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Abstract: The prognosis for patients with skin cancer improves with regular screening and check-
ups. Unfortunately, many people with skin cancer do not receive a diagnosis until the disease
has advanced beyond the point of effective therapy. Early detection is critical, and automated
diagnostic technologies like dermoscopy, an imaging device that detects skin lesions early in the
disease, are a driving factor. The lack of annotated data and class-imbalance datasets makes using
automated diagnostic methods challenging for skin lesion classification. In recent years, deep
learning models have performed well in medical diagnosis. Unfortunately, such models require a
substantial amount of annotated data for training. Applying a data augmentation method based
on generative adversarial networks (GANs) to classify skin lesions is a plausible solution by gen-
erating synthetic images to address the problem. This article proposes a skin lesion synthesis and
classification model based on an Improved Deep Convolutional Generative Adversarial Network
(DCGAN). The proposed system generates realistic images using several convolutional neural
networks, making training easier. Scaling, normalization, sharpening, color transformation, and
median filters enhance image details during training. The proposed model uses generator and
discriminator networks, global average pooling with 2 × 2 fractional-stride, backpropagation with
a constant learning rate of 0.01 instead of 0.0002, and the most effective hyperparameters for opti-
mization to efficiently generate high-quality synthetic skin lesion images. As for the classification,
the final layer of the Discriminator is labeled as a classifier for predicting the target class. This
study deals with a binary classification predicting two classes—benign and malignant—in the
ISIC2017 dataset: accuracy, recall, precision, and F1-score model classification performance. BAS
measures classifier accuracy on imbalanced datasets. The DCGAN Classifier model demonstrated
superior performance with a notable accuracy of 99.38% and 99% for recall, precision, F1 score,
and BAS, outperforming the state-of-the-art deep learning models. These results show that the
DCGAN Classifier can generate high-quality skin lesion images and accurately classify them,
making it a promising tool for deep learning-based medical image analysis.

Keywords: convolutional neural network; deep learning; skin cancer; generative adversarial network

1. Introduction

According to research on human anatomy by medical professionals, the skin is the
largest and heaviest single biological tissue in the human body, covering roughly 20 square
feet in average surface area and 6 pounds in typical weight [1,2]. The skin is the body’s
first line of defense, yet it is not entirely impenetrable. As a result, the skin is continually
susceptible to diverse environmental and genetic factors. Therefore, skin conditions affect
everyone, regardless of age, skin tone, way of life, or socioeconomic status. In a recent
study, the Skin Cancer Index 2018 [3] showed that geographic and geopolitical factors
make some places more likely than others to have skin cancer, which can occasionally
be fatal. Computer-aided systems that automate the diagnosis of skin problems are the
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focus of research [4–8]. Image acquisition, preprocessing, segmentation, feature extraction,
and classification methods have been developed. Non-standard cameras, cell phones, and
digital cameras can produce medical images [9,10].

Skin cancer is one of the most lethal forms of cancer. Mutations in the skin’s genome,
created by damaged or uncontrolled growth of cells in the skin, cause skin cancer. Skin can-
cer tends to progressively metastasize to other anatomical sites, rendering it more amenable
to treatment during its early stages [11]. Consequently, early detection is paramount in
optimizing the chances of effective treatment and a higher chance of survival. The grow-
ing incidence of skin cancer cases, elevated death rate, and costly medical interventions
necessitate early detection of its symptoms [12]. Given the significance of these concerns,
researchers have developed several automated diagnostic systems for early skin cancer
diagnosis. Lesion criteria, including but not limited to symmetry, color, size, and form,
are considered in identifying skin cancer and the differentiation between benign skin
cancer and melanoma [13]. However, automatically classifying skin cancer has signifi-
cant challenges due to a scarcity of diverse, annotated, and high-quality training data for
skin disease images. Ensuring the model’s ability to adapt across different domains and
maintain robustness is also a vital challenge. Collecting and annotating a large dataset of
skin cancer images is often time-consuming and costly, and it may raise privacy concerns.
Synthetic data generation techniques can address this issue by creating realistic synthetic
images that can be combined with real data to enhance the size and diversity of the training
dataset. This process helps train more robust and generalizable models, which are better
equipped to handle variations in skin types, lesions, and imaging conditions, ultimately
leading to more accurate and reliable skin cancer detection systems [14].

The adoption of artificial intelligence (AI) in medicine is increasing and has the po-
tential to revolutionize clinical treatment and dermatology processes. However, to ensure
the final output’s fairness, dependability, and safety, specific criteria-setting development
and performance evaluation requirements must be met when developing image-based
algorithms for dermatology applications [15,16]. In health informatics, ISO 12052:2017
addresses the transfer of digital images and data of their creation and management between
medical imaging equipment and systems handling the management and transmission of
that data [17].

Diagnostic imaging, such as CT scans, MRIs, dermoscopy, radiography, and ultra-
sound, is often used in medical diagnosis. Medical images enable physicians to diagnose
patients more effectively, accurately, and consistently by exhibiting the patient’s internal
anatomy and helping identify potential problems. Dermoscopy is most commonly used
to identify skin lesions. Dermoscopic images benefit from bright lighting and a low noise
level [18]. Therefore, applying deep learning techniques can speed up the development of
image-assisted medical diagnostics [19,20]. Deep learning has facilitated the resolution of
complicated learning problems previously intractable to rule-based methods [21]. Deep
learning-based algorithms have come close to matching human performance on various
challenging computer vision and image classification tasks. In [22], it was demonstrated
that deep learning systems matched the results of skin cancer classification performed by
21 certified dermatologists.

Several computerized systems using deep learning for diagnosing skin cancer have
been proposed [21,22]. A robust and reliable collection of dermoscopic images is necessary
to assess their diagnostic performance and validate predicted results. Numerous datasets
on skin cancer have lacked size and diversity. Training models for skin lesion classification
are hindered by the lack of diverse data and the small size of the datasets. Automated skin
cancer diagnosis has predominantly focused on diagnosing melanocytic lesions, resulting
in limited diagnoses in available datasets. Consequently, a reliable, standardized dataset of
dermoscopic images is crucial.

The International Skin Imaging Collaboration (ISIC) is a university-industry partner-
ship that promotes using digital imaging systems to reduce the number of deaths from
melanoma. Teledermatology, clinical decision support, and automated diagnosis use digital
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skin lesions images to teach specialists and people about melanoma and help diagnose
it [23]. ISIC promotes digital skin imaging standards and engages dermatologists and
computer scientists to improve diagnosis. Lack of dermatologic imaging standards de-
grades skin lesion imaging. ISIC proposed digital skin image quality, confidentiality, and
interoperability standards (i.e., the capacity to transfer visual data between different clinical
and technological systems) [23]. ISIC is creating dermatological and computer science
resources, including a vast and expanding open-source public-access skin picture database
(Goals of the Archive). This repository provides images for research, study, and testing of
diagnostic AI systems. ISIC engages stakeholders through meetings, papers, conferences,
and AI Grand Challenges [23]. Classification and segmentation are the most common
uses for ISIC datasets. To train their algorithms, researchers focus primarily on binary
classification problems. Researchers began experimenting with multiclass classification
after the release of ISIC 2018 and ISIC 2019, with the ISIC 2020 dataset as the primary
resource. However, melanoma detection was the main goal of the ISIC 2020 challenge. As a
result, more research on binary classification can be done. ISIC did not extend this challenge
category beyond 2019, suggesting that segmentation tasks are less popular than lesion
diagnosis. Segmentation masks were only available for a small subset of datasets (ISIC
2016–2018) compared to most classification tasks. Color constancy research and generative
adversarial network-based data enhancement are further applications [24] that use ISIC
datasets. Variations in the metrics for image acquisition at the whole-body, regional, close-
up, and dermoscopic levels can affect the quality and validity of skin images. Universal
imaging standards in dermatology require the establishment of consensus norms. Clinical
practice information exchange, documentation in electronic health records, harmonization
of clinical trials, database building, and clinical decision assistance all benefit from standard
procedures like Delphi for image standardization [25].

Applying deep learning to medical image-assisted diagnosis still presents numerous
challenges. A common issue in healthcare applications is a scarcity of adequately diverse,
large training datasets. These datasets typically exhibit severe class imbalance [26], which
can lead to biased models [27]. A class imbalance occurs when there are disproportionately
many samples of one pathology compared to another. As such, networks frequently
overfit [28] and fail to generalize to new models [29]. Although more data is available
online, most of it is still unlabeled. Annotating medical data is time-consuming and
expensive as it requires specialized diagnostic tools and expert clinicians, which is why it is
one of the critical challenges to generating models suitable for clinical application.

These substantial restrictions result in two major issues: (1) restricted generalization,
biased datasets, overfitting, and data convergence; and (2) precise classification. To address
the first problem, the authors proposed an improved Deep Convolution Generative Ad-
versarial Networks (DCGANs) classifier approach to generate convincing synthetic data
for training skin lesion classification models with improved generalization and to prevent
the model from overfitting [30]. Skin lesions are treated using effective image filtering and
enhancement methods to improve the model’s ability to find and extract features during
training. As a solution to the problem of scarce medical datasets, basic GANs and networks
based on GANs that generate synthetic medical images have gained significant traction
in recent years. GANs [31] attempt to mimic the distribution of actual images by making
the synthetic samples look precisely like real images, thereby increasing the Classifier’s
capacity to distinguish between the skin types. Generator-Discriminator networks are used
to generate synthetic skin lesions using dermoscopic features. Synthetic images of skin
lesions using multiple modalities could solve the problem and give deep learning models
more and better data. Several medical algorithms [32] rely heavily on these features, which
are local patterns in the lesion. To address the second issue, we used a stack of convolution
layers in the discriminator network, which acts as a classifier for class prediction. Our
proposed framework demonstrates that DCGAN augmentation improves performance,
which is critical in high-stakes clinical decision-making, although it requires an additional
trained network compared to typical augmentation procedures. This study investigated
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the prospect of improving Deep Neural Network diagnostic performance by incorporating
DCGAN data into training data.

The main contribution to this study is as follows:

1. Construct and train an improved DCGAN classifier using customized synthetic aug-
mentation techniques and fine-tune the parameters for skin lesion classification that
can accurately diagnose skin lesions;

2. Investigate whether the synthetic images generated by a multi-layered convolutional
generative network accurately reflect the distribution of the original image dataset. In
contrast, a discriminator perceptron, which is also multi-layered, tries to distinguish
between false and real image samples;

3. Evaluate the performance of the improved DCGAN Classifier compared with existing
state-of-the-art classifiers for skin lesion classification.

The rest of the work is organized as follows: Section 2 discusses the related topics;
Section 3 provides the methods used for the model; the results and discussion of the
performed experiments are described and discussed in Section 4; and finally, the conclusion
is presented in Section 5.

2. Related Work

Variations in skin tone, illness location, and picture capture devices complicate the
development of automated skin disease detection systems. Furthermore, skin issues have
distinctive characteristics, making classification difficult. However, CNN has achieved
remarkable success in the medical industry as well as in other fields, providing optimism
for the future of automated medical system development [33,34].

The generative adversarial network (GAN) is another technique that has researchers
intrigued because of its ability to represent complex real-world visual input. It can also
normalize unbalanced data sets [35]. However, few applications have used GAN beyond
simple binary classification and data augmentation [36].

Researchers commonly use data augmentation strategies to boost the models’ ro-
bustness and generalizability [33–36]. Standard augmentation techniques for enhancing
image data include resizing, rotating, flipping, and shifting the original image. These
traditional data augmentation techniques have become commonplace in computer vision
network training [37,38]. Unfortunately, these techniques are limited in their ability to yield
important new insights from relatively few adjustments to the source data.

Data synthesis, a more advanced data augmentation method [39], shows promise and
is the subject of much interest. Among the many approaches for creating synthetic data,
variational autoencoders (VAEs) [40] and generative adversarial networks (GANs) [41]
stand out as the most common. The latent representation of VAEs is highly structured and
continuous, making them simple to train. Despite their challenging and unreliable training
procedures, GANs can produce high-quality, realistic images. Despite the success of GANs
in medical imaging [42,43], there has been little systematic investigation into the synthesis
of images of skin lesions and class imbalance [44]. By investigating the issue of class
imbalance across various data regimens and contrasting the effectiveness of conventional
and GAN data augmentation methods, we seek to close this gap.

Academics have developed several variants of GANs to enhance their capacity to
generate images. The authors of [45,46] integrated a convolution operation into a Deep
Convolutional Generative Adversarial Network (DCGAN) to improve GAN performance.
Moreover, to enhance the diversity of generated images, the noise vector is sampled by
DeLiGAN and fed into the Generator as noise [47].

In [48], authors combined meta-learning and CGAN to propose MetaCGAN, a new
variation of GAN. MetaCGAN can transfer its knowledge from large dataset training
to a new problem with a small dataset. In recent years, some researchers have created
high-resolution images using convolutional and recurrent neural networks (CNNs and
RNNs). However, the algorithms produce images one pixel at a time rather than in their
entirety [49,50]. In [51], categorical generative adversarial networks using catGAN [52]
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and Wasserstein distance [53] are presented. CatWGAN can identify input data and
generate 64 × 64-pixel images. Using a dataset of 140 labeled images from the ISIC
2016 Challenge, the proposed method outperformed the denoising autoencoder and the
simple hand-crafted features with an average precision of 0.424 [54]. Using the Pseudo
Cycle consistent module and the domain control module, a variant of Cycle GAN was
introduced in [54] to generate CT images. The domain control module supplies supple-
mentary domain information, while the Pseudo Cycle consistent module ensures that all
created images look identical. Baur et al. [55] proposed deeply discriminated GAN to
improve image resolution (DDGAN). The authors created realistic 256 × 256 skin lesion
images and compared DCGAN, LAPGAN, and DDGAN [56,57], showing that both can
learn dataset distributions and synthesize realistic samples.

The authors [58] also synthesized realistic, high-resolution skin lesion images. Pro-
gressive growing of GANs (PGGAN) [59] helped them synthesize images from noise at
1024 × 1024 pixels. The Visual Turing Test and Sliced Wasserstein Distance were used
to evaluate DCGAN [60], LAPGAN [60], and PGGAN images. The Visual Turing Test
reveals that even trained dermatologists have problems recognizing fake images from
real ones. Jiang et al. [61] proposed using a Fused Attentive GAN (FA-GAN) to create
and reconstruct high-resolution MR images [61]. Built modules for local and global
feature extraction to extract valuable traits. FA-GAN used PSNR and SSIM performance
metrics to train the network on 40 sets (256 slices) of 3D MR images. The authors used
pix2pixHD GAN for image generation in [62,63] and generated images using seman-
tic and instance mappings. The pix2pixHD GAN is an innovative approach to using
meaningful skin lesion knowledge to synthesize high-quality images and improve skin
lesion classification performance; however, it does require annotated data to create
images. The authors exploited GAN-synthesized breast ultrasound images for breast
lesion categorization and augmentation [64].

The study in [65] presented Cascade Ensemble Super-Resolution CESR-GAN to rebuild
high-resolution skin lesion images from low-resolution photos. They created an image-
based loss function [65]. In [66], the author enhanced the image data of skin lesions
using GANs. The GAN discriminator was the final Classifier trained to recognize seven
categories of skin lesions from the ISIC 2018 challenge dataset [67,68]. Transfer learning is
used to improve the DenseNet [69] and ResNet [70] architectures’ classification performance
compared to the GAN-based data augmentation model. The suggested method raised the
score for balancing correctness.

One of the most challenging and well-liked research areas is the simulation of medical
imaging in many medical specialties. Researchers use intense architectures to enhance
their findings. GANs are frequently employed in a variety of medical imaging applications.
GAN input noise management in medical imaging still has room for innovation. Medical
image synthesis, segmentation, detection, classification, and reconstruction using GANs
are becoming increasingly common [71]. However, over the last two years, the image
synthesis-based data augmentation technique has been applied for skin lesion imaging.
Previous literature searches reveal a few related studies on skin lesion classification. Table 1
summarizes the research needs for determining and analyzing the available literature. Skin
lesion image generation requires the further use of specific, more advanced GAN designs
that can produce high-resolution representations.

The research gap is identified by analyzing the available literature and is summarized
in Table 1. We have investigated DCGAN’s potential on our dataset to contribute to
developing a reliable skin cancer detection and classification application.
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Table 1. State-of-the-art methods comparison.

Authors Techniques Dataset Observations Accuracy (%)

[23] Pix2Pix GAN ISIC 2017
The image-to-image translation was done via
binary classification using a combination of
semantic and instance mappings.

84.7

[38] GAN with
Raman Spectroscopy Raman Spectroscopy

The authors created a data augmentation
module that uses a GAN to generate RS data
comparable to the training data classes.

92

[50] cGAN and WGAN ISIC 2016

The authors have proposed a categorical
generative adversarial network that is both
unsupervised and semi-supervised to learn
the feature representation of dermoscopy
images automatically.

81

[55] DDGAN ISIC2017
High-resolution skin lesion synthesis was
demonstrated. However, synthetic images
were visually low in contrast.

72

[58] ACGAN, CycleGAN
and Path- Rank-Filter ISIC 2019

Research has proven that random noise and
image translation can create high-quality
images that look real to the untrained eye.
However, these images did not increase the
classifier’s performance.

85.6

[63] DCGAN ISIC 2016–2021 Conducted a Turing test on the generated
images, with 7000 images 58.72

[66] GAN ISIC 2018 Created a GAN-based classifier by fine-tuning
the existing deep neural architecture. 86.1

[71] DCGAN ISIC

The bilateral filter improved training feature
recognition and extraction. Fine-tuning the
Deep Convolutional Generative Adversarial
Network (DCGAN) increased its return.
Optimization picked the best network and
hyperparameter combinations. Fine-tuning
hyperparameter settings takes time and
GPU power.

93.5

[72] styleGAN ISIC 2018

The generator and discriminator are
modified to synthesize high-quality skin
lesion images by modifying the generator’s
style control and noise input structure.
Transfer learning on a pre-trained deep
neural network classifies images. Finally,
skin lesion style-based GAN synthetic
images are added to the training set to
improve classifier performance.

95.2

[73] DGAN

PH2
SD-198
Interactive Atlas
of Dermoscopy
DermNet

A multiclass technique was utilized to solve the
dataset’s class imbalance. Improving the DGAN
model’s stability during training has been one of
the development’s primary challenges.

91.1

[74] SLA-StyleGAN ISIC 2019

The proposed approach outperforms GANs
and StyleGANs in key quantitative
assessment parameters and quickly produces
high-quality skin lesion images. It rebuilds the
StyleGAN generator and discriminator
structures. Shortcoming Two skin lesions in
one photograph might make classification
difficult and raise the risk of misdiagnosis.

93.64



Diagnostics 2023, 13, 2635 7 of 29

3. Methods

This study proposes a skin lesion DCGAN Classifier model based on a GANs frame-
work that can produce high-quality images of skin lesions. The authors have investigated
the potential of DCGAN on the ISIC 2017 dataset to create a reliable tool for detecting and
classifying skin cancer.

3.1. Skin Cancer Dataset

The first stage in skin lesion classification is acquiring a high-quality dataset to train our
proposed model. The ISIC datasets are widely utilized for automated skin lesion analysis
due to the need for more high-quality, annotated images of skin lesions. Our DCGAN
model was trained using 2000 images from the ISIC 2017 skin cancer dataset, uniformly
distributed between benign and malignant cases. When using deep learning to classify
skin lesions, gathering an extensive dataset representing a wide range of lesions is essential.
Images are typically labeled with the type of skin lesion depicted, providing the algorithm
with ground truth. The dataset contains images of varying resolutions. It is a complex
task to accurately categorize due to the resolution variability and class imbalance. Figure 1
shows a sample representation of both benign and melanoma skin lesions. During the
random selection of test images, the authors tried to maintain a consistent class distribution
of the data set and ensure that each class’s percentage of test images was comparable to
that of the train data set. For this purpose, the classes in the data were first labeled and
annotated as follows:

• Image name: a unique identifier that refers to the filename of the corresponding image;
• Patient ID: a unique identifier assigned to each patient;
• Sex: the gender of the patient or a blank field if unknown;
• Approximate age: the patient’s approximate age at the time the imaging was conducted;
• Anatomical site: the location of the imaged site on the patient’s body;
• Diagnosis: detailed diagnostic information (only included in the training data);
• Benign/malignant indicates whether the imaged lesion is benign or malignant;
• Target: a binarized form of the target variable.
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3.2. Proposed Framework of the DCGAN-Based Classifier

The proposed framework consists of three distinct phases, namely (1) Image Prepro-
cessing, (2) DCGAN Modeling, and (3) Classification, as depicted in Figure 2. Each of these
phases is addressed in greater detail in the following subsections. The image Preprocessing
methods were performed before the images were fed into the GAN model for classification.

3.3. Image Preprocessing Techniques

In image preprocessing, the images are transformed using various preprocessing
techniques to reduce noise and other potential artifacts and to put them in a format that
can be used for more sophisticated processing. Before being used in image processing,
the dataset is divided into train (70%) and test (30%) datasets. The first step in image
preprocessing is image scaling, where images are resized to a specified pixel width using
the bicubic interpolation method [75–81]. Each image in the dataset varied in size; therefore,
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images were scaled to a standard size to improve faster and easier processing. Histogram
equalization techniques are used after rescaling the image to improve the image’s intensity
values and to modify contrast to increase the brightness of dark images [82–86]. Next, to
capture the edges and fine details of the image, the authors used a combination of two
image sharpening techniques: Unsharp Masking (USM) [87–89] and Gaussian High Pass
Filtering (GHPF) [90–92], and then color space transformations [90,93–97] were applied
to the image. Since color information is essential for skin disease detection systems, we
attempted to extract the most relevant color for faster processing. Since the pictures for
the model training came from different online dermatology sites and could be different
sizes and color spaces, image scaling and color space transformation were used to make
all images the same size and color space. All images will be changed to function in RGB
space. After analyzing the potential image restoration procedures, the median filter was
implemented using Gaussian noise to smooth the images [98–102].
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Additionally, it reduces the impact of insignificant factors like fine hairs in pictures
of skin lesions. Figure 3 shows the image preprocessing pipeline used in this study. The
preprocessed images are fed to the GAN model.
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3.4. DCGAN Architecture

Deep learning is gaining recognition in image classification because it can extract
and choose more features than traditional techniques [102,103]. However, large, labeled
datasets are required to maximize deep learning’s potential. Researchers have reported
that dermoscopy images are often unlabeled or underlabeled, necessitating expert an-
notations. GANs are a new and intriguing method that has recently appeared to solve
unlabeled datasets [72–74]. The ability of GANs to generate precise synthetic data has
recently increased their prominence. Also, GANs are seen as a promising approach to
the problem of accurately classifying data with low levels of inter-class variation. For
learning or sampling complicated probability distributions of image data, GANs are a
popular generative model type.
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Many researchers have implemented DCGAN in various real-world applications
and have produced significantly good results in data synthesis and classification [104].
GANs are prone to instability and might be difficult to train. Finding the ideal balance
might be challenging because the training involves a minmax game between the genera-
tor and discriminator networks. It is common for GANs to suffer from mode collapse,
which occurs when the generator does not accurately reflect the diversity of the target
distribution. To address these gaps, the authors in [45,105] proposed Deep Convolu-
tional Generative Adversarial Networks (DCGAN), which have a set of architectural
constraints to balance GANs.

DCGAN is an extension of the GAN design that uses deep convolutional neural
networks for both the generator and discriminator models, as well as configurations for the
models and training that lead to stable training of a generator model. The DCGAN offers
the model constraints needed to construct high-quality generator models. This architecture
enabled the rapid development of several GAN extensions and applications [74].

The architecture of GANs consists of two multi-layered networks: Generator and
Discriminator. Both networks of a GAN are trained simultaneously [72]. The Generator
network is tasked with creating synthetic images that closely resemble real images in the
training dataset. On the other hand, the Discriminator network seeks to discriminate
between real and fake images by evaluating the likelihood that a particular input sample
is real or fake [73]. The two networks are trained so that the generator is encouraged to
create images that the discriminator finds increasingly difficult to distinguish from real
ones. Since GANs may be used to simulate the underlying data distribution, they form the
basis of the proposed methodology. As a result, they get better at distinguishing various
data sets with minimal alterations. As such, it produces synthetic data for each category
to train the discriminator by employing a GAN to anticipate the data distribution. After
training, the discriminator can accurately classify brand-new samples in each category,
even when they are like examples in other classes [74].

Mathematically, to learn the generator’s distribution pg over the image data repre-
sented as x, define the input noise vector z with a prior distribution pz(z), then represent
the data mapping to Generator G

(
z; Wg

)
as a neural network with parameters Wg. The

discriminator D(x; Wd) outputs a single scalar, where D(x) is the probability that x comes
from data rather than pg. Discriminator D is trained to maximize the likelihood of correctly
labeling training examples and G samples. At the same time, Generator G is trained to
mislead the discriminator by attempting to minimize log(1 − D(G(z))). So, D and G play
the following two-player minimax game with the value function V (G, D) [24,72–74]:

minGmaxDV(G, D) = Ex∼Pdata(x)[log(x)] + Ex∼Pz(z)[log(1 − D(G(z)))] (1)

Theoretically, the discriminator makes a random guess as to whether the inputs are
real or fake, and the solution to this minimax game is where pg = pdata.

The primary goal of DCGAN is to extend the capabilities of GAN by making use of
Convolution Network designs. Radford [45] achieved consistent outcomes by advocating
for a few critical architectural limits on DCGAN. The authors of this study employed the
basic ideas proposed by Radford [45] to classify skin lesions. Figures 4 and 5 illustrate
the flow diagram and improved simulation model used for the DCGAN framework. The
following modifications are made to the Generator and Discriminator networks to avoid
mode collapse, model instability, and convergence [45]:

Modifications to the Generator:

• The generator uses five deconvolutional layers instead of four;
• Replace deterministic spatial pooling layers such as global average pooling with

2 × 2 fractional-stride convolutions (Generator), which allows the networks to learn
by themselves spatial downsampling;

• Eliminate connected hidden layers to avoid model instability and stabilize the conver-
gence speed;



Diagnostics 2023, 13, 2635 10 of 29

• Update the generator weights using backpropagation and an optimizer SGDM with a
constant learning rate of 0.01 instead of 0.0002;

• Batch normalization is used to stabilize the learning of the generator;
• All generating levels use the ReLu activation, except the output layer, which employs

the Tanh activation to scale the output between −1 and 1.

Modifications to Discriminator:

• The discriminator uses five convolutional layers to train the networks instead of four;
• Replace deterministic spatial pooling layers such as max pooling with 2 × 2 stride

convolutions (the discriminator), allowing the networks to learn spatial upsampling
by themselves;

• Eliminate connected hidden layers to avoid model instability and stabilize the
convergence speed;

• Update the weights of the discriminator using backpropagation and an optimiza-
tion step;

• Batch normalization is used to stabilize the learning of the discriminator;
• The LeakyReLU activation function is used for all layers in the discriminator except

the output layer to allow gradients to flow backwards through the layer;
• The final layer functions as a classifier and uses the SoftMax activation function

for classification.
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3.4.1. Model Training and Classification

The authors trained the proposed Improved DCGAN model on the ISIC 2017 dataset
to classify the cutaneous skin lesion. Firstly, the dataset is split into training (70%) and
testing (30%) datasets. The training dataset is preprocessed and augmented, and then
passed into the proposed DCGAN model for training. A preprocessed random latent
vector input is fed to the generator to generate synthetic data. The deconvolution neural
network of our generator is activated by calling the transposedConv2dLayer function to
perform weight multiplication and the Bias function to execute bias addition. In addition
to performing weight multiplication and bias addition, the convolution neural network in
the discriminator, called the convolution2dLayer function, performs weight multiplication.
A transposed convolutional layer is typically used for upsampling or to generate an output
feature map with a larger spatial dimension than the input feature map, thereby generating
synthetic images. As shown in Figure 5, the authors built the generator to meet DCGAN
framework requirements and set OUTPUT_SIZE to 64. The deconvolution step is 2, and
each output is four times the input, so each layer’s output size is 4 × 4, 8 × 8, 16 × 16, and
32 × 32, as well as feature maps set to 512, 256, 128, and 64, respectively. The Generator
images were rescaled to the range of [−1, 1] for the Tanh activation function. The model was
trained with a mini-batch size of 64 using the Stochastic Gradient Descent with Momentum
(SGDM) optimizer with a learning rate set to 0.01 and momentum set to 0.5 to stabilize
the training. The default values were initialized to zero for all the weights and the normal
distribution, with a 0.02% standard deviation.

The discriminator is a feed-forward neural network with four convolutional neural
networks. LeakyReLU is set to 0.2. In addition to discriminating between three target
classes, the discriminator also functions as a classifier. As a result, the discriminator output
layer contains N + 1 (=3) units, where n is the number of target classes. The final layer,
D, is labeled for predicting the probability of an image being real or fake. The remaining
N units in three layers are trained using a standard cross-entropy loss function, which is
represented as [105]:

Lsupervised = −∑ p(D(x) log(d(D(x)))) (2)

whereas D(x) is the correct class label corresponding to the input x and p(D(x)) is the
probability of the predicted class by discriminator D. Adding an extra label for the fake
class allows us to train the discriminator network across two loss functions simultaneously:
one for recognizing fake and genuine images and the other for classification inside actual
images. The discriminator network backpropagates discriminator loss to update its weights.

The training step involves changing the network’s weights based on the training data
while minimizing the loss function, which measures the difference between the anticipated
and real data. During the discriminator training phase, the generator is kept constant. Also,
the discriminator is kept constant during the Generator training phase. As discriminator
training seeks to determine how to differentiate between real and fake data, it also learns
how to identify the generator’s defects. Regarding discriminators, it is assumed that the
real input needs to be close to 1 and that the result of the generators will be 0. For the
generator network, the discriminator should predict 1 for each image it makes. During
training, the validation data assesses the network’s performance and prevents overfitting.
Probability distributions are what GANs attempt to reproduce. Therefore, we employed
loss functions that account for the discrepancy between GAN’s output and real distribution.
The total loss for the discriminator is the sum of the losses for real and fake images [104]:

D_loss = D_real_loss + D_ f ake_loss (3)

G_loss is the cross-entropy resulting from the difference between the generator’s gen-
erated data and the discriminator’s input data. In our study, the discriminator also serves
as a classifier to distinguish between benign and malignant cancers. The mathematical
description of a classifier with a training algorithm is shown below (Algorithm 1):
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Algorithm 1 Training the Classification Model Based on DCGAN-Based Classifier

Input:
1: Load the dataset ISIC2017_Training_Data, S17;
2. Split the dataset: Training 70% and Testing 30%
3: Preprocessing of S17: interp2(), histeq(), imsharpen(), imfilter(), rgb2lab(), gaussian_median_filter()
4: Initialize the networks: Generator G(latent_noise), Discriminator D ();
5. Create optimizers to update the weights using backpropagation sgdmupdate () and learning rate();
6. Train the networks G with noise and D with real and G-generated images for a number of epochs.

minGmaxDV(G, D) = Ex∼Pdata(x)[log(x)] + Ex∼Pz(z)[log(1 − D(G(z)))]
7. ReLu and Tanh activation function for G; Leaky ReLu and SoftMax for D;
8. Calculate the loss function and repeat 5–7.

D_loss = D_real_loss + D_ f ake_loss
9. D acts as Classifier N + 1 output
Output:
1: N + 1 Output
2: Confusion Matrix of Classification; Plots of AUC_ROC.
3: return Accuracy, Recall, Precision, Specificity and F1_Score.

4. Experimental Results and Discussion

In this section, experimental tests were carried out, including quantitative evaluation
of GANs and classifier evaluation, to assess the performance of the proposed skin lesion
DCGANs in image synthesis and their application to image classification. The studies used
procedural preprocessing processes such as image scaling using the bicubic interpolation
approach, normalization, which normalizes image pixel values to the range [0, 1], Sharp-
ening techniques, color transformation, and median filters. The study is performed on an
Intel Core i7 processor running at 4 GHz with 12 GB of GPU RAM from an NVIDIA K80
GPU with 4.1 TFLOPS of performance.

4.1. Performance Metrics

The authors employed qualitative and quantitative evaluation measures to assess the
effectiveness of the DCGAN model. In the qualitative approach, the authors focused on
the quality of the image, and in the quantitative overfitting approach, diverse images and
mode-dropping problems were evaluated. In this study, evaluation is done in two phases:
(1) the Image Preprocessing phase and (2) the Classification Phase. In the Image Preprocess-
ing phase, Mean Square Error (MSE) [105], Peak Signal-to-Noise Ratio (PSNR) [105] and
Structural Similarity Index (SSIM) [106] were used. To assess the classification performance
of the model, Balanced Accuracy Score (BAS), accuracy, recall, precision, specificity, and
F1-Score [74,104–107] were used as evaluation metrics, which are developed from True
Positive (TP), True Negative (TN), False Positive (FP), and False Negative (FN) predictions.
The confusion matrix and AUC-ROC plot are used for the graphical presentation of the
accuracy of the proposed improved model [108].

In a binary classification problem, there are only two outcomes that can be either
positive or negative. The key metrics in medical diagnosis are recall and specificity, which
are used to compute BAS. Specificity refers to the instances of positives, whereas recall
refers to the instances of negatives. The Balanced Accuracy Score (BAS) is a metric used to
assess a classifier’s performance on imbalanced datasets. It is determined by averaging
the Classifier’s sensitivity and specificity. The ROC curve illustrates the compromise
between sensitivity and specificity (false positive and false negative rates) as a function
of the threshold value. The proportion of real negatives incorrectly identified as positives
is known as the false positive rate. A contrast to this is the actual positive rate, which
measures how successfully positive samples are recognized. The ROC figure compares
different thresholds in terms of the true positive rate (y-axis) and the false positive rate
(x-axis). The curve of a random classifier, depicted as a diagonal from left to right, has
50% sensitivity and 50% specificity. A perfect classifier, however, would have a ROC curve
that intersects the upper left corner of the plot with a sensitivity and specificity of 100%.
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The area under the curve (AUC) measures the Classifier’s overall efficacy. An AUC of 1
indicates an ideal classifier, while an AUC of 0.5 indicates an unpredictable classifier. The
Classifier’s performance is generally better the closer the AUC is to 1 [104].

4.2. Results of Image Preprocessing Techniques

This section presents the experimental results of the image processing phase. MSE,
SSIM, and PSNR evaluation methods are used to measure the quality of the image.

4.2.1. Image Scaling

In this study, we have used the bicubic interpolation technique to accurately assess a
pixel’s intensity by extrapolating from neighboring pixels’ values. We compared the image
produced by the bicubic interpolation with the other image scaling techniques, namely,
nearest neighbor and bilinear interpolation, as shown in Figure 6. As bicubic interpolation
determines the value of each pixel by taking the weighted average of the 16 most relative
neighboring pixels, the output of bicubic algorithms is smoother and more accurate in
preserving tiny features from the input image. As shown in Figure 6 and Table 2, bicubic
yields significantly sharper images compared to the other two techniques and represents
the optimum balance between processing speed and output quality.
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Table 2. Performance metrics of image interpolation.

Nearest Neighbor Bilinear Bicubic

SSIM 0.88 0.91 0.98
PSNR 31.23 34.62 39.68
MSE 0.0087 0.0089 0.0001

4.2.2. Histogram Equalization

After bicubic interpolation, Histogram Equalization is performed to increase the
contrast of an image. Contrast is achieved by effectively distributing the most commonly
occurring intensity values, which stretches the intensity range of the image. This method
often increases the overall contrast of the images, which is helpful when close contrast
levels indicate meaningful data. It makes it possible for areas of lower local contrast to
improve their contrast. Normalization is performed by dividing the histogram by the
number of pixels in the analyzed image. To assess the performance of a histogram equalizer,
we analyzed histograms before and after equalization to see how the distribution of pixel
intensities changed, as shown in Figure 7.

Figure 8 displays the outcome of applying histogram equalization to the low-contrast
test image. After adjusting the contrast and brightness, the equalized image’s histogram
was computed. Then, the equalized images were normalized by the cumulative sum of
the histogram values to generate the cumulative distribution function (CDF). Finally, the
equalized image CDF is plotted. The pixel intensity values are on the x-axis, while the
cumulative probability is on the y-axis. Figure 9 demonstrates the distribution of pixel
intensities across the image and provides an overview of the transformation caused by
histogram equalization.
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4.2.3. Unsharp Masking and Gaussian High-Pass Filtering

We performed the USM and GHPF filtering techniques on the equalized image to
sharpen the images and capture the fine details of skin lesions. The authors first used the
USM method to enhance the image’s boundaries and fine details, followed by the GHPF
method to separate and sharpen the image’s high-frequency values. Figure 10 illustrates
the histogram comparison between the original image, the enhanced USM, and the GPHF.
The image contrast is adjusted with a histogram equalization method. Then the enhanced
images of USM and GHPF are added and multiplied by the weight factor of the image.
Figure 11 shows the enhanced, combined, sharpened image. The combined image shows
increased visibility of skin lesions and sharpens the image frequency value.
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4.2.4. Color Space Transformation

We used the CIELAB transformation to match numerical value changes to perceived
color changes. The CIELAB color balance approach preserves color by choosing each
channel’s scale factor separately. The first step is to convert each uint8 image to float32
format, map it to LAB color space, split the channels, and calculate the mean and standard
deviation along the first axis. The mean and standard deviation determine each color
channel’s scale factor. Scaling factors are then added to each color channel along the first
axis. After that, reduce the pixel values to make the color channels 0–255. After that,
uint8-format the image. Figure 12 shows the color balance transformation, and Table 3
presents the image’s performance after applying the color transformation.

Table 3. MSE and PSNR metrics for color space transformation.

SSIM PSNR MSE

CIELAB 0.86 96.92 9.07
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4.2.5. Median Filter

In 2D images, the median filter is widely used to eliminate noises such as salt and
pepper, speckle, Poisson, and Gaussian noise [96]. Figure 13 shows the implementation
of the median filter on these noises. The Mean Square Error (MSE) and Peak Signal Noise
Ratio (PSNR) metrics have been used to evaluate these noises. MSE is used to determine
whether there is unexpected noise in the image. The value of MSE should generally be low.
If so, it suggests that a filter is the best for reducing noise. As illustrated in Figure 13, the
MSE values are compared to select the most effective noise-reduction filter. From Table 4,
we can conclude that the median filter is best for removing Gaussian noise.
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Table 4. MSE and PSNR metrics for median filter.

Salt and Pepper Noise Poisson Noise Speckle Noise Gaussian Noise

MSE 7.26 47.65 103.65 6.61
PSNR (dB) 36.64 28.47 25.09 37.05
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4.3. Results of Improved DCGAN-Based Classifier

The ISIC 2017 dataset is used to train the proposed DCGAN-based Classifier. Image
preprocessing techniques are applied before DCGAN modeling to ensure the model can
learn reliable representations. As discussed in Section 3.4.1, 70% of the original datasets
were used for training and 30% for testing each image class. Notably, 30% of the images
were taken as unlabeled data. The adversarial network inputs random noise and provides
the discriminator’s final prediction on the created images. By altering the noise vector, we
may understand how the generator works and which noise vector results in the desired
class. However, we have used 100 random latent input noises.

During the batch normalization, a mini-batch size of 64 was used. All weights were
initialized with a normal distribution with a mean of zero and a standard deviation
of 0.02. Both the generator and discriminator networks are composed of five layers.
The generator comprises four deconvolutional layers with ReLu activations and one
deconvolutional layer with Tanh activations at the final layer. The discriminator consists
of four convolutional layers with Leaky-ReLu activations and a SoftMax layer in the
last layer. During the training process, both actual data and data from the generator
network are fed to the discriminator. The generator produces incredibly realistic images
after a few epochs of training, which are also used for additional training. To verify the
Improved DCGAN model’s effectiveness, we randomly generated 100 images for each of
the two skin lesions and compared them to discriminate between real and fake using the
BAS evaluation metric; the sample images are shown in Figure 14b. Figure 14a presents
the original images from the training data, and Figure 14b shows the random synthetic
images generated after training. It is observed that each image produced by DCGAN
looks very real and is hard to differentiate from the real images.
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Figure 15 shows the DCGAN model’s training process and the score generated by the
generator and discriminator after 383 epochs/9552 iterations. The score must be between
0 and 1; however, 0.5 is the best score for each iteration [106]. After each cycle, training
losses for generator G and discriminator D are recorded. The generator should get massive
random noise early in training to learn how to generate real data. At the same time, the
discriminator can distinguish real from fake images; it does not usually collect large samples
early on. The generator and discriminator may overcome each other during training. If the
discriminator gets too accurate, it will return values close to 0 or 1. If the image generator
method is used for producing and classifying skin lesions during training, GAN becomes
too accurate; it will constantly harness discriminator mistakes, producing unpleasant effects.
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In our experiment, the discriminator’s score is close to 0.5, indicating that the generator
creates a synthetic image that makes it impossible for the discriminator to differentiate
whether it is real or fake.
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The generator and discriminator networks were trained for ten epochs to examine
the validation accuracy of the model with definite learning rates of 0.01, 0.001, and
0.0002. Seventeen iterations per epoch were taken during the training phase, while a
validation frequency of 50 iterations was used for testing. Accuracy and loss during
training for the generator and discriminator are depicted in Figures 16–18 for ten
epochs. The loss convergence at the end demonstrates that the GAN model has found
its optimal state. Compared to the learning rates of 0.001 and 0.0002, the proposed
DCGAN model achieves an optimal accuracy of 99.38% with a learning rate of 0.01,
which outperforms state-of-the-art methods of GAN models as suggested in the liter-
ature, as depicted in Figures 16–18. The images were trained using a single GPU to
accelerate the matrix operations, training and parallel computation. Table 5 shows the
time elapsed, validation accuracy, and loss of three learning rates computed for ten
epochs with a batch size of 64. In modern deep-learning models, batch size is one of the
most important hyperparameters to fine-tune the model’s performance. To enable the
model to detect the pattern in the data without having to train on a huge dataset, the
authors additionally evaluated the model on 128 and 256 batch sizes with a learning
rate of 0.01, which gives higher accuracy than 0.001 and 0.0002.

Table 5. Validation accuracy and loss with a batch size of 64.

Learning Rate Time Elapsed
(hh:mm:ss)

Accuracy
Minibatch (%)

Validation
Accuracy (%) Mini-Batch Loss Validation Loss

0.01 00:13:08 100 99.38 0.0007 0.0293
0.001 00:16:27 100 98.44 0.0039 0.0312
0.0002 00:09:17 100 96.04 0.0366 0.1127
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The learning rate is a modifiable hyperparameter employed in training neural net-
works. Hence, it is imperative to examine the impact of the learning rate on the performance
of a model, which is typically assigned a small positive value within the interval of 0.0
to 1.0. The learning rate parameter controls how the model is modified or adapted to the
specific problem. A large learning rate allows the model to learn faster but may lead to
suboptimal weights and oscillating performance. The model’s loss on the training dataset
may fluctuate, and the weights may diverge. On the other hand, a smaller learning rate
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may help the model reach a more optimal or globally optimal set of weights. Still, it may
take significantly longer to train, potentially getting stuck on a suboptimal solution if the
learning rate is too small. Therefore, a learning rate of 0.01 typically works for standard
multi-layer neural networks and is trained effectively using stochastic gradient descent
with momentum (sgdm) optimization algorithms. The momentum enhances the optimiza-
tion process rate, increasing the probability of identifying the best set of weights within
a reduced number of training epochs. The learning rate of 0.01 was chosen because it
balanced the need for accuracy and stability. The training results showed that the model
could learn a good set of weights with a learning rate of 0.01 and that the model was also
stable and did not overfit the training data.
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Table 6 demonstrates that the training time for a model is substantially reduced as the
batch size increases.

Table 6. Impact of validation accuracy and loss with different batch sizes.

Batch Size Time Elapsed
(hh:mm:ss)

Accuracy
Minibatch (%)

Validation
Accuracy (%) Mini-Batch Loss Validation Loss

64 00:13:08 100 99.38 0.0007 0.0293
128 00:08:58 100 99.79 0.0040 0.0059
256 00:09:07 100 99.69 0.0003 0.0099

A confusion plot is a graphical representation of a classification model’s performance.
To evaluate model performance, it calculates AUC-ROC, accuracy, precision, recall, and
F1 score metrics. As shown in Figure 19, the discriminator successfully diagnoses benign
and malignant skin lesions with an extremely high degree of accuracy, as demonstrated in
the diagonal elements of the metrics. Figure 19 compares the confusion matrix for three
learning rates.



Diagnostics 2023, 13, 2635 21 of 29

Diagnostics 2023, 13, x FOR PEER REVIEW 21 of 30 
 

 

Figure 17. DCGAN training accuracy and loss with a learning rate of 0.001. 

 
Figure 18. DCGAN training accuracy and loss with a learning rate of 0.0002. 

A confusion plot is a graphical representation of a classification model’s perfor-
mance. To evaluate model performance, it calculates AUC-ROC, accuracy, precision, re-
call, and F1 score metrics. As shown in Figure 19, the discriminator successfully diagnoses 
benign and malignant skin lesions with an extremely high degree of accuracy, as demon-
strated in the diagonal elements of the metrics. Figure 19 compares the confusion matrix 
for three learning rates. 

 
Figure 19. DCGAN confusion matrix. 

The ROC curve in Figure 20 summarizes and displays the binary classification 
results, particularly for the positive class, and has learning rates of 0.01, 0.001, and 0.0002, 
respectively. We used True Positive (TP) and False Positive (FP) to plot the ROC curve, as 
mentioned in Section 4.1. TP is on the y-axis, and FP is on the x-axis in the ROC plot. The 
plot’s gray line is a random classifier’s ROC curve. The trade-off between sensitivity (TPR) 
and specificity (1-FPR) is depicted by our ROC curve (Figure 20). Good classifiers perform 
better if their curves are located nearer the top-left corner. A curve close to the ROC space’s 
45-degree diagonal indicates a less accurate test. Despite the ROC curve’s deviation from 
the diagonal and the little gap between the top left corner and the curve, Figure 20 
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The ROC curve in Figure 20 summarizes and displays the binary classification
results, particularly for the positive class, and has learning rates of 0.01, 0.001, and
0.0002, respectively. We used True Positive (TP) and False Positive (FP) to plot the ROC
curve, as mentioned in Section 4.1. TP is on the y-axis, and FP is on the x-axis in the
ROC plot. The plot’s gray line is a random classifier’s ROC curve. The trade-off between
sensitivity (TPR) and specificity (1-FPR) is depicted by our ROC curve (Figure 20). Good
classifiers perform better if their curves are located nearer the top-left corner. A curve
close to the ROC space’s 45-degree diagonal indicates a less accurate test. Despite the
ROC curve’s deviation from the diagonal and the little gap between the top left corner
and the curve, Figure 20 demonstrates that the Classifier is fairly classified. As shown
in Figure 20, data1 is a linear line, and data2 is the ROC curve, a quadratic pattern.
R-squared (R2) for all three learning rates equals 1, indicating that the predicted values
are identical to the actual values.
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Figure 20. DCGAN AUC-ROC plot.

The performance analysis of the improved DCGAN model utilizing the perfor-
mance metrics BAS, accuracy, recall, precision, specificity, and F1 Score is shown in
Table 6 and Figure 21 for three definite learning rates of 0.01, 0.001, and 0.0002. The
model produces good results after 170 epochs, with the test loss reaching a minimal
state and the resulting BAS being 99 for learning rates 0.01 and 0.001 and 97 for 0.0002,
indicating that the classifier performance is significantly good. The accuracy with a
learning rate of 0.01 obtains a greater accuracy of 99.38% compared to a 0.001 model’s
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accuracy of 98.44% and a 0.0002 model’s accuracy of 96.04%. As a result, the findings
indicate that the proposed model could generalize well and operate well when applied
to any skin lesions.

Diagnostics 2023, 13, x FOR PEER REVIEW 22 of 30 
 

 

demonstrates that the Classifier is fairly classified. As shown in Figure 20, data1 is a linear 
line, and data2 is the ROC curve, a quadratic pattern. R-squared (R2) for all three learning 
rates equals 1, indicating that the predicted values are identical to the actual values. 

 
Figure 20. DCGAN AUC-ROC plot. 

The performance analysis of the improved DCGAN model utilizing the performance 
metrics BAS, accuracy, recall, precision, specificity, and F1 Score is shown in Table 6 and 
Figure 21 for three definite learning rates of 0.01, 0.001, and 0.0002. The model produces 
good results after 170 epochs, with the test loss reaching a minimal state and the resulting 
BAS being 99 for learning rates 0.01 and 0.001 and 97 for 0.0002, indicating that the classi-
fier performance is significantly good. The accuracy with a learning rate of 0.01 obtains a 
greater accuracy of 99.38% compared to a 0.001 model’s accuracy of 98.44% and a 0.0002 
model’s accuracy of 96.04%. As a result, the findings indicate that the proposed model 
could generalize well and operate well when applied to any skin lesions. 

 
Figure 21. Performance metrics of improved DCGAN. 

  

99.38
99 99 99 9999.06

100

98 98

99

97.08

98

96 96

97

94

95

96

97

98

99

100

Accuracy Recall Precision Specificity F1-Score

Pe
rc

en
ta

ge

Performance Metrics

Performance of the Modified DCGAN Model 

Learning Rate 0.01 (%) Learning Rate 0.001 (%) Learning Rate 0.0002 (%)

Figure 21. Performance metrics of improved DCGAN.

4.4. Discussion

The results show that the DCGAN method employed in the model’s creation accurately
reproduces real skin lesions. A DCGAN-based model allows the creation of more realistic
and diverse skin lesions by capturing global structures and detailed textures. Although
data augmentation methods like rotation, scaling, and flipping can expand dataset size, the
improved strategy goes above and beyond standard methods by synthesizing new lesions.
It allows high-quality synthetic samples to be added to missing or unbalanced datasets,
improving the model’s ability to generalize to different lesion types. Skin lesions’ enormous
diversity and complexity may challenge handmade feature extraction methods such as
texture analysis or color-based descriptors, which rely on domain-specific knowledge.
The DCGAN Classifier learns and extracts essential features from synthetic skin lesion
images automatically, resulting in better generalization, robustness, and accuracy rates,
thereby reducing the need for manual feature engineering. The DCGAN-based Classifier
can handle differences in lesion appearance, illumination, and image quality due to its
improved generalization abilities.

Furthermore, image preprocessing procedures that increased feature extraction and
learning were used to improve the accuracy, generalization, and flexibility of the DCGAN-
based model. We have used bicubic interpolation, histogram equalization, USM and GHPF,
CIELAB color transformation, and a Gaussian noise median filter to extract the feature. In
this study, the ISIC 2017 dataset, containing 4000 benign and malignant images, each class
containing 2000 images, is used to train and fine-tune the model.

Most effective optimization methods, such as minibatch scholastic, Stochastic Gradient
Descent with momentum (sgdm), Adam, Adaboost, etc., are used for fine-tuning hyperpa-
rameters [73]. These methods probe the available options to discover the optimal hyper-
parameter settings for the DCGAN-based classifier. The best-performing hyperparameter
combinations were chosen to enhance model performance and generalization. In this study,
the authors used a sgdm hyperparameter. To further optimize the model, the learning rate
schedule, batch size, activation functions, and number of hidden layers are tuned before
the training begins. Hyperparameter optimization, or tuning, in machine learning involves
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selecting the best hyperparameters for a learning algorithm. Hyperparameters control
the learning process. To optimize machine learning, hyperparameters must be tweaked.
Hyperparameter optimization identifies a pair of hyperparameters that minimize a loss
function on independent data. The traditional methods are grid search, Random search,
Gradient-based, Evolutionary, population-based, and early stopping-based [98,100–102].

As a result, classification performance is more robust and consistent, even on novel or
tough datasets. It can enhance training datasets and allow researchers to analyze sparse or
unavailable lesion samples. The DCGAN-based Classifier reliably diagnoses skin lesions,
as shown in Table 7 and s 21. It has a high accuracy of 99.38%, 99% for precision, recall, and
F1-Score, demonstrating that it can detect and differentiate between different skin lesions.
The Classifier is particularly flexible to detect visual contrasts between lesions for precise
diagnosis and classification. It solves problems such as class imbalance, annotated data,
overfitting, and generalization to new models by capitalizing on DCGANs.

Table 7. Performance analysis of improved DCGAN.

Performance Metrics Learning Rate 0.01 (%) Learning Rate 0.001 (%) Learning Rate 0.0002 (%)

BAS 99 99 97
Accuracy 99.38 99.06 97.08

Recall 99 100 98
Precision 99 98 96

Specificity 99 98 96
F1-Score 99 99 97

We have compared our proposed model with the existing models in the literature,
such as StyleGAN, WGAN, DGAN, SLA-StyleGAN, and DDGAN, in which the GAN
classification models were applied to classify the skin lesions as listed in Table 8. These
models can also enhance the quality and accuracy of synthetic skin lesions. The improved
DCGAN outperforms cutting-edge approaches for synthesizing and categorizing skin
lesions. Results show that the proposed improved model is effective at generating accurate
predictions based on the test images, and the model attained 99.38% accuracy, which is a
significant outcome for skin lesion classification.

Table 8. Comparison with the existing GAN classification models for skin lesion classification.

Authors Techniques Accuracy (%)

[23] Pix2Pix GAN 84.7
[38] GAN with Raman Spectroscopy 92
[50] cGAN and WGAN 81
[55] DDGAN 72
[58] ACGAN, CycleGAN and Path- Rank-Filter 85.6
[63] DCGAN 58.72
[66] GAN 86.1
[71] DCGAN 93.5
[72] styleGAN 95.2
[73] DGAN 92.3
[74] SLA- StyleGAN 93.64
Proposed work DCGAN 99.38

Bissoto et al. [29] have achieved a performance of 84.7 using the Pix2Pix GAN
model on ISIC 2017. On the other hand, Wu et al. [38] applied GAN with Raman
Spectroscopy to augment and generate synthetic images, achieving an accuracy of 92%.
Mutepfe et al. [71] have achieved a test accuracy of 93.5% using DCGAN. Qin et al. [72]
used StyleGAN and achieved an accuracy of 95.2% and a balanced multiclass accuracy of
83.1%. Khan et al. [73] performed DGAN on unlabeled and labeled datasets, achieving
an accuracy of 91.1% and 92.3%, respectively. Therefore, it can be observed that our
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proposed model achieved a higher accuracy of 99.38% when compared to the models
listed in Table 8. These results show that the DCGAN Classifier can generate high-
quality skin lesion images and accurately classify them, making it a promising tool for
deep learning-based medical image analysis. The model’s accuracy in distinguishing
malignant lesions supports early skin cancer detection, enabling timely interventions
and improving patient outcomes.

5. Conclusions

This study investigated Deep Convolution Generative Adversarial Networks
(DCGANs) for their potential application in creating synthetic data for an augmenta-
tion technique. This technique has been successfully used to classify images of skin lesions
with high accuracy using the ISIC 2017 dataset. Furthermore, the results demonstrate that
adding GAN-generated image examples to the training data significantly outperforms
conventional approaches to fine-tuning pre-existing deep neural network architectures.
Access to unique data generation and augmentation processes like this is helpful when
large-scale training datasets are not easily accessible. It enables the addition of high-quality
synthetic samples to missing or unbalanced datasets, enhancing the model’s ability to
generalize to diverse lesion types. We observed a significant improvement in training
after performing image enhancement and preprocessing operations. After fine-tuning the
network’s parameters, we obtained an overall test accuracy of 99.38%.

While our model has contributed to improving the performance of skin lesion classifi-
cation and optimizing diagnostic measures like ROC and other diagnostic test parameters,
it is still insufficient to fully validate the software as a clinical diagnostic tool. Although
carefully designed to mimic “real conditions”, the computed-generated skin lesions lack
complexity and diversity in validating patient data. The proper diagnosis of skin lesions in
persons of color is disadvantaged by the absence of dark skin images of pathologic skin
lesions in dermatological resources or datasets. Artificial intelligence applications have
further harmed people of color because these models are typically trained on images of
people with light skin tones. The variation and intricacies present in actual patient sam-
ples/images, including varying skin tone backgrounds and subtle differences in malignant
and benign skin lesions, cannot be entirely captured by computed-generated images.

This study also had limited capacity to fine-tune its hyperparameters. Conducting all
the necessary tests to fine-tune the model took considerable time. The most problematic
aspect of this study was the duration of each training session, mainly when training lasted
more than 100 epochs. It made it significantly more challenging to optimize the DCGAN
on the dataset.

In our future work, we intend to investigate how different lesion-generation ap-
proaches can enhance the quality and authenticity of synthetic skin lesions by using larger
and more diverse datasets. To improve the precision and dependability of cutaneous
lesion classification, we aim to examine how multi-modal fusion with other diagnostic
techniques, such as histological information or patient metadata, may be done. Exploring
interpretability methods for the DCGAN-based Classifier may provide valuable insights
into decision-making and increase reliance on the model’s predictions. Also, Generative
model evaluation metrics vary by application. Hence, generative adversarial network
evaluation is difficult. Jensen-Shannon divergence, kernel maximum mean discrepancy,
and the 1-nearest neighbor classifier can be used to distinguish generated samples from real
samples, detect test mode collapsing, and detect dataset-based overfitting by introducing
conditional deep convolutional generative adversarial networks. We also aim to investigate
parallel processing and distributed training using multiple GPUs to minimize the time
required for DCGAN training.
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