo et al. [8] and 7.10
for Ren et al. [73,87,88].

Table 7. Articles focusing on clinical outcome prediction.

First Author, Year
Reference

DL
Architecture

Training
Cohort IV Cohort EV Cohort Aim Results

Kumar, 2017
[81]

CNNs 160 TMAs 60 TMAs None

Nucleus detection
for tile selection ACC: 0.89

Recurrence
prediction

AUC: 0.81(DL) & 0.59
(clinical data)

Ren, 2018
[83]

AlexNet +
LSTM 271 patients 68 patients None Recurrence-free

survival prediction HR: 5.73

Ren, 2019
[88] CNN + LSTM 268 patients 67 patients None Survival model HR: 7.10 when using

image features

Leo, 2021
[87]

Segmentation-
based
CNNs

70 patients NA 679 patients

Cribriform pattern
recognition

Pixel TPV: 0.94
Pixel TNV: 0.79

Prognosis
classification using

cribriform area
measurements

Univariable HR: 1.31
Multivariable HR:

1.66

Wessels, 2021
[84] xse_ResNext34 118 patients 110 patients None

LNM prediction
based on initial RP

slides
AUC: 0.69

Esteva, 2022
[85]

ResNet 4524 patients 1130 patients None

Distant metastasis
at five years (5Y)

and ten years (10Y)

AUC: 0.837 (5Y)
AUC: 0.781 (10Y)

Prostate
cancer-specific

survival
AUC: 0.765

Overall survival at
ten years AUC: 0.652

Pinckaers, 2022
[82] ResNet50 503 patients 182 patients 204 patients

Univariate analysis
for DL predicted

biomarker
evaluation

OR: 3.32 (IV)
HR: 4.79 (EV)
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Table 7. Cont.

First Author, Year
Reference

DL
Architecture

Training
Cohort IV Cohort EV Cohort Aim Results

Liu, 2022
[86]

10-CNN
ensemble

model

9192 benign
biopsies

from
1211 patients

2851 benign
biopsies

from
297 patients

None

Cancer detection at
the patient level AUC: 0.727

Cancer detection at
patient level from

benign WSIs
AUC: 0.739

Huang, 2022
[80] NA 243 patients None 173 patients

Recurrence
prediction at three

years
AUC: 0.78

Sandeman, 2022
[42]

Custom CNN
(AIForIA) 331 patients 391 patients 126 patients

Malignant vs.
benign AUC: 0.997

Grade grouping ACC: 0.67
wKappa: 0.77

Outcome
prediction HR: 5.91

IV: Internal Validation. EV: External Validation. TMA: Tissue MicroArray. CNN: Convolutional Neural Network.
RP: Radical Prostatectomies. LSTM: Long-Short Term Memory network. TMA: Tissue MicroArray. AUC: Area
Under the Curve. ACC: Accuracy. wKappa: weighted Cohen Kappa. HR: Hazard Ratio. OR: Odds Ratio.
TPV: True Positive Value. TNV: True Negative Value. metric implies the mean of this metric (e.g., AUC).

3.3.2. Genomic Signatures Prediction

Three groups started to work on the inference of genomic signatures from WSIs with
the assumption that morphological features can predict pathway signatures [89–91]. These
exploratory studies found correlations between RNA prediction from H&E images and
RNA-seq signature expressions (PC ranging from 0.12 to 0.74). Schaumberg et al. carefully
selected tiles containing tumor tissue and abnormal cells to train a classifier to predict SPOP
mutations, reaching an AUC of 0.86 [92]. Dadhania et al. also used a tile-based approach to
predict ERG-positive or negative mutational status, reaching around 0.8 AUC [93].

Table 8. Articles focusing on genomic signatures prediction.

First Author, Year
Reference

DL
Architecture

Training
Cohort IV Cohort EV Cohort Aim Results

Schaumberg, 2018
[92] ResNet50 177 patients None 152 patients SPOP mutation

prediction
AUC: 0.74 (IV)
AUC: 0.86 (EV)

Schmauch, 2020
[89] HE2RNA

8725 patients
(Pan-

cancer)

5-fold cross
val None

Prediction of gene
signatures specific
to prostate cancer

PC: 0.18 (TP63)
0.12 (KRT8 &

KRT18)

Chelebian, 2021
[91]

CNN from [37]
fine-tuned

Pre-trained
([37]) 7 WSIs None

Correlation
between clusters

identified with AI
and spatial

transcriptomics

No global metric

Dadhania, 2022
[93] MobileNetV2 261 patients 131 patients None

ERG gene
rearrangement

status prediction

AUC: 0.82 to 0.85
(depending on

resolution)
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Table 8. Cont.

First Author, Year
Reference

DL
Architecture

Training
Cohort IV Cohort EV Cohort Aim Results

Weitz, 2022
[90] NA 278 patients 92 patients None

CCP gene
expression
prediction

PC: 0.527

BRICD5 expression
prediction PC: 0.749

SPOPL expression
prediction PC: 0.526

IV: Internal Validation. EV: External Validation. CNN: Convolutional Neural Network. AI: Artificial Intelligence.
CCP: Cell Cycle Progression. AUC: Area Under the Curve. PC: Pearson Correlation.

3.4. Risk of Bias Analysis

A Risk of Bias (RoB) analysis was performed for every article. Details are described
in Supplementary Table S2. Results are summarized in Figure 3. Missing criteria were
categorized as high risk, and partially addressed criteria (e.g., only half the dataset is
publicly available) were considered as intermediate risk. Articles that validated existing
algorithms or focused on prediction algorithms where ground truth was not defined by
people were classified as Not Applicable (NA). This analysis particularly outlines the lack
of publicly available code (and hyperparameters) and data. External cohorts for validation
are often not addressed. More efforts could be provided for model explainability and
dealing with imbalanced data. Indeed, this is a common difficulty in pathomics that biases
training and evaluation.
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pathomics. The databases and the chosen keyword might represent limitations to this
systematic review. Along with breast and colorectum, prostate cancer is the organ most
explored by AI. It results in a high number of publications increasing every year (see
Figure 4). Among them, nine articles focused on pre-processing steps, which are key to
having a robust model, namely using normalization, quality assessment and smart tile
selection. It is a rather new subject (see Figure 4), and its investigation is still ongoing, with
new methods to improve how input data is handled. Among the 77 articles in this review,
most algorithms (n = 50) were developed for the diagnosis of cancer and the Gleason
grading. There are many different algorithms, and they tend to suffer the same biases
(see Supplementary Figure S1D,E). It is, therefore, harder to see what the benefits from
the models are compared to the others in their respective tasks. For detection purposes,
classification algorithms were more common than segmentation algorithms. The former
provided heat maps giving information on the location, while the latter provided precise
information at the pixel level. For the diagnosis, the AUC comprised 0.77 and 0.99 with
many papers (n = 16) with AUC above 0.95, favoring the use in routine activity.

The most performing algorithms used the MIL paradigm, allowing some explainability,
and were trained on a large number of images. Algorithms for Gleason grading were less
performant, with a quadratic Cohen Kappa comprised between 0.60 and 0.90. However, the
definition of ground truth in Gleason grading suffers from high inter-observer variability
that renders training less reliable. The prediction was less explored, with few articles
approaching the prognosis (recurrence or metastasis development, for instance) or genomic
alterations, but the interest in these investigations is increasing (see Figure 4). The AUC
was comprised between 0.59 and 0.86. Prediction studies aim at correlating morphological
patterns to a prediction that could enable the discovery of new patterns and help in patient
personalized treatment. However, more robust studies, properly designed and validated,
are needed to validate this assumption.
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4.2. Biases

To evaluate the biases in our review, we adapted the QUADAS-2 tool to all the studies
mentioned. Several biases can be noted in the studies at the image or algorithm level.
Indeed, there is no standardization on the staining protocols, which translates to WSIs.
This bias could be overcome using normalization such as Vahadane [94] or Macenko
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methods [95] or GANs (Generative Adversarial Networks) [24] or color augmentation
[32,36,61,65,66,73,96], but most articles do not use image normalization to overcome this
bias (50 out of 77 do not see Figure 3). In addition, most scanners have their proprietary
format, which can impair the generalizability of the algorithms. Also, the brand of the
scanner impacts the scanning process, potentially decreasing algorithms’ performance
when trained on different brands. It is important to develop a strategy for testing algorithms
with different scanners as proposed by the UK National Pathology Imaging Co-operative
(NPIC). When working on diagnosis algorithms, ground truth is biased by inter-observer
variability, especially in Gleason grading studies [21,41,77]. It is important to have multiple
experts provide ground-truth annotation to not follow just one pathologist’s judgement,
but it is not always the case (only 32 out of 77 articles do it, Figure 3).

Furthermore, there are a few general biases in the performance evaluation of algo-
rithms. An imbalanced dataset will induce a bias if the issue is not addressed and not
all articles consider it (only 41 out of 77, Figure 3). It is possible to use only a balanced
dataset or DL techniques to reduce the impact of imbalance. A model should be trained
multiple times to ensure its reproducibility. The performance average of all these trainings
should be considered as the performance metric of the model. However, very few articles
include confidence intervals on their metrics, which are yet key to evaluating the model in
the existing state of the art. Less than half the articles include external validation cohorts
(24 out of 77, Figure 3), but they are necessary to ensure that the evaluated model(s) is (are)
not performing well only on the training WSIs, and that is also where normalization or
color augmentation during training becomes crucial.

4.3. Limits of AI

There are limitations inherent to pathomics. Contrary to radiologic images, WSI has to
be divided into tiles. Most classification algorithms must have a fixed input size, generally
a defined number of tiles. It means that a subset of the slide has to be selected, and the
heterogeneous aspect of the tumor might not be considered. This is also affected by the
choice of magnification under which the WSIs is tiled [31]. A few articles focus on new
methodologies to handle this type of data [82,97]. There are also articles that suggest a
smart tile selection to use more informative data and reduce computational time [25]. The
particularity in PCa pathology is that the main type of images are biopsies that contain
a low percentage of tissue. It can be interesting to include multiple biopsies of patients
to increase the number of tiles available for training. However, the way these different
biopsies are given to algorithms has to be considered. At the very least, they have to be
split into the same datasets (training or testing). Otherwise, bias could be induced in the
study.

Ethical regulation makes access to data difficult [98]. The existence of challenges
(e.g. PANDA, Prostate cANcer graDe Assessment) is a very good way to provide data to
many researchers. It also facilitates collaborations on model development. It is necessary
to be able to reproduce results, which is limited by the lack of publicly available cohorts
(21 out of 77 used shared data, Figure 3). However, few publications shared completely
the methodology and their code with consequences on the reproducibility of the model,
hindering a proper comparison of usefulness and improvement of new algorithms (only
15 out of 77 shared it, Figure 3). The popularity of AI in these last years has also increased
the number of models and data to be compared, computed, and stored. This has an
economic but also environmental cost that needs to be addressed [99]. Computational
costs can be reduced by using more frugal but efficient architectures. Transfer learning
can also reduce training time using previously developed and trained models that are
fine-tuned to fit the studied data. The downfall is to conform to the input data format.
Focusing on more efficient architectures and how to properly share methodology in the
field are potential improvements to be found to develop long-term viable solutions. The
focus should also be directed towards the explainability of the algorithms. If they are to
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be implemented in clinical setups, “blackbox” models will not be trusted by pathologists
(Figure 3, 40 of 77 attempted some form of explainability).

4.4. Impact of AI in Routine Activity

Nonetheless, several AI tools are now available on the market for the diagnosis in
routine activity for prostate cancer from different companies: Ibex, Paige, Deep Bio and
AIFORIA, whose algorithms were recently published [36,42,49,75]. They can be approved
for first or second-read applications if they are used before as a screening or after as a
quality check for the pathologist diagnosis. The GalenTM Prostate from Ibex was the first
to obtain CE under IVDR (In Vitro Diagnostic Medical Devices Regulation) in February
2023. The sensitivity and specificity of these products are very high when excluding slides
with intermediate classification probability, also called undetermined categories. Indeed, a
number of slides with undetermined categories are impacted by many parameters, such as
pre-analytic conditions and the format of slides....

Consequently, performances depend on the site where the algorithms are deployed.
In addition, their integration into routine activity supposes a digital workflow that is not
widely available. Properly integrated into the workflow, it could help save time, but it is
difficult to implement due to interoperability issues (integration in the Laboratory Informa-
tion System (LIS) and the Image Management System (IMS)). An optimized integration
supposes at least the automatized assignment of cases, the contextual launch, the cases
prioritization, the visualization of heatmaps directly in the IMS and the integration of
results directly in the report. Ethical considerations become an additional question when
processing patient data, especially if sent to a cloud environment.

4.5. Multimodal Approach for Predictive Algorithms

Like other organs, the prediction of prostate cancer seems to be a more difficult ques-
tion than detection. Indeed, the underlying assumption is that there exists a morphologic
pattern in the images that can predict prognosis or genomic alteration. It is very likely
that the answer is multifactorial and could benefit from multimodal approaches such as
combining the WSI with radiologic, biological, and molecular data. The main challenge is
properly combining all these data of different natures and evaluating the added value when
combining them compared to the performance obtained by considering each separately.

5. Conclusions

In conclusion, DL has been widely explored in PCa, resulting in many pre-processing,
diagnosis, or prediction publications. This systematic review highlights how DL could
be used in this field and what significant improvements it could bring. It also included
suggestions to reduce research biases in this field while outlining the inherent limits of these
tools. Despite these limitations, PCa was one of the first organs to benefit from reliable AI
tools that could already be used in routine activity for diagnosis purposes: cancer detection
and Gleason grading. . . However, for predictive purposes, further studies are needed to
improve the robustness of the algorithms, which could lead to more personalized treatment:
prognosis, molecular alteration, etc.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/diagnostics13162676/s1, Figure S1: Representation of Risk of
Bias for subsets of selected articles; Table S1: Details of risk of bias for all articles; Table S2: Metrics
found in articles of the review and their definition; Tables S3–S8: Extended Tables 3–8 found in this
article.
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