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Abstract: EEG-based emotion recognition has numerous real-world applications in fields such as
affective computing, human-computer interaction, and mental health monitoring. This offers the
potential for developing IOT-based, emotion-aware systems and personalized interventions using
real-time EEG data. This study focused on unique EEG channel selection and feature selection
methods to remove unnecessary data from high-quality features. This helped improve the overall
efficiency of a deep learning model in terms of memory, time, and accuracy. Moreover, this work
utilized a lightweight deep learning method, specifically one-dimensional convolutional neural
networks (1D-CNN), to analyze EEG signals and classify emotional states. By capturing intricate
patterns and relationships within the data, the 1D-CNN model accurately distinguished between
emotional states (HV/LV and HA/LA). Moreover, an efficient method for data augmentation was
used to increase the sample size and observe the performance deep learning model using additional
data. The study conducted EEG-based emotion recognition tests on SEED, DEAP, and MAHNOB-HCI
datasets. Consequently, this approach achieved mean accuracies of 97.6, 95.3, and 89.0 on MAHNOB-
HCI, SEED, and DEAP datasets, respectively. The results have demonstrated significant potential
for the implementation of a cost-effective IoT device to collect EEG signals, thereby enhancing the
feasibility and applicability of the data.

Keywords: emotion recognition; EEG; 1D-CNN; human-computer interactions

1. Introduction

Emotion is defined as the reaction to or consciousness of external stimuli, playing an
important role in daily life by affecting people’s routines. Basic emotions like happiness,
anger, and sadness are constantly reflected by people voluntarily or involuntarily, signifi-
cantly impacting their position in society. Negative emotions can lead to social exclusion,
causing physiological and psychological effects [1]. Positive emotions relate to better liv-
ing standards and a longer life [2]. Many studies have analyzed emotions, with recent
ones focusing on understanding emotional behaviors [3,4]. However, the abstract and
individualized nature of emotions makes this research challenging and limits progress [5].
Moreover, the multitude of data collection methods (facial, vocal, neural, bodily signals,
etc.) and analysis techniques creates complex, time-consuming data processing [4]. There-
fore, computer-aided AI-based analysis methods are needed. In summary, emotion analysis
is critical but faces difficulties due to the inherent complexity of emotions. Advanced
computational techniques are thus necessary to enable effective emotion research.

EEG-based emotion recognition has wide applications but can identify hidden internal
states beyond external expressions. EEG directly measures brain signals using scalp elec-
trodes, capturing real-time data on unspoken emotions. This enables intuitive responses
to users’ psychological states in diverse systems. Therefore, this study has utilized EEG
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data to recognize emotions. The process of emotion recognition typically involves three
main steps: preprocessing, feature extraction, and classification. Pre-processing proce-
dures are essential for data preparation prior to further analysis. Feature extraction can
be achieved using traditional machine learning or deep learning methods. Traditional
methods often involve the use of handcrafted features [6]. However, owing to the high
non-stationarity of EEG signals, extracting such features is challenging and requires ex-
pert knowledge. Recent studies have explored multivariate statistical analysis techniques
in the frequency, time-frequency, and nonlinear domains that effectively represent EEG
characteristics [7–9]. For instance, Zheng et al. [7] evaluated different feature extraction
methods and achieved the best average accuracy using a discriminative graph-regularized
Extreme Learning Machine with differential entropy features. Zhu et al. [8] constructed a
graph structure based on differential entropy characteristics, learned channel relationships
through dynamic simplifying graph convolutional networks, and recalibrated channel
features using the style recalibration module. Through the fusion and classification of
sub-band features, the method achieves improved classification accuracy compared to
existing methods. Wang et al. [9] proposed an end-to-end convolutional neural network
(CNN) model called SACNN to improve cross-subject emotion recognition accuracy. By
restructuring the data dimensions and selecting the top 10 channels, the SACNN model
achieved significant accuracy in detecting human emotions. Algarni et al. [10] proposed a
stacked bi-directional Long Short-Term Memory (Bi-LSTM) Model for EEG-based emotion
recognition that includes Binary Gray Wolf Optimizer for feature selection. By achiev-
ing high accuracy in classifying arousal, valence, and liking from the DEAP dataset, the
proposed method demonstrated effective emotion recognition through EEG signals. Li
et al. [11] proposed a C-RNN model combining CNN and RNN to identify emotions using
multichannel EEG signals. While RNN-based methods have advantages for processing
time series data and have achieved great results, they still have limitations when dealing
with multichannel EEG data. Gao et al. [12] proposed a gradient particle swarm optimiza-
tion (GPSO) model to automatically optimize CNN models. They implemented the GPSO
algorithm to optimize the hyperparameters and architecture of CNNs. The experimental
results demonstrated that CNN models optimized by their proposed GPSO approach
achieved significantly higher classification accuracy compared to other CNNs. Hancer and
Subasi [13] proposed a unique EEG emotion recognition framework including multi-scale
PCA and wavelet filtering for preprocessing. For feature extraction, they used dual tree
complex wavelet transform. For feature selection, they employed statistical criteria to
reduce dimensions. Consequently, researchers have been utilizing various neural networks
for EEG data analysis [14–16] with the aim of improving accuracy.

EEG-based emotion recognition tasks using deep learning models face a significant
challenge due to the limited availability of EEG training datasets compared to visual
and audio datasets. Currently, only a few public datasets, including MAHNOB-HCI [17],
DEAP [18], and SEED [19], are accessible for EEG-based emotion recognition, and their
scale is small to train a deep learning model efficiently [20]. To overcome this limitation,
data augmentation techniques have been employed to generate additional training data.
These techniques involve applying geometric modifications or adding Gaussian noise to
the original EEG data [16]. However, a recent approach by Kalaganis et al. [21] executes a
graph variant of the classical Empirical Mode Decomposition (EMD) to produce realistic
EEG-like data. The generated data, combined with the original data, is then utilized to train
a 1D-CNN model for classification and an Arousal-Valence model to identify emotions
from complex and nonstationary EEG data. Experimental results have demonstrated
that data augmentation significantly enhances the accuracy of classifiers in EEG-based
emotion recognition.

The cerebral cortex has four lobes: frontal, parietal, temporal, and occipital. EEG
devices vary in electrode number, categorized as low (1–32 electrodes), medium (33–128),
or high (>128) resolution [22]. The international 10–20 system [23] standardizes electrode
placement by mapping locations to scalp regions. Selecting optimal EEG channels for
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emotion recognition from key brain areas can reduce the electrodes needed, improving
wearable headset comfort. Determining these optimal channels has been a focus for
enabling real-world EEG applications. The frontal, parietal, temporal, and occipital lobes
each contribute unique signals relevant for emotion recognition. By exploring the most
informative regions and channels, this work aims to provide insights on channel selection
to reduce computational demands while preserving emotion-relevant information from
EEG signals. The goal is to improve the feasibility of EEG-based emotion recognition.

Previous research has recognized human emotions using a limited number of EEG
channels. While this can increase computational speed, it decreases the accuracy of emotion
recognition. In this paper, we introduced a differential entropy-based approach for channel
selection that not only enhances the model’s performance but also reduces the reliance
on using all EEG electrodes for signal extraction by selecting the most relevant channels.
Moreover, challenges remain in computational efficiency, robust feature extraction, and
optimal model architectures. Continued research is needed to develop end-to-end systems
that leverage different deep networks’ complementary strengths with a fewer number of
channel EEG analyses. Therefore, the paper utilizes a Decomposed Mutual Information
Maximization (DMIM) method for sequential feature selection, which eliminates unwanted
data from the selected channels to further improve the model’s performance. Furthermore,
it proposes a lightweight 1D-CNN architecture based on deep learning for the classification
of high-quality data obtained from selected EEG channels. Lastly, the paper incorporates a
graph-EMD to generate realistic EEG-like data, enhancing the training dataset.

The remaining sections of the paper are organized as follows: Section 2 provides a
detailed description of the research methodology, specifically the presented deep learning
model. In Section 3, the results of the analysis are presented. Finally, Section 4 and Section 5
offer a discussion of the work and conclude the paper, respectively.

2. Materials and Methods

In this section, we provide a comprehensive overview of the MAHNOB-HCI, SEED,
and DEAP datasets, along with the pre-processing procedures employed. Following that,
we delve into the detailed introduction of our model. Lastly, we elucidate the training
parameters utilized in our model for a comprehensive understanding of the training process.
Figure 1 illustrates the process of proposed framework.
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Figure 1. Emotion recognition process using proposed framework.

2.1. Dataset and Data Processing

The MAHNOB-HCI database [17] contains EEG and physiological signals recorded
from 30 participants (data from 3 subjects was lost) watching 20 emotional video clips. The
17 women and 13 men healthy adult participants were 19–40 years old. These participants
watched 20 emotional video clips chosen to elicit responses of disgust, amusement, fear,
sadness, and joy. The clips were selected from movies and online videos. The clips ranged
from 34 to 117 s, with a 30 s baseline before/after each clip. EEG data were recorded using
caps with 32 electrode sensors and sampling rate of 512 Hz, which was then down-sampled
to 256 Hz. After each video, participants self-reported their arousal and valence using the
Self-Assessment Manikin (SAM) scale. Arousal measures the degree of excitement, rated
from 1 (boring) to 9 (exciting), and valence indicates the polarity of emotion, rated from
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1 (unpleasant) to 9 (pleasant) [24]. Therefore, the dataset includes subjective arousal and
valence ratings from 1 to 9 for each video based on the participants’ emotional responses.
These self-reported scores provide ground truth labels to relate the recorded EEG and
physiological signals to emotional states defined along the dimensions of arousal and
valence. In total, the database includes EEG and peripheral signals for emotion analysis
from 27 subjects responding to 20 videos.

The DEAP dataset [18] contains EEG recordings from 32 participants (16 male,
16 female) as they watched 40 one-minute musical video clips. Each trial included a
3 s pre-trial baseline followed by 60 s of video stimulation. EEG data were recorded using
caps with 32 electrode sensors and sampling rate of 512 Hz. The data were preprocessed
by the DEAP team, including down-sampling the EEG signal to 128 Hz. After each video,
participants self-reported their arousal valence, like/dislike, dominance, and familiarity
levels using the SAM scale. Each subject underwent 40 trials, with various signals recorded
as 40-channel data. The first 32 channels represented EEG signals, while the remaining
8 channels captured autonomous physiological signals. After watching each video, par-
ticipants rated the levels of arousal, valence, like/dislike, dominance, and familiarity
using SAM.

The SEED dataset [19] consists of EEG signal data obtained during an emotional
experiment. It was collected from 15 subjects, comprising 7 males and 8 females. Sixty-
two-channel EEG data were collected as participants viewed 15 four-minute Chinese film
excerpts designed to elicit positive, neutral, and negative emotions (5 clips per emotion).
During the experiments, subjects received a 5-s prompt before each clip, then completed
a 45-s self-assessment of their emotions followed by 15 s of rest. The dataset focused on
three specific emotions: positive, neutral, and negative, resulting in a total of 45 trials. Each
trial involved recording the scalp EEG signals using a 62-channel standard 10–20 system
at a sampling rate of 200 Hz, which was then down-sampled to 128 Hz. To eliminate
physiological noises, a 3rd-order bandpass Butterworth filter with cutoff frequencies of
0 Hz to 75 Hz was applied. A comparison between the various characteristics of all the
datasets under consideration has been depicted in Table 1.

Table 1. Comparison of characteristics between all three datasets under discussion.

Characteristics DEAP MAHNOB-HCI SEED

Participants 32 27 15
Trials 40 20 15

Channels 32 32 62
Sampling rate (Hz) 128 256 128

Affective states
Valence
Arousal

Dominance

Valence
Arousal

Positive
Negative
Neutral

Rating scale range 1–9 1–9 -

For this work, the valence and arousal scales were used for classification. The SAM
rating scale was divided into two parts, high (level > 5) and low (level ≤ 5), to establish
low valence (LV), high valence (HV), low arousal (LA), and high arousal (HA) labels for
MAHNOB-HCI and DEAP datasets. However, for SEED dataset, three classes (positive,
neutral, and negative) were considered for classification.

2.2. Data Augmentation

In recent years, there has been growing scientific interest in applying data augmenta-
tion for EEG classification. George et al. [25] performed data augmentation for EEG signals
using six different synthesis approaches. The results showed that the synthesized EEG
data exhibited similar characteristics to real data. Using the augmented data for training
increased classification accuracy by up to 3% and 12% on two public EEG datasets. Luo
et al. [26] used conditional Wasserstein GAN (cWGAN) and selective VAE (sVAE) for data
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augmentation to improve emotion recognition from EEG signals. They transformed the
training data into power spectral density and differential entropy representations before
feeding them into the cWGAN and sVAE models. Their proposed augmentation tech-
nique helped in improving classification performance for EEG-based emotion recognition.
Zhang et al. [27] proposed a new EEG data augmentation method using empirical mode
decomposition (EMD). In their approach, EEG signals are decomposed into intrinsic mode
functions (IMFs) using EMD. The IMFs are then recombined in different ways to artificially
generate new training data. This augmented data are transformed into wavelet tensors
and used to train a convolutional neural network (CNN) classifier. Experiments showed
that their EMD-based data augmentation technique improved EEG classification accu-
racy compared to training without data augmentation. Abdelfattah et al. [28] proposed
recurrent generative adversarial networks (RGANs) to generate synthetic EEG. The recur-
rent generator architecture allowed the RGANs to successfully capture the key temporal
dynamics of EEG signals, giving them an advantage over standard GANs for EEG data
generation. To address limited dataset sizes for EEG-based emotion recognition, this study
explored using graph empirical mode decomposition (EMD) for augmenting EEG signals to
improve classification.

The graph variant of the classical EMD method allows the generation of artificial EEG
epochs using an arbitrary number of input epochs. To generate these artificial epochs, each
individual EEG epoch is initially decomposed into a set of graph Intrinsic Mode Functions
(IMFs) based on a graph structure G. By combining the graph IMFs from different epochs,
an artificial EEG epoch can be created. This approach leverages the mono-component
nature of the graph IMFs, resulting in artificial epochs that share similar characteristics
with the original signals that contributed to their IMFs.

To enhance the capabilities of a classifier, the class information associated with each
EEG epoch is considered during the generation of artificial epochs. Consequently, the
corresponding IMFs of each epoch are also assigned the same class label, ensuring that
each artificial EEG epoch is generated exclusively from graph IMFs belonging to a single
class. This approach enables the creation of artificial EEG epochs that align with specific
class characteristics, further enhancing the discriminative capabilities of the classifier.

The proposed data augmentation method as discussed by Kalaganis et al. [21] involves
the following steps to generate artificial EEG epochs:

1. Random selection of class-specific EEG epochs: For each class, a random set of EEG
epochs is chosen to contribute their Intrinsic Mode Functions (IMFs). The number of
contributing EEG epochs is determined by the maximum number of IMFs present in
a signal segment.

2. IMF selection for artificial EEG epoch generation: To create an artificial EEG epoch,
the IMFs are selected in a sequential manner. The first IMF is taken from the first
contributing EEG epoch, the second IMF from the second contributing EEG epoch,
and so on. If a contributing EEG epoch has fewer IMFs than required, the additional
IMFs are considered as zero graph signals. The required maximum number of IMFs is
set to five.

By following this procedure, a substantial number of artificial EEG epochs can be
generated, with the potential to reach the total number of EEG epochs raised to the power
of the number of graph IMFs. This augmentation process effectively expanded the dataset,
providing a greater variety of data samples for analysis and training purposes.

2.3. Proposed Architecture

2.3.1. Channel Selection

According to neuroscience, the brain waves are generated in specific regions of the
brain. In particular, the pre-frontal, parietal, and temporal areas are associated with the
detection of positive valence emotions [29]. Several recent studies have explored EEG chan-
nel selection for emotion recognition. Affes et al. [30] proposed a cascading deep learning
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model called CAtt-MLP for channel selection, consisting of convolutional blocks, an atten-
tion neural network, and a multi-layer perceptron (MLP). Ramadhani et al. [31] applied
integrated selection to remove irrelevant channels, improving brain–computer interface
performance. Dura and Wosiak [32] used a reversed correlation algorithm (RCA) to auto-
matically select optimal EEG electrodes. RCA identified emotion-relevant band-channel
combinations through inter-subject analysis. Daoud and Bayoumi [33] used transfer learn-
ing and semi-supervised approaches to identify relevant channels. According to previous
research [34,35], the most commonly used electrodes for emotion recognition are O1, O2,
FP1, FP2, F3, F4, C3, C4, AF3, AF4, FC5, FC6, T7, T8, F7, F8, P7, and P8. Moreover, the
frontal lobe electrodes like F3, F4, and AF3/4 have been used in more than 70% of the
studies, which shows that many researchers believe the frontal cortex plays an important
role in emotion processing. Across these works, channel selection consistently improved
accuracy compared to using all channels. By removing less informative channels, channel
selection reduces complexity and noise while focusing on emotion-relevant EEG features.

In this work, we have employed the concept of differential entropy to select the
channels. By exploiting this measure, we can identify and incorporate the relevant channels
in this work. Formally, let (U, C∪D) be an informed decision, where U is the set of all EEG
data samples under consideration, categorized into two classes C and D. For a particular
EEG sample P belonging to class C (P ⊂ C), the differential entropy E of P with respect to
class C is defined as:

E(P|U ⊕ C) = − 1
U ∑z∈U log2

|[x]C ∩ [x]P|
|[x]P|

, (1)

We conducted a series of experiments using different threshold values between 1.0
and 2.5 to evaluate the performance of emotion recognition when using selected channels,
with the help of differential entropy, as input to the proposed 1D-CNN model. Although
the model performance was sufficiently accurate with several channel numbers, we tried to
optimize channel selection across all datasets under consideration to find the best perform-
ing combination. Therefore, a threshold of 1.5 was chosen to select the most significant
EEG channels that directly impacted class discrimination. This threshold value not only
helped achieve the same number of channels across the SEED, DEAP, and MAHNOB-HCI
datasets but also improved emotion recognition performance using a limited number of
channels. Specifically, 10 common channels were selected from the pool of most significant
channels for all three datasets, as shown in Figure 2. Using this data-driven approach to
select the optimal channels enabled improved emotion recognition with a small subset of
EEG channels that were most informative for discrimination. The threshold of 1.5 struck the
right balance between channel reduction and preserving class-discriminative information.
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2.3.2. Feature Selection

Feature selection is a well-established preprocessing technique that plays a crucial role
in reducing dimensionality and enhancing the performance of regression and classification
tasks. Among the various approaches, the sequential forward feature selection methods
based on Mutual Information (MI) have gained popularity in practical applications due to
their computational efficiency and classifier independence. In our study, we have specifi-
cally focused on the Decomposed Mutual Information Maximization (DMIM) method [36].
This method retains the desirable theoretical properties of the most effective existing meth-
ods while addressing the issue of complementarity penalization. By separately maximizing
the inter-feature and class-relevant redundancies, DMIM overcomes this limitation and
offers improved performance.

For this purpose, we first divided the entire signal of each selected channel into
multiple samples. We achieved this by applying a 2-s window without overlapping,
allowing for better evaluation. Additionally, we labeled each sample based on its position
in the original signal before applying differential entropy. This labeling enables us to obtain
the original signal of each sample after ranking them. We then applied differential entropy
to each 2-s sample using the following Formula (2) to use it for DMIM-based feature
ranking method:

h(x) =
1
2

log(P) +
1
2

log
(

2πe
N

)
, (2)

where P represents the average energy value of the EEG signal by replacing the variance,
and the N represents the length of fixed time window, which is 2 s in this case.

Afterwards, we utilized the DMIM based features ranking method described by [36],
which maximizes inter-feature and class-relevance redundancy separately, enabling joint
optimization of feature diversity and relevance for selection. The mutual information
between two variables can be calculated as follows:

MI(A, B) = ∑
a=a

∑
b=b

P(A = a, B = b)ln
P(A = a, B = b)

P(A = a)P(B = b)
, (3)

Therefore, suppose Xi ∈ F be the feature being used for prioritization and its relevance
with the class C; the objective function DMIM using MI(.) can be defined as follows:

DMIM(Xi) = MI(Xi, C)−max
Xs∈S

MI(Xi, Xs) + max
Xs∈S

MI(Xi, Xs

∣∣∣∣C), (4)

Each term of the objective function DMIM states a unique type of contribution between
the class (C) the set of selected features (S) and the features (Xi), whereas Xs ∈ S are the
selected features. The first term MI(.) measures the relevance of feature Xi to the class. The
second term maxMI(.) measures redundancy between Xi and Xs. The third term maxMI(.)
measures redundancy between Xi and the class-specific information in selected features.
Overall, the three terms quantify relevance, inter-feature redundancy, and class-conditional
redundancy for feature selection.

Our complete evaluation process for feature selection is provided in Figure 3 in
terms of flow chart. While the accuracy of recognition is increasing, the process of fea-
ture reduction continues until the accuracy does not improve further. In this way, the
highly ranked features are selected and contain class-specific information while removing
redundant features.

Once we obtained the feature ranking from DMIM, we selected only the top twenty
features with the highest contribution to class discrimination with respect to classification
accuracy and disregarded the remaining ones. On average, the first twenty features had
a greater influence on the accuracy of emotion recognition compared to the rest of the
features (see Figure 4). Therefore, we chose these twenty features as the high-quality
features. Subsequently, we obtained the original EEG samples corresponding to these
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features for further use in the next stage of the method, which is the 1D-CNN model. The
typical size of feature vectors obtained from each level are listed in Table 2.
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Table 2. Size of the feature vector obtained at step of proposed method for each subject.

Raw EEG Channel Selection Feature Selection

DEAP 32 × 7680 10 × 7680 10 × 5120
MAHNOB-HCI 32 × 15,360 10 × 15,360 10 × 10,240

SEED 62 × 30,720 10 × 30,720 10 × 5120

2.3.3. 1D-CNN Model

The extracted high-quality features from the original EEG data are passed through the
1D-CNN model. The model consists of multiple pairs of convolutional, batch normalization
and pooling layers, as well as an output layer. Prior to being input into the 1D-CNN model,
the features are combined into a vector format, which is subsequently convolved with a
set of one-dimensional filters within the convolutional layers. Following the pooling layer,
the data undergo further down-sampling, resulting in vectors with reduced dimensions.
The network weights and filters within the convolutional layers are trained using the
back-propagation algorithm.
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The CNN structure employed in this study is relatively straightforward. The input
vector is a one-dimensional feature represented by X, with a shape of N × 1. At the convolu-
tional layer, the input feature vector is convolved with filters Wf. The convolution operation
results in the formation of an output map, and the feature map at the corresponding layer
is obtained using the equation provided below:

f (α) = f
(

W f X + b f

)
, (5)

where, weight matrix W f ∈ Ri×1, and the bias value b are utilized in the calculation, with f
denoting the filter index ranging from 1 to n, where n represents the total number of filters
in the convolutional layer. In this work, the activation function employed is the rectified
linear unit (ReLU), denoted by the function f. ReLU is more efficient in preventing gradient
disappearance compared to traditional neural network activation functions like sigmoid
and tanh. The ReLU function is defined as follows:

f (α) = ReLU(α) = ln(1 + eα), (6)

where value of α has been defined in previous equation.
Batch normalization is a well-known technique in modern neural networks that serves

two purposes: normalizing the output from the previous layer in a CNN model and
regularizing the data to prevent overfitting. It plays a crucial role in ensuring stable training
and enhancing the generalization capability of the network. At the max-pooling layer, the
feature map undergoes down-sampling through the application of an average-pooling
function. This function is employed because it has been observed that extracting the
average value from the selected values within a given feature map is an effective approach.
This significantly reduces the number of trainable parameters, leading to an accelerated
training process. Also, the dropout layer is employed to prevent overfitting.

Following the last pooling layer, a fully connected layer is employed, where the output
data from the pooling layer is flattened. Subsequently, a series of fully connected layers
called DNN (Deep Neural Network) is utilized. In each layer of the DNN, the activation
function employed is also ReLU.

For the output layer, two classification tasks are considered: binary classification
and three-class classification. To address the binary classification task (for DEAP and
MAHNOB-HCI dataset), the sigmoid function is utilized as an activation function, while
for the three-class classification task (for SEED dataset), the softmax function is employed.
Additionally, for the binary-classification task, the Adadelta optimizer is used, and the loss
is calculated using the binary cross-entropy formula, as indicated by the equation below:

lossCE = −∑N
n=1 ŷi log(yi) + (1− ŷi) log(1− ŷi), (7)

where N represents the number of samples, yi denotes the value in the encoded form, and
ŷi represents the output obtained from the output layer using sigmoid activation. In the
case of three-class classification, Adam optimizer is employed, and the loss is calculated
using categorical cross-entropy, which can be expressed as

lossCCE = −∑N
n=1 ŷi1 log(yi1) + ŷi2 log(ŷi2) + ŷi3 log(ŷi3), (8)

where N represents the number of samples, and yi1, yi2, and yi3 correspond to the values of
the label, which are encoded. The values ŷi1, ŷi2, and ŷi3 represent the three outputs ob-
tained from the output layer, where softmax activation is applied. The model’s parameters
are updated using the back-propagation algorithm. The error between the desired output
and the actual output is computed, and the gradient descent method is utilized to update
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the parameters, aiming to minimize the error. The weight and bias update functions are
illustrated as follows:

W f = W f − η
∂E

∂W f
, b f = b f − η

∂E
∂b f

, (9)

where Wf refers to the weight matrix, bf represents the bias, η denotes the learning rate, and
E represents the error, which is the loss calculated in Equations (7) and (8). An illustration
of the proposed 1D-CNN model has been provided in Figure 5.
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2.3.4. Hyperparameters

In our study, we utilize a 1D-CNN to enhance the capture of EEG signal details linked
to emotions. A grid search approach was considered to achieve the most suitable set of
hyper-parameters of this 1D-CNN model. Table 3 presents the key hyperparameters, their
corresponding range of values, and selected values for the proposed model in this study.

Table 3. Hyperparameters of the proposed 1D-CNN model.

Parameter Type Range of Values Selected Value

Number of 1DConvolution
Layers 3–8 4

Number of filters 16–128 64, 32, 32, 16
Size of kernel 1 × 1–7 × 1 5 × 1, 5 × 1, 3 × 1, 1 × 1

Batch size 32–128 64
Learning rate 0.0005–0.01 0.005
Momentum 0.1–0.9 0.9

Dropout 0.25–0.5 0.25
Number of epochs 50–200 100

The model is implemented using Python 3.9. As depicted in Figure 5 and Table 2, the
size of the input 1D vector comprises of 10 (EEG channels) × 2 (window size: 2 s) × 128
(sampling rate: 128 Hz (for DEAP and SEED datasets)/256 Hz (for MAHNOB-HCI dataset)).
The batch size for the model is set to 64, resulting in input data shapes of (163,840) for the
DEAP and SEED datasets and (327,680) for the MAHNOB-HCI dataset.
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In the proposed model, the term “1DConvolution” represents the one-dimensional con-
volutional layer, “AveragePooling1D” denotes one-dimensional average pooling, “Batch-
Norm” refers to one-dimensional batch normalization, and “FC” represents the fully
connected layer. Each convolutional layer in the model is followed by an activation layer,
where ReLU is used as the activation function.

The proposed model consists of four convolutional layers, three batch normalizations,
two dropout layers with probabilities of 0.25, one pooling layer, one flatten layer, and two
fully connected layers. These layers are combined to form four convolution blocks. The
first block contains a convolutional layer with a kernel size of 5 × 1, aimed at extracting
emotion-relevant features. ReLU is used as the activation function for each convolutional
layer. Each convolution block, except for one, includes a normalization layer. The third
convolution block is connected to an average pooling layer at the end. The last convolution
block is followed by a fully connected layer, which is then connected to the final output
fully connected layer after a dropout layer with a probability of 0.5. The final output of
the model provides the classification results for emotion recognition. The structure of the
proposed model is illustrated in Figure 5.

3. Results

In this section, we analyze the implementation of the proposed feature selection
method by utilizing the classification results obtained through our approach. We have
conducted various evaluation parameters to validate the results and compared them with
those obtained from the state-of-the-art models to verify the effectiveness of the proposed
method. To mitigate the issue of overfitting, the dataset was typically partitioned into
random subsets of equal size. Accordingly, we employed the leave-one-subject-out strategy
to divide our dataset for training and testing sets.

We classified three (positive, neutral, negative) emotional states for the SEED dataset
and two (HV, LV) and (HA, LA) emotional states for the DEAP and MAHNOB-HCI dataset
using the designed 1D-CNN model. The accuracy of the selected features for each subject in
the datasets was used to validate the results. To calculate the accuracy, precision, specificity,
recall, F1-score, and p-score, we employed the confusion matrix and utilized the keywords
True positive, False positive, True negative, and False negative. The performance metrics
for the DEAP, MAHNOB-HCI, and SEED datasets are presented in Tables 4–6, respectively.

Table 4. Performance of the proposed method on DEAP dataset.

Subject Accuracy Precision Specificity Recall F1-Score p-Score

Subject 1 96.1 77 89 90 0.89 0.091
Subject 2 89.9 99 75 76 0.83 0.098
Subject 3 85.9 75 77 83 0.81 0.0697
Subject 4 78.3 76 73 70 0.87 0.084
Subject 5 77.3 82 75 66 0.85 0.067
Subject 6 83.1 81 71 66 0.85 0.0748
Subject 7 86.4 95 91 92 0.87 0.083
Subject 8 83.2 92 74 77 0.84 0.0852
Subject 9 83.8 89 78 76 0.86 0.09

Subject 10 82.9 81 87 81 0.80 0.08
Subject 11 76.5 67 89 75 0.86 0.0849
Subject 12 87.2 91 79 72 0.89 0.084
Subject 13 83.8 71 90 86 0.8 0.0951
Subject 14 87.6 76 93 69 0.94 0.075
Subject 15 87.2 91 92 99 0.8 0.0732
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Table 4. Cont.

Subject Accuracy Precision Specificity Recall F1-Score p-Score

Subject 16 85 73 74 68 0.79 0.089
Subject 17 83.8 86 73 70 0.84 0.085
Subject 18 84.6 69 91 86 0.87 0.079
Subject 19 81.8 71 75 90 0.9 0.08
Subject 20 83.3 94 66 76 0.91 0.069
Subject 21 84.1 85 79 82 0.87 0.09
Subject 22 84.9 89 78 92 0.81 0.076
Subject 23 86.03 68 65 86 0.82 0.072
Subject 24 81.12 76 77 84 0.78 0.0921
Subject 25 82.5 71 70 96 0.82 0.0695
Subject 26 87.3 94 77 84 0.9 0.09
Subject 27 82.52 85 95 74 0.83 0.088
Subject 28 80.37 85 81 64 0.84 0.07
Subject 29 85.61 94 98 98 0.87 0.087
Subject 30 82.28 94 88 79 0.95 0.075
Subject 31 83.84 93 92 78 0.89 0.076
Subject 32 85.25 82 78 78 0.83 0.0785
Average 84.2 83 81 80 0.85 0.081

Table 5. Performance of the proposed method on MAHNOB-HCI dataset.

Subject Accuracy Precision Specificity Recall F1-Score p-Score

Subject 1 95.3 93 89 90 0.89 0.072
Subject 2 97.6 92 96 93 0.89 0.078
Subject 3 97.4 94 89 93 0.91 0.0839
Subject 4 91.2 89 92 90 0.99 0.073
Subject 5 92.7 90 85 87 0.99 0.072
Subject 6 96.5 88 87 86 0.97 0.0794
Subject 7 91.1 96 93 94 0.91 0.067
Subject 8 93.1 97 89 90 0.93 0.0802
Subject 9 95.8 95 92 92 0.97 0.08

Subject 10 94.5 93 94 91 0.89 0.0812
Subject 11 92.5 94 98 95 1.00 0.073
Subject 12 96.7 92 92 98 1.00 0.0779
Subject 13 95 89 90 96 0.97 0.0793
Subject 14 96 90 93 99 0.99 0.79
Subject 15 92 88 94 82 0.91 0.0684
Subject 16 93.5 90 89 85 0.90 0.076
Subject 17 96.6 91 92 92 0.99 0.08
Subject 18 95.1 92 86 91 0.99 0.0858
Subject 19 96.1 95 90 89 0.94 0.076
Subject 20 94.2 94 92 94 0.99 0.0831
Subject 21 93.9 93 92 96 0.89 0.0792
Subject 22 95.7 94 93 93 0.96 0.087
Subject 23 93.2 82 89 95 0.89 0.083
Subject 24 96.2 88 92 90 0.94 0.086
Subject 25 95 98 89 88 1.0 0.08
Subject 26 95.6 91 92 92 0.95 0.082
Subject 27 92.6 92 92 90 0.95 0.0717
Average 94.6 92 91 91 0.95 0.10
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Table 6. Performance of the proposed method on SEED dataset.

Subject Accuracy Precision Specificity Recall F1-Score p-Score

Subject 1 93.8 87 92 91 0.97 0.0975
Subject 2 91.4 91 85 86 0.97 0.0845
Subject 3 92.8 94 89 83 0.91 0.09
Subject 4 91.1 97 84 87 0.98 0.092
Subject 5 90.2 89 82 90 0.95 0.0945
Subject 6 92.5 96 87 89 0.95 0.0935
Subject 7 89.4 89 96 94 0.91 0.0965
Subject 8 94.6 88 93 89 0.93 0.094
Subject 9 90.4 93 99 89 0.98 0.095
Subject 10 91.1 91 92 95 0.86 0.093
Subject 11 89.6 93 97 98 0.98 0.091
Subject 12 92.7 97 91 96 0.96 0.0885
Subject 13 90.5 78 80 96 0.93 0.087
Subject 14 93.5 90 92 98 0.97 0.095
Subject 15 92.1 81 85 82 0.91 0.0806
Average 91.7 90 89 91 0.94 0.092

Moreover, a t-test was conducted to evaluate the p-score (probability score), aiming
to assess the usefulness of the selected function. It determined whether there existed a
significant difference between the selected feature vector and the original or actual feature
vector. The p-value was derived by calculating the mean difference between the selected
objects and the original object vector. A higher p-value indicated a higher quality factor for
the selected item.

Additionally, we performed data augmentation technique to increase the number of
samples. Usually, deep learning models require a large amount of datasets to produce
better results. Therefore, we added the same number of generated samples of EEG data
to the original datasets of DEAP, MAHNOB-HCI, and SEED, respectively. The results of
adding fake data using graph-EMD have been presented in Figure 6 with class-specific
accuracies. The average accuracies are valued on the left side of the Y-axis, while the
values of the standard deviation (SD) associated with the respective average accuracies
are represented on the right side of the Y-axis. As shown in the figure, the LA class of the
MAHNOB-HCI dataset attained the highest average accuracy of 98.43% with 0.11 SD using
augmented data. The least SD of 0.09 is attributed to the neutral class of the SEED dataset
with an average accuracy of 94.65% with augmented data.
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To illustrate the benefits of data augmentation using graph-EMD, we visualized the
real and synthesized samples through t-SNE two-dimensional projections, as shown in
Figure 7. From the results, we can observe that (1) the generated data matches the actual
data distributions in each dataset and (2) the augmented data maintains class-specific
properties as expected, without low-quality samples that could mislead the classifier.
Overall, the t-SNE visualizations demonstrate that the synthesized data has similar distri-
butions to the real data for each emotion class, validating the quality of the graph-EMD
augmentation approach.

Diagnostics 2023, 13, x FOR PEER REVIEW 14 of 20 
 

 

 
Figure 6. Performance (average accuracy/standard deviation (SD)) of the proposed model 
with/without augmented data using graph-EMD. The Y-axis on the left side shows the average ac-
curacy associated with the Original and Original+Augmented data, while the Y-axis on the right 
side shows the values of the SD associated with the respective average accuracies. 

To illustrate the benefits of data augmentation using graph-EMD, we visualized the 
real and synthesized samples through t-SNE two-dimensional projections, as shown in 
Figure 7. From the results, we can observe that (1) the generated data matches the actual 
data distributions in each dataset and (2) the augmented data maintains class-specific 
properties as expected, without low-quality samples that could mislead the classifier. 
Overall, the t-SNE visualizations demonstrate that the synthesized data has similar distri-
butions to the real data for each emotion class, validating the quality of the graph-EMD 
augmentation approach. 

   
(a) (b) (c) 

Figure 7. The t-SNE visualization of the real and generated EEG data distributions for one subject 
from the SEED, DEAP, and MAHNOB-HCI datasets is shown in (a–c), respectively. The lines rep-
resent the real EEG data, while the scattered points are the artificially generated augmented data. In 
(a), the data points colored red, blue, and yellow represent the negative, positive, and neutral clas-
ses, respectively. In (b,c), the data points colored red, orange, blue, and magenta represent the high 
valence, low valence, high arousal, and low arousal classes, respectively. 

Performance Analysis 
The computational time taken by the proposed model with and without the channels 

and the attributes selected through the proposed method has been calculated. The follow-
ing equation has been used to calculate the time [37]: 

Figure 7. The t-SNE visualization of the real and generated EEG data distributions for one subject
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the real EEG data, while the scattered points are the artificially generated augmented data. In (a),
the data points colored red, blue, and yellow represent the negative, positive, and neutral classes,
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Performance Analysis

The computational time taken by the proposed model with and without the channels
and the attributes selected through the proposed method has been calculated. The following
equation has been used to calculate the time [37]:

CT =
1
FT

∑C
ci=1([CP × ln( fv)] + [(1− CP)× ln(1− fv)]), (10)

where the selected feature value is denoted as fv, the training features are depicted as FT,
the features of a particular emotional category are specified as CP, the number of emotional
categories is symbolized as C, and the categories index is symbolized as ci.

The processing time is reduced as a result of selecting a smaller number of features.
By employing the differential entropy for channel selection and the feature reduction
method using DMIM, emotions can be recognized within a shorter processing time while
maintaining the overall classification performance. Table 7 presents the execution time
of the proposed method, comparing the results with and without the channel/feature
selection method. The channel selection greatly enhances the overall rating performance,
as depicted in Table 8, where the selected channel outperforms all other channels. This
improvement can be attributed to the fact that not all channels provide high-quality stimuli
for emotions in EEG signals. This study highlights the importance of channel selection and
its impact on understanding the emotional behavior captured by the selected channel. Also,
a comparison of average accuracies on augmentation has also been provided in Table 8. It
shows the efficiency of the proposed method with and without augmentation. Moreover,
we used the Kappa coefficient to evaluate emotion recognition accuracy. Kappa measures
the agreement between predicted and true labels, normalized for chance and classifier count.
Unlike basic accuracy, Kappa provides a standardized performance estimate adjusted for
variations in classes and classifiers.
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Table 7. Computational time comparison of proposed method with and without channel/feature
selection method.

DEAP MAHNOB-HCI SEED

Channels Feature
Vector Time (s) Channels Feature

Vector Time (s) Channels Feature
Vector Time (s)

CS+FS+1D-
CNN 10 51,300 22 10 102,400 46 10 51,300 22

CS+1D-
CNN 10 245,760 189 10 491,520 221 10 409,600 249

FS+1D-
CNN 32 524,288 303 32 1,048,576 629 62 2,539,520 1066

1D-CNN 32 2,621,440 1100 32 5,242,880 1274 62 10,158,080 1675

Table 8. Comparison between all channels and selected channels in terms of accuracy with/without
augmented data and Kappa coefficient for EEG classification.

Original +
Augmented

Original
(10 Channels) All Channels Kappa

DEAP 89.02 84.21 81.06 0.713
MAHNOB-HCI 97.61 94.65 89.50 0.841

SEED 95.27 91.72 88.30 0.752

4. Discussion

Given the important role of emotion in human–machine interactions, this study aims
to recognize emotions using EEG signals captured with a limited number of electrodes.
While people may more easily identify specific emotions they feel, the dimensional perspec-
tive offers a more fundamental understanding of the emotion–behavior relationship [38].
Neuroscience studies also support this dimensional view. Evidence of neural activities
shows that valence and arousal influence cognition and behavior through distinct brain
mechanisms [39]. Consistent with this theoretical background, this study systematically
manipulated and examined valence and arousal effects rather than focusing on discrete
emotions. By taking a dimensional approach to emotion recognition from limited-channel
EEG data, this work provides insight into the fundamental mechanisms linking EEG signals
to emotional states.

We have introduced a deep learning-based 1D-CNN model that effectively utilizes
differential entropy for channel selection and the DMIM method for feature selection. This
model efficiently processes raw EEG signals to recognize emotions, enhancing the visibility
and efficiency of class-specific features. The proposed architecture simultaneously extracts
valuable EEG patterns, considering the recent literature emphasizing the significance of
channel selection in emotion recognition. Consequently, we specifically employ differential
entropy to identify the most relevant channels for emotion recognition. Furthermore, we
employ the DMIM method to select high-quality features, dividing the EEG signal into
samples of 2 s on a horizontal scale. This helped in assessing the signal in a better way on a
temporal scale and reducing the feature vector for the deep learning model.

In Tables 4–6, we provide the evaluation metrics for each subject. It is important to
highlight that the proposed 1D-CNN model demonstrated efficient performance across
all datasets examined in this study. The average accuracy of the model is highest in the
MAHNOB-HCI dataset, reaching 94.6%, and lowest in the DEAP dataset, with an accuracy
of 84.2%. Additionally, the model successfully tackled the three-class problem in the SEED
dataset, achieving an average accuracy of 91.7%.

Furthermore, the mean p-value (0.10) is highest in the MAHNOB-HCI dataset, indicat-
ing the significance of the selected feature vector compared to the original data. Although
the average p-value (0.081) for the DEAP dataset is lower than that of MAHNOB-HCI,
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it is still satisfactory and demonstrates the importance of the selected features over the
original ones.

In order to ensure a suitable training phase, we tested different numbers of augmented
data and network designs. The experimental results determining the impact of augmented
data are presented in Figure 6. As depicted in Figure 6, data augmentation proves to
be more effective in the deep learning model. It considerably enhances the prediction
accuracy of the 1D-CNN model. Specifically, doubling the data leads to improvements of
up to 4.8%, 3.9%, and 3.5% for the DEAP, MAHNOB-HCI, and SEED datasets, respectively.
This improvement can be attributed to the fact that deep neural network models require
a larger amount of data compared to traditional machine learning models. In conclusion,
data augmentation in EEG data is a complex task that requires careful consideration. In
this experiment, a substantial amount of data was generated and added to the original
dataset. However, augmented data did not uniformly improve results across all datasets.
When increasing the original data amount threefold using our augmentation approach,
we observed overfitting and degraded testing accuracy. This highlights the fact that that
simply generating more data does not necessarily lead to better performance. There are
optimal augmentation levels, beyond which additional synthetic data fails to provide new
information and causes overfitting. The reliability of the classifier’s accuracy on data from
different sources remains a significant concern in this task.

Table 8 presents the emotion recognition accuracy and Kappa coefficient using our
proposed feature extraction method with and without data augmentation, compared to
using all channels. Augmentation increased the maximum accuracy on MAHNOB-HCI to
97.61%, exceeding all-channel accuracy by 8.11%. For SEED, average accuracy was 95.27%
with augmentation. DEAP accuracy improved by 4.81% to 89.02% with augmentation
versus original data. The kappa scores were 0.841, 0.752, and 0.713 for MAHNOB-HCI,
SEED, and DEAP, indicating substantial reductions in error versus chance levels. Overall,
these results demonstrate that our proposed method of an emotion recognition and data
augmentation approach considerably improves EEG-based emotion recognition accuracy
and consistency.

Table 9 presents a concise overview and performance comparison between our pro-
posed method and other existing emotion recognition methods. These methods are all
deep learning models and have been considered for evaluation because they used the
same dataset. Luo et al. [26] proposed three methods for augmenting EEG training data to
improve the performance of emotion recognition models, utilizing deep generative mod-
els (VAE and GAN) and selective data augmentation strategies. These methods, namely
cWGAN, sVAE, and sWGAN, were evaluated on SEED and DEAP datasets. Topic and
Russo [40] presented a new model for emotion recognition using EEG signals, utilizing
topographic and holographic representations of the signal characteristics. Deep learning
was employed for feature extraction and fusion, resulting in improved emotion recog-
nition performance on publicly available datasets. Zhang et al. [41] addressed the lack
of interpretability in deep learning models for EEG-based tasks and explores the use of
interpretable models to analyze CNN-based model SACNN in emotion recognition. By
integrating brain science knowledge with interpretability analysis results, a new model
was proposed, which demonstrated improved recognition accuracy on standard EEG
datasets. Zhang et al. [42] presented a novel two-step spatial-temporal framework for emo-
tion recognition based on EEG. The framework incorporated a hierarchical self-attention
network to capture both local and global temporal information, reducing noise and local-
izing relevant segments. Additionally, the squeeze-and-excitation module and channel
correlation loss were utilized to enhance spatial feature extraction and improve emotion
recognition performance. Luo and Lu [43] addressed the challenge of limited EEG data for
emotion recognition by proposing a Conditional Wasserstein GAN (CWGAN) framework.
By leveraging generative adversarial networks, realistic EEG data in differential entropy
form were generated and evaluated using quality indicators. Overall, the proposed method
outperformed the methods from the literature and provided sufficient grounds for the
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idea that using a deep-learning-based lightweight 1D-CNN model with limited number of
channels can produce successful results. Therefore, the major contributions of this study
are listed below:

• It has been observed that the proposed deep learning method performs better than
methods in the literature, even without data augmentation.

• Generally, large datasets are expected for deep learning studies. Therefore, the im-
proved performance after augmentation further proves this point.

• In deep learning, manual feature selection is not typically conducted. In this study,
deep learning was performed after feature selection. Manually selecting features may
have caused some information loss. However, the deep learning model still achieved
successful classification.

• Generally, all channels are used for emotion recognition. Despite the fact that this work
utilized a limited number of channels, the deep learning model produced successful
results.

• Processing raw data can increase deep learning algorithm performance. Due to the
small sample lengths in this study, we could process the raw data, which increased
overall performance.

• Although each dataset alone was small, the reliability of the proposed method was
evaluated using different datasets and increasing the data size through augmentation
on each dataset separately.

Table 9. Comparison between the results of the proposed method and the state of the art methods
from literature according to various factors and the number of datasets used.

Augmentation
DEAP MAHNOB-HCI SEED

Accuracy Channels Classes Accuracy Channels Classes Accuracy Channels Classes

Proposed Yes 89 10 4 97.6/10 10 4 95.3 10 3
Luo et al. [26] Yes 59.1 32 4 - - - 93.5 62 3

Topic and
Russo [40] No 77.72 32 4 - - - 88.45 62 3

Zhang et al.
[41] No 83 32 10 71 10 2 89 10 2

Zhang et al.
[42] No 77.03 32 4 81.37 32 4 79.56 62 3

Luo and Lu
[43] Yes 78.17 32 4 - - - 86.96 62 3

To summarize, Table 9 presents a comprehensive comparison between our proposed
study and existing state-of-the-art methods in the literature, focusing on EEG-based tech-
niques applied to the DEAP, MAHNOB-HCI, and SEED datasets. Our proposed approach
outperforms other methods in terms of classification accuracy while also reducing compu-
tational overhead. By utilizing a 1D-CNN model and selecting high-quality features from
specific channels, our method achieves simplicity and effectiveness. The results in Table 6
demonstrate that our model significantly improves precision compared to the previously
employed model using the same datasets.

5. Conclusions

In this study, we tackled two key challenges in emotion identification from EEG signals:
the high dimensionality problem and the scarcity of available data. To address these issues,
we employed channel and feature selection methods to reduce the dimensionality of
the EEG data and employed data augmentation using graph-EMD. The implemented
approach exhibited superior accuracy on the proposed 1D-CNN model, highlighting
the significance of addressing data scarcity in neural network models. The model was
validated using DEAP, MAHNOB-HCI, and SEED datasets, demonstrating that our feature
selection method effectively enhances overall classification performance while minimizing
computational costs. Additionally, the proposed model offers notable improvements in
feature extraction capabilities, while channel selection aids researchers in exploring the
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understanding of emotions through selective channels for precise emotion recognition.
These results demonstrate the potential for a cost-effective IoT EEG device to enable
accessible emotion recognition. By selectively extracting clean and relevant neural signals,
our proposed methods can enhance the feasibility of real-world EEG acquisition. Our
system provides an efficient and accurate pipeline from targeted EEG input to emotion state
predictions. Moving forward, future research directions will explore further enhancements
to the emotion analysis framework by integrating multiple neural networks. Considering
the reduced testing and training time of the proposed model, it would be interesting to
evaluate its performance across multiple emotion categories. Also, further analysis is
needed to determine ideal augmentation factors for each dataset. While augmentation
generally helped, more data did not linearly translate to accuracy gains. Additionally, this
study was focused on small sample size for the sake of simplicity and reduced complexity;
therefore, it is required to investigate the increased sample size for preprocessing to observe
its impact on the performance.
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