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Abstract: EEG-based emotion recognition has numerous real-world applications in fields such as 

affective computing, human-computer interaction, and mental health monitoring. This offers the 

potential for developing IOT-based, emotion-aware systems and personalized interventions using 

real-time EEG data. This study focused on unique EEG channel selection and feature selection meth-

ods to remove unnecessary data from high-quality features. This helped improve the overall effi-

ciency of a deep learning model in terms of memory, time, and accuracy. Moreover, this work uti-

lized a lightweight deep learning method, specifically one-dimensional convolutional neural net-

works (1D-CNN), to analyze EEG signals and classify emotional states. By capturing intricate pat-

terns and relationships within the data, the 1D-CNN model accurately distinguished between emo-

tional states (HV/LV and HA/LA). Moreover, an efficient method for data augmentation was used 

to increase the sample size and observe the performance deep learning model using additional data. 

The study conducted EEG-based emotion recognition tests on SEED, DEAP, and MAHNOB-HCI 

datasets. Consequently, this approach achieved mean accuracies of 97.6, 95.3, and 89.0 on 

MAHNOB-HCI, SEED, and DEAP datasets, respectively. The results have demonstrated significant 

potential for the implementation of a cost-effective IoT device to collect EEG signals, thereby en-

hancing the feasibility and applicability of the data. 
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1. Introduction 

Emotion is defined as the reaction to or consciousness of external stimuli, playing an 

important role in daily life by affecting people’s routines. Basic emotions like happiness, 

anger, and sadness are constantly reflected by people voluntarily or involuntarily, signif-

icantly impacting their position in society. Negative emotions can lead to social exclusion, 

causing physiological and psychological effects [1]. Positive emotions relate to be�er liv-

ing standards and a longer life [2]. Many studies have analyzed emotions, with recent 

ones focusing on understanding emotional behaviors [3,4]. However, the abstract and in-

dividualized nature of emotions makes this research challenging and limits progress [5]. 

Moreover, the multitude of data collection methods (facial, vocal, neural, bodily signals, 

etc.) and analysis techniques creates complex, time-consuming data processing [4]. There-

fore, computer-aided AI-based analysis methods are needed. In summary, emotion anal-

ysis is critical but faces difficulties due to the inherent complexity of emotions. Advanced 

computational techniques are thus necessary to enable effective emotion research. 

EEG-based emotion recognition has wide applications but can identify hidden inter-

nal states beyond external expressions. EEG directly measures brain signals using scalp 
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electrodes, capturing real-time data on unspoken emotions. This enables intuitive re-

sponses to users’ psychological states in diverse systems. Therefore, this study has utilized 

EEG data to recognize emotions. The process of emotion recognition typically involves 

three main steps: preprocessing, feature extraction, and classification. Pre-processing pro-

cedures are essential for data preparation prior to further analysis. Feature extraction can 

be achieved using traditional machine learning or deep learning methods. Traditional 

methods often involve the use of handcrafted features [6]. However, owing to the high 

non-stationarity of EEG signals, extracting such features is challenging and requires ex-

pert knowledge. Recent studies have explored multivariate statistical analysis techniques 

in the frequency, time-frequency, and nonlinear domains that effectively represent EEG 

characteristics [7–9]. For instance, Zheng et al. [7] evaluated different feature extraction 

methods and achieved the best average accuracy using a discriminative graph-regularized 

Extreme Learning Machine with differential entropy features. Zhu et al. [8] constructed a 

graph structure based on differential entropy characteristics, learned channel relation-

ships through dynamic simplifying graph convolutional networks, and recalibrated chan-

nel features using the style recalibration module. Through the fusion and classification of 

sub-band features, the method achieves improved classification accuracy compared to ex-

isting methods. Wang et al. [9] proposed an end-to-end convolutional neural network 

(CNN) model called SACNN to improve cross-subject emotion recognition accuracy. By 

restructuring the data dimensions and selecting the top 10 channels, the SACNN model 

achieved significant accuracy in detecting human emotions. Algarni et al. [10] proposed a 

stacked bi-directional Long Short-Term Memory (Bi-LSTM) Model for EEG-based emo-

tion recognition that includes Binary Gray Wolf Optimizer for feature selection. By achiev-

ing high accuracy in classifying arousal, valence, and liking from the DEAP dataset, the 

proposed method demonstrated effective emotion recognition through EEG signals. Li et 

al. [11] proposed a C-RNN model combining CNN and RNN to identify emotions using 

multichannel EEG signals. While RNN-based methods have advantages for processing 

time series data and have achieved great results, they still have limitations when dealing 

with multichannel EEG data. Gao et al. [12] proposed a gradient particle swarm optimi-

zation (GPSO) model to automatically optimize CNN models. They implemented the 

GPSO algorithm to optimize the hyperparameters and architecture of CNNs. The experi-

mental results demonstrated that CNN models optimized by their proposed GPSO ap-

proach achieved significantly higher classification accuracy compared to other CNNs. 

Hancer and Subasi [13] proposed a unique EEG emotion recognition framework including 

multi-scale PCA and wavelet filtering for preprocessing. For feature extraction, they used 

dual tree complex wavelet transform. For feature selection, they employed statistical cri-

teria to reduce dimensions. Consequently, researchers have been utilizing various neural 

networks for EEG data analysis [14–16] with the aim of improving accuracy. 

EEG-based emotion recognition tasks using deep learning models face a significant 

challenge due to the limited availability of EEG training datasets compared to visual and 

audio datasets. Currently, only a few public datasets, including MAHNOB-HCI [17], 

DEAP [18], and SEED [19], are accessible for EEG-based emotion recognition, and their 

scale is small to train a deep learning model efficiently [20]. To overcome this limitation, 

data augmentation techniques have been employed to generate additional training data. 

These techniques involve applying geometric modifications or adding Gaussian noise to 

the original EEG data [16]. However, a recent approach by Kalaganis et al. [21] executes a 

graph variant of the classical Empirical Mode Decomposition (EMD) to produce realistic 

EEG-like data. The generated data, combined with the original data, is then utilized to 

train a 1D-CNN model for classification and an Arousal-Valence model to identify emo-

tions from complex and nonstationary EEG data. Experimental results have demonstrated 

that data augmentation significantly enhances the accuracy of classifiers in EEG-based 

emotion recognition. 

The cerebral cortex has four lobes: frontal, parietal, temporal, and occipital. EEG de-

vices vary in electrode number, categorized as low (1–32 electrodes), medium (33–128), or 
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high (>128) resolution [22]. The international 10–20 system [23] standardizes electrode 

placement by mapping locations to scalp regions. Selecting optimal EEG channels for 

emotion recognition from key brain areas can reduce the electrodes needed, improving 

wearable headset comfort. Determining these optimal channels has been a focus for ena-

bling real-world EEG applications. The frontal, parietal, temporal, and occipital lobes each 

contribute unique signals relevant for emotion recognition. By exploring the most in-

formative regions and channels, this work aims to provide insights on channel selection 

to reduce computational demands while preserving emotion-relevant information from 

EEG signals. The goal is to improve the feasibility of EEG-based emotion recognition. 

Previous research has recognized human emotions using a limited number of EEG 

channels. While this can increase computational speed, it decreases the accuracy of emo-

tion recognition. In this paper, we introduced a differential entropy-based approach for 

channel selection that not only enhances the model’s performance but also reduces the 

reliance on using all EEG electrodes for signal extraction by selecting the most relevant 

channels. Moreover, challenges remain in computational efficiency, robust feature extrac-

tion, and optimal model architectures. Continued research is needed to develop end-to-

end systems that leverage different deep networks’ complementary strengths with a fewer 

number of channel EEG analyses. Therefore, the paper utilizes a Decomposed Mutual In-

formation Maximization (DMIM) method for sequential feature selection, which elimi-

nates unwanted data from the selected channels to further improve the model’s perfor-

mance. Furthermore, it proposes a lightweight 1D-CNN architecture based on deep learn-

ing for the classification of high-quality data obtained from selected EEG channels. Lastly, 

the paper incorporates a graph-EMD to generate realistic EEG-like data, enhancing the 

training dataset. 

The remaining sections of the paper are organized as follows: Section 2 provides a 

detailed description of the research methodology, specifically the presented deep learning 

model. In Section 3, the results of the analysis are presented. Finally, Section 4 and 5 offer 

a discussion of the work and conclude the paper, respectively. 

2. Materials and Methods 

In this section, we provide a comprehensive overview of the MAHNOB-HCI, SEED, 

and DEAP datasets, along with the pre-processing procedures employed. Following that, 

we delve into the detailed introduction of our model. Lastly, we elucidate the training 

parameters utilized in our model for a comprehensive understanding of the training pro-

cess. Figure 1 illustrates the process of proposed framework. 

 

Figure 1. Emotion recognition process using proposed framework. 

2.1. Dataset and Data Processing 

The MAHNOB-HCI database [17] contains EEG and physiological signals recorded 

from 30 participants (data from 3 subjects was lost) watching 20 emotional video clips. 

The 17 women and 13 men healthy adult participants were 19–40 years old. These partic-

ipants watched 20 emotional video clips chosen to elicit responses of disgust, amusement, 

fear, sadness, and joy. The clips were selected from movies and online videos. The clips 

ranged from 34 to 117 s, with a 30 s baseline before/after each clip. EEG data were recorded 

using caps with 32 electrode sensors and sampling rate of 512 Hz, which was then down-
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sampled to 256 Hz. After each video, participants self-reported their arousal and valence 

using the Self-Assessment Manikin (SAM) scale. Arousal measures the degree of excite-

ment, rated from 1 (boring) to 9 (exciting), and valence indicates the polarity of emotion, 

rated from 1 (unpleasant) to 9 (pleasant) [24]. Therefore, the dataset includes subjective 

arousal and valence ratings from 1 to 9 for each video based on the participants’ emotional 

responses. These self-reported scores provide ground truth labels to relate the recorded 

EEG and physiological signals to emotional states defined along the dimensions of arousal 

and valence. In total, the database includes EEG and peripheral signals for emotion anal-

ysis from 27 subjects responding to 20 videos. 

The DEAP dataset [18] contains EEG recordings from 32 participants (16 male, 16 

female) as they watched 40 one-minute musical video clips. Each trial included a 3 s pre-

trial baseline followed by 60 s of video stimulation. EEG data were recorded using caps 

with 32 electrode sensors and sampling rate of 512 Hz. The data were preprocessed by the 

DEAP team, including down-sampling the EEG signal to 128 Hz. After each video, partic-

ipants self-reported their arousal valence, like/dislike, dominance, and familiarity levels 

using the SAM scale. Each subject underwent 40 trials, with various signals recorded as 

40-channel data. The first 32 channels represented EEG signals, while the remaining 8 

channels captured autonomous physiological signals. After watching each video, partici-

pants rated the levels of arousal, valence, like/dislike, dominance, and familiarity using 

SAM. 

The SEED dataset [19] consists of EEG signal data obtained during an emotional ex-

periment. It was collected from 15 subjects, comprising 7 males and 8 females. Sixty-two-

channel EEG data were collected as participants viewed 15 four-minute Chinese film ex-

cerpts designed to elicit positive, neutral, and negative emotions (5 clips per emotion). 

During the experiments, subjects received a 5-s prompt before each clip, then completed 

a 45-s self-assessment of their emotions followed by 15 s of rest. The dataset focused on 

three specific emotions: positive, neutral, and negative, resulting in a total of 45 trials. Each 

trial involved recording the scalp EEG signals using a 62-channel standard 10–20 system 

at a sampling rate of 200 Hz, which was then down-sampled to 128 Hz. To eliminate phys-

iological noises, a 3rd-order bandpass Bu�erworth filter with cutoff frequencies of 0Hz to 

75Hz was applied. A comparison between the various characteristics of all the datasets 

under consideration has been depicted in Table 1. 

Table 1. Comparison of characteristics between all three datasets under discussion. 

Characteristics DEAP MAHNOB-HCI SEED 

Participants 32 27 15 

Trials 40 20 15 

Channels 32 32 62 

Sampling rate (Hz) 128 256 128 

Affective states 

Valence 

Arousal 

Dominance 

Valence 

Arousal 

Positive 

Negative 

Neutral 

Rating scale range 1–9 1–9 - 

For this work, the valence and arousal scales were used for classification. The SAM 

rating scale was divided into two parts, high (level > 5) and low (level ≤ 5), to establish 

low valence (LV), high valence (HV), low arousal (LA), and high arousal (HA) labels for 

MAHNOB-HCI and DEAP datasets. However, for SEED dataset, three classes (positive, 

neutral, and negative) were considered for classification. 
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2.2. Data Augmentation 

In recent years, there has been growing scientific interest in applying data augmen-

tation for EEG classification. George et al. [25] performed data augmentation for EEG sig-

nals using six different synthesis approaches. The results showed that the synthesized 

EEG data exhibited similar characteristics to real data. Using the augmented data for train-

ing increased classification accuracy by up to 3% and 12% on two public EEG datasets. 

Luo et al. [26] used conditional Wasserstein GAN (cWGAN) and selective VAE (sVAE) for 

data augmentation to improve emotion recognition from EEG signals. They transformed 

the training data into power spectral density and differential entropy representations be-

fore feeding them into the cWGAN and sVAE models. Their proposed augmentation tech-

nique helped in improving classification performance for EEG-based emotion recognition. 

Zhang et al. [27] proposed a new EEG data augmentation method using empirical mode 

decomposition (EMD). In their approach, EEG signals are decomposed into intrinsic mode 

functions (IMFs) using EMD. The IMFs are then recombined in different ways to artifi-

cially generate new training data. This augmented data are transformed into wavelet ten-

sors and used to train a convolutional neural network (CNN) classifier. Experiments 

showed that their EMD-based data augmentation technique improved EEG classification 

accuracy compared to training without data augmentation. Abdelfa�ah et al. [28] pro-

posed recurrent generative adversarial networks (RGANs) to generate synthetic EEG. The 

recurrent generator architecture allowed the RGANs to successfully capture the key tem-

poral dynamics of EEG signals, giving them an advantage over standard GANs for EEG 

data generation. To address limited dataset sizes for EEG-based emotion recognition, this 

study explored using graph empirical mode decomposition (EMD) for augmenting EEG 

signals to improve classification. 

The graph variant of the classical EMD method allows the generation of artificial EEG 

epochs using an arbitrary number of input epochs. To generate these artificial epochs, 

each individual EEG epoch is initially decomposed into a set of graph Intrinsic Mode 

Functions (IMFs) based on a graph structure �. By combining the graph IMFs from dif-

ferent epochs, an artificial EEG epoch can be created. This approach leverages the mono-

component nature of the graph IMFs, resulting in artificial epochs that share similar char-

acteristics with the original signals that contributed to their IMFs. 

To enhance the capabilities of a classifier, the class information associated with each 

EEG epoch is considered during the generation of artificial epochs. Consequently, the cor-

responding IMFs of each epoch are also assigned the same class label, ensuring that each 

artificial EEG epoch is generated exclusively from graph IMFs belonging to a single class. 

This approach enables the creation of artificial EEG epochs that align with specific class 

characteristics, further enhancing the discriminative capabilities of the classifier. 

The proposed data augmentation method as discussed by Kalaganis et al. [21] in-

volves the following steps to generate artificial EEG epochs: 

1. Random selection of class-specific EEG epochs: For each class, a random set of EEG 

epochs is chosen to contribute their Intrinsic Mode Functions (IMFs). The number of 

contributing EEG epochs is determined by the maximum number of IMFs present in 

a signal segment. 

2. IMF selection for artificial EEG epoch generation: To create an artificial EEG epoch, 

the IMFs are selected in a sequential manner. The first IMF is taken from the first 

contributing EEG epoch, the second IMF from the second contributing EEG epoch, 

and so on. If a contributing EEG epoch has fewer IMFs than required, the additional 

IMFs are considered as zero graph signals. The required maximum number of IMFs 

is set to five. 

By following this procedure, a substantial number of artificial EEG epochs can be 

generated, with the potential to reach the total number of EEG epochs raised to the power 

of the number of graph IMFs. This augmentation process effectively expanded the dataset, 

providing a greater variety of data samples for analysis and training purposes. 
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2.3. Proposed Architecture 

2.3.1. Channel Selection 

According to neuroscience, the brain waves are generated in specific regions of the 

brain. In particular, the pre-frontal, parietal, and temporal areas are associated with the 

detection of positive valence emotions [29]. Several recent studies have explored EEG 

channel selection for emotion recognition. Affes et al. [30] proposed a cascading deep 

learning model called CA�-MLP for channel selection, consisting of convolutional blocks, 

an a�ention neural network, and a multi-layer perceptron (MLP). Ramadhani et al. [31] 

applied integrated selection to remove irrelevant channels, improving brain–computer in-

terface performance. Dura and Wosiak [32] used a reversed correlation algorithm (RCA) 

to automatically select optimal EEG electrodes. RCA identified emotion-relevant band-

channel combinations through inter-subject analysis. Daoud and Bayoumi [33] used trans-

fer learning and semi-supervised approaches to identify relevant channels. According to 

previous research [34,35], the most commonly used electrodes for emotion recognition are 

O1, O2, FP1, FP2, F3, F4, C3, C4, AF3, AF4, FC5, FC6, T7, T8, F7, F8, P7, and P8. Moreover, 

the frontal lobe electrodes like F3, F4, and AF3/4 have been used in more than 70% of the 

studies, which shows that many researchers believe the frontal cortex plays an important 

role in emotion processing. Across these works, channel selection consistently improved 

accuracy compared to using all channels. By removing less informative channels, channel 

selection reduces complexity and noise while focusing on emotion-relevant EEG features. 

In this work, we have employed the concept of differential entropy to select the chan-

nels. By exploiting this measure, we can identify and incorporate the relevant channels in 

this work. Formally, let (U, C∪D) be an informed decision, where U is the set of all EEG 

data samples under consideration, categorized into two classes C and D. For a particular 

EEG sample P belonging to class C (P ⊂ C), the differential entropy E of P with respect to 

class C is defined as: 

�(�|� ⊕ �) = −
�

�
∑ log�

|[�]�∩[�]�|

|[�]�|�∈� , (1)

We conducted a series of experiments using different threshold values between 1.0 

and 2.5 to evaluate the performance of emotion recognition when using selected channels, 

with the help of differential entropy, as input to the proposed 1D-CNN model. Although 

the model performance was sufficiently accurate with several channel numbers, we tried 

to optimize channel selection across all datasets under consideration to find the best per-

forming combination. Therefore, a threshold of 1.5 was chosen to select the most signifi-

cant EEG channels that directly impacted class discrimination. This threshold value not 

only helped achieve the same number of channels across the SEED, DEAP, and 

MAHNOB-HCI datasets but also improved emotion recognition performance using a lim-

ited number of channels. Specifically, 10 common channels were selected from the pool of 

most significant channels for all three datasets, as shown in Figure 2. Using this data-

driven approach to select the optimal channels enabled improved emotion recognition 

with a small subset of EEG channels that were most informative for discrimination. The 

threshold of 1.5 struck the right balance between channel reduction and preserving class-

discriminative information. 
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Figure 2. Selected most significant channels for class discrimination are the ones with filled circles. 

2.3.2. Feature Selection 

Feature selection is a well-established preprocessing technique that plays a crucial 

role in reducing dimensionality and enhancing the performance of regression and classi-

fication tasks. Among the various approaches, the sequential forward feature selection 

methods based on Mutual Information (MI) have gained popularity in practical applica-

tions due to their computational efficiency and classifier independence. In our study, we 

have specifically focused on the Decomposed Mutual Information Maximization (DMIM) 

method [36]. This method retains the desirable theoretical properties of the most effective 

existing methods while addressing the issue of complementarity penalization. By sepa-

rately maximizing the inter-feature and class-relevant redundancies, DMIM overcomes 

this limitation and offers improved performance. 

For this purpose, we first divided the entire signal of each selected channel into mul-

tiple samples. We achieved this by applying a 2-s window without overlapping, allowing 

for be�er evaluation. Additionally, we labeled each sample based on its position in the 

original signal before applying differential entropy. This labeling enables us to obtain the 

original signal of each sample after ranking them. We then applied differential entropy to 

each 2-s sample using the following Formula (2) to use it for DMIM-based feature ranking 

method: 

ℎ(�) =
�

�
log(�) +

�

�
log �

���

�
�, (2)

where P represents the average energy value of the EEG signal by replacing the variance, 

and the N represents the length of fixed time window, which is 2 s in this case. 

Afterwards, we utilized the DMIM based features ranking method described by [36], 

which maximizes inter-feature and class-relevance redundancy separately, enabling joint 

optimization of feature diversity and relevance for selection. The mutual information be-

tween two variables can be calculated as follows: 

��(�, �) = � � �(� = �, � = �)��
�(� = �, � = �)

�(� = �)�(� = �)
������

, (3)

Therefore, suppose �� ∈ � be the feature being used for prioritization and its rele-

vance with the class C; the objective function DMIM using MI(.) can be defined as follows: 

����(��) = ��(��, �) − max
��∈�

��(��, ��) + max
��∈�

��(��, ��|�), (4)

Each term of the objective function DMIM states a unique type of contribution be-

tween the class (C) the set of selected features (S) and the features (��), whereas �� ∈ � 

are the selected features. The first term MI(.) measures the relevance of feature �� to the 
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class. The second term maxMI(.) measures redundancy between ��  and �� . The third 

term maxMI(.) measures redundancy between �� and the class-specific information in se-

lected features. Overall, the three terms quantify relevance, inter-feature redundancy, and 

class-conditional redundancy for feature selection. 

Our complete evaluation process for feature selection is provided in Figure 3 in terms 

of flow chart. While the accuracy of recognition is increasing, the process of feature reduc-

tion continues until the accuracy does not improve further. In this way, the highly ranked 

features are selected and contain class-specific information while removing redundant 

features. 

 

Figure 3. Process of selection of features using DMIM based objective function. 

Once we obtained the feature ranking from DMIM, we selected only the top twenty 

features with the highest contribution to class discrimination with respect to classification 

accuracy and disregarded the remaining ones. On average, the first twenty features had a 

greater influence on the accuracy of emotion recognition compared to the rest of the fea-

tures (see Figure 4). Therefore, we chose these twenty features as the high-quality features. 

Subsequently, we obtained the original EEG samples corresponding to these features for 

further use in the next stage of the method, which is the 1D-CNN model. The typical size 

of feature vectors obtained from each level are listed in Table 2. 

 

Figure 4. A plot between accuracy and selected features of a particular selected channel using DEAP, 

MAHNOB-HCI and SEED datasets. 
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Table 2. Size of the feature vector obtained at step of proposed method for each subject. 

 Raw EEG Channel Selection Feature Selection 

DEAP 32 × 7680 10 × 7680 10 × 5120 

MAHNOB-HCI 32 × 15,360 10 × 15,360 10 × 10,240 

SEED 62 × 30,720 10 × 30,720 10 × 5120 

2.3.3. 1D-CNN Model 

The extracted high-quality features from the original EEG data are passed through 

the 1D-CNN model. The model consists of multiple pairs of convolutional, batch normal-

ization and pooling layers, as well as an output layer. Prior to being input into the 1D-

CNN model, the features are combined into a vector format, which is subsequently con-

volved with a set of one-dimensional filters within the convolutional layers. Following the 

pooling layer, the data undergo further down-sampling, resulting in vectors with reduced 

dimensions. The network weights and filters within the convolutional layers are trained 

using the back-propagation algorithm. 

The CNN structure employed in this study is relatively straightforward. The input 

vector is a one-dimensional feature represented by X, with a shape of N × 1. At the convo-

lutional layer, the input feature vector is convolved with filters Wf. The convolution oper-

ation results in the formation of an output map, and the feature map at the corresponding 

layer is obtained using the equation provided below: 

�(�) = �(��� + ��), (5)

where, weight matrix �� ∈ ℛ�×�, and the bias value b are utilized in the calculation, with 

f denoting the filter index ranging from 1 to n, where n represents the total number of 

filters in the convolutional layer. In this work, the activation function employed is the rec-

tified linear unit (ReLU), denoted by the function f. ReLU is more efficient in preventing 

gradient disappearance compared to traditional neural network activation functions like 

sigmoid and tanh. The ReLU function is defined as follows: 

�(�) = ReLU(�) = ln (1 + ��), (6)

where value of α has been defined in previous equation. 

Batch normalization is a well-known technique in modern neural networks that 

serves two purposes: normalizing the output from the previous layer in a CNN model 

and regularizing the data to prevent overfi�ing. It plays a crucial role in ensuring stable 

training and enhancing the generalization capability of the network. At the max-pooling 

layer, the feature map undergoes down-sampling through the application of an average-

pooling function. This function is employed because it has been observed that extracting 

the average value from the selected values within a given feature map is an effective ap-

proach. This significantly reduces the number of trainable parameters, leading to an ac-

celerated training process. Also, the dropout layer is employed to prevent overfi�ing. 

Following the last pooling layer, a fully connected layer is employed, where the out-

put data from the pooling layer is fla�ened. Subsequently, a series of fully connected lay-

ers called DNN (Deep Neural Network) is utilized. In each layer of the DNN, the activa-

tion function employed is also ReLU. 

For the output layer, two classification tasks are considered: binary classification and 

three-class classification. To address the binary classification task (for DEAP and 

MAHNOB-HCI dataset), the sigmoid function is utilized as an activation function, while 

for the three-class classification task (for SEED dataset), the softmax function is employed. 

Additionally, for the binary-classification task, the Adadelta optimizer is used, and the 

loss is calculated using the binary cross-entropy formula, as indicated by the equation 

below: 
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������ = − ∑ ���
�
��� log(��) + (1 − ���) log(1 − ���), (7)

where N represents the number of samples, �� denotes the value in the encoded form, 

and ��� represents the output obtained from the output layer using sigmoid activation. In 

the case of three-class classification, Adam optimizer is employed, and the loss is calcu-

lated using categorical cross-entropy, which can be expressed as 

������� = − ∑ ����
�
��� log(���) + ���� log(����) + ���� log(����), (8)

where N represents the number of samples, and ���, ���, and ��� correspond to the values 

of the label, which are encoded. The values ����, ����, and ���� represent the three outputs 

obtained from the output layer, where softmax activation is applied. The model’s param-

eters are updated using the back-propagation algorithm. The error between the desired 

output and the actual output is computed, and the gradient descent method is utilized to 

update the parameters, aiming to minimize the error. The weight and bias update func-

tions are illustrated as follows: 

�� = �� − �
��

���
, �� = �� − �

��

���
, (9)

where Wf refers to the weight matrix, bf represents the bias, η denotes the learning rate, 

and E represents the error, which is the loss calculated in Equations (7) and (8). An illus-

tration of the proposed 1D-CNN model has been provided in Figure 5. 

 

Figure 5. Architecture of Proposed 1D-CNN model. Note. The different colors of input EEG sam-

ples at each row shows a signal from different channel. 

2.3.4. Hyperparameters 

In our study, we utilize a 1D-CNN to enhance the capture of EEG signal details linked 

to emotions. A grid search approach was considered to achieve the most suitable set of 

hyper-parameters of this 1D-CNN model. Table 3 presents the key hyperparameters, their 

corresponding range of values, and selected values for the proposed model in this study. 
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Table 3. Hyperparameters of the proposed 1D-CNN model. 

Parameter Type Range of Values Selected Value 

Number of 1DConvolution Layers 3–8 4 

Number of filters 16–128 64, 32, 32, 16 

Size of kernel 1 × 1–7 × 1 5 × 1, 5 × 1, 3 × 1, 1 × 1 

Batch size 32–128 64 

Learning rate 0.0005–0.01 0.005 

Momentum 0.1–0.9 0.9 

Dropout 0.25–0.5 0.25 

Number of epochs 50–200 100 

The model is implemented using Python 3.9. As depicted in Figure 5 and Table 2, the 

size of the input 1D vector comprises of 10 (EEG channels) × 2 (window size: 2 s) × 128 

(sampling rate: 128 Hz (for DEAP and SEED datasets)/256 Hz (for MAHNOB-HCI da-

taset)). The batch size for the model is set to 64, resulting in input data shapes of (163,840) 

for the DEAP and SEED datasets and (327,680) for the MAHNOB-HCI dataset. 

In the proposed model, the term “1DConvolution” represents the one-dimensional 

convolutional layer, “AveragePooling1D” denotes one-dimensional average pooling, 

“BatchNorm” refers to one-dimensional batch normalization, and “FC” represents the 

fully connected layer. Each convolutional layer in the model is followed by an activation 

layer, where ReLU is used as the activation function. 

The proposed model consists of four convolutional layers, three batch normaliza-

tions, two dropout layers with probabilities of 0.25, one pooling layer, one fla�en layer, 

and two fully connected layers. These layers are combined to form four convolution 

blocks. The first block contains a convolutional layer with a kernel size of 5 × 1, aimed at 

extracting emotion-relevant features. ReLU is used as the activation function for each con-

volutional layer. Each convolution block, except for one, includes a normalization layer. 

The third convolution block is connected to an average pooling layer at the end. The last 

convolution block is followed by a fully connected layer, which is then connected to the 

final output fully connected layer after a dropout layer with a probability of 0.5. The final 

output of the model provides the classification results for emotion recognition. The struc-

ture of the proposed model is illustrated in Figure 5. 

3. Results 

In this section, we analyze the implementation of the proposed feature selection 

method by utilizing the classification results obtained through our approach. We have 

conducted various evaluation parameters to validate the results and compared them with 

those obtained from the state-of-the-art models to verify the effectiveness of the proposed 

method. To mitigate the issue of overfi�ing, the dataset was typically partitioned into ran-

dom subsets of equal size. Accordingly, we employed the leave-one-subject-out strategy 

to divide our dataset for training and testing sets. 

We classified three (positive, neutral, negative) emotional states for the SEED dataset 

and two (HV, LV) and (HA, LA) emotional states for the DEAP and MAHNOB-HCI da-

taset using the designed 1D-CNN model. The accuracy of the selected features for each 

subject in the datasets was used to validate the results. To calculate the accuracy, precision, 

specificity, recall, F1-score, and p-score, we employed the confusion matrix and utilized 

the keywords True positive, False positive, True negative, and False negative. The perfor-

mance metrics for the DEAP, MAHNOB-HCI, and SEED datasets are presented in Tables 

4, 5, and 6, respectively. 

Moreover, a t-test was conducted to evaluate the p-score (probability score), aiming 

to assess the usefulness of the selected function. It determined whether there existed a 

significant difference between the selected feature vector and the original or actual feature 

vector. The p-value was derived by calculating the mean difference between the selected 
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objects and the original object vector. A higher p-value indicated a higher quality factor 

for the selected item. 

Table 4. Performance of the proposed method on DEAP dataset. 

Subject Accuracy Precision Specificity Recall F1-Score p-Score 

Subject 1 96.1 77 89 90 0.89 0.091 

Subject 2 89.9 99 75 76 0.83 0.098 

Subject 3 85.9 75 77 83 0.81 0.0697 

Subject 4 78.3 76 73 70 0.87 0.084 

Subject 5 77.3 82 75 66 0.85 0.067 

Subject 6 83.1 81 71 66 0.85 0.0748 

Subject 7 86.4 95 91 92 0.87 0.083 

Subject 8 83.2 92 74 77 0.84 0.0852 

Subject 9 83.8 89 78 76 0.86 0.09 

Subject 10 82.9 81 87 81 0.80 0.08 

Subject 11 76.5 67 89 75 0.86 0.0849 

Subject 12 87.2 91 79 72 0.89 0.084 

Subject 13 83.8 71 90 86 0.8 0.0951 

Subject 14 87.6 76 93 69 0.94 0.075 

Subject 15 87.2 91 92 99 0.8 0.0732 

Subject 16 85 73 74 68 0.79 0.089 

Subject 17 83.8 86 73 70 0.84 0.085 

Subject 18 84.6 69 91 86 0.87 0.079 

Subject 19 81.8 71 75 90 0.9 0.08 

Subject 20 83.3 94 66 76 0.91 0.069 

Subject 21 84.1 85 79 82 0.87 0.09 

Subject 22 84.9 89 78 92 0.81 0.076 

Subject 23 86.03 68 65 86 0.82 0.072 

Subject 24 81.12 76 77 84 0.78 0.0921 

Subject 25 82.5 71 70 96 0.82 0.0695 

Subject 26 87.3 94 77 84 0.9 0.09 

Subject 27 82.52 85 95 74 0.83 0.088 

Subject 28 80.37 85 81 64 0.84 0.07 

Subject 29 85.61 94 98 98 0.87 0.087 

Subject 30 82.28 94 88 79 0.95 0.075 

Subject 31 83.84 93 92 78 0.89 0.076 

Subject 32 85.25 82 78 78 0.83 0.0785 

Average 84.2 83 81 80 0.85 0.081 

Table 5. Performance of the proposed method on MAHNOB-HCI dataset. 

Subject Accuracy Precision Specificity Recall F1-Score p-Score 

Subject 1 95.3 93 89 90 0.89 0.072 

Subject 2 97.6 92 96 93 0.89 0.078 

Subject 3 97.4 94 89 93 0.91 0.0839 

Subject 4 91.2 89 92 90 0.99 0.073 

Subject 5 92.7 90 85 87 0.99 0.072 

Subject 6 96.5 88 87 86 0.97 0.0794 

Subject 7 91.1 96 93 94 0.91 0.067 

Subject 8 93.1 97 89 90 0.93 0.0802 

Subject 9 95.8 95 92 92 0.97 0.08 
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Subject 10 94.5 93 94 91 0.89 0.0812 

Subject 11 92.5 94 98 95 1.00 0.073 

Subject 12 96.7 92 92 98 1.00 0.0779 

Subject 13 95 89 90 96 0.97 0.0793 

Subject 14 96 90 93 99 0.99 0.79 

Subject 15 92 88 94 82 0.91 0.0684 

Subject 16 93.5 90 89 85 0.90 0.076 

Subject 17 96.6 91 92 92 0.99 0.08 

Subject 18 95.1 92 86 91 0.99 0.0858 

Subject 19 96.1 95 90 89 0.94 0.076 

Subject 20 94.2 94 92 94 0.99 0.0831 

Subject 21 93.9 93 92 96 0.89 0.0792 

Subject 22 95.7 94 93 93 0.96 0.087 

Subject 23 93.2 82 89 95 0.89 0.083 

Subject 24 96.2 88 92 90 0.94 0.086 

Subject 25 95 98 89 88 1.0 0.08 

Subject 26 95.6 91 92 92 0.95 0.082 

Subject 27 92.6 92 92 90 0.95 0.0717 

Average 94.6 92 91 91 0.95 0.10 

Table 6. Performance of the proposed method on SEED dataset. 

Subject Accuracy Precision Specificity Recall F1-Score p-Score 

Subject 1 93.8 87 92 91 0.97 0.0975 

Subject 2 91.4 91 85 86 0.97 0.0845 

Subject 3 92.8 94 89 83 0.91 0.09 

Subject 4 91.1 97 84 87 0.98 0.092 

Subject 5 90.2 89 82 90 0.95 0.0945 

Subject 6 92.5 96 87 89 0.95 0.0935 

Subject 7 89.4 89 96 94 0.91 0.0965 

Subject 8 94.6 88 93 89 0.93 0.094 

Subject 9 90.4 93 99 89 0.98 0.095 

Subject 10 91.1 91 92 95 0.86 0.093 

Subject 11 89.6 93 97 98 0.98 0.091 

Subject 12 92.7 97 91 96 0.96 0.0885 

Subject 13 90.5 78 80 96 0.93 0.087 

Subject 14 93.5 90 92 98 0.97 0.095 

Subject 15 92.1 81 85 82 0.91 0.0806 

Average 91.7 90 89 91 0.94 0.092 

Additionally, we performed data augmentation technique to increase the number of 

samples. Usually, deep learning models require a large amount of datasets to produce 

be�er results. Therefore, we added the same number of generated samples of EEG data to 

the original datasets of DEAP, MAHNOB-HCI, and SEED, respectively. The results of 

adding fake data using graph-EMD have been presented in Figure 6 with class-specific 

accuracies. The average accuracies are valued on the left side of the Y-axis, while the val-

ues of the standard deviation (SD) associated with the respective average accuracies are 

represented on the right side of the Y-axis. As shown in the figure, the LA class of the 

MAHNOB-HCI dataset a�ained the highest average accuracy of 98.43% with 0.11 SD us-

ing augmented data. The least SD of 0.09 is a�ributed to the neutral class of the SEED 

dataset with an average accuracy of 94.65% with augmented data. 
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Figure 6. Performance (average accuracy/standard deviation (SD)) of the proposed model 

with/without augmented data using graph-EMD. The Y-axis on the left side shows the average ac-

curacy associated with the Original and Original+Augmented data, while the Y-axis on the right 

side shows the values of the SD associated with the respective average accuracies. 

To illustrate the benefits of data augmentation using graph-EMD, we visualized the 

real and synthesized samples through t-SNE two-dimensional projections, as shown in 

Figure 7. From the results, we can observe that (1) the generated data matches the actual 

data distributions in each dataset and (2) the augmented data maintains class-specific 

properties as expected, without low-quality samples that could mislead the classifier. 

Overall, the t-SNE visualizations demonstrate that the synthesized data has similar distri-

butions to the real data for each emotion class, validating the quality of the graph-EMD 

augmentation approach. 

   

(a) (b) (c) 

Figure 7. The t-SNE visualization of the real and generated EEG data distributions for one subject 

from the SEED, DEAP, and MAHNOB-HCI datasets is shown in (a–c), respectively. The lines rep-

resent the real EEG data, while the sca�ered points are the artificially generated augmented data. In 

(a), the data points colored red, blue, and yellow represent the negative, positive, and neutral clas-

ses, respectively. In (b,c), the data points colored red, orange, blue, and magenta represent the high 

valence, low valence, high arousal, and low arousal classes, respectively. 

Performance Analysis 

The computational time taken by the proposed model with and without the channels 

and the a�ributes selected through the proposed method has been calculated. The follow-

ing equation has been used to calculate the time [37]: 
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�� =
�

��
∑ ([�� × ln(��)] + [(1 − ��) × ln(1 − ��)])�

���� , (10)

where the selected feature value is denoted as fv, the training features are depicted as FT, 

the features of a particular emotional category are specified as CP, the number of emotional 

categories is symbolized as C, and the categories index is symbolized as ci. 

The processing time is reduced as a result of selecting a smaller number of features. 

By employing the differential entropy for channel selection and the feature reduction 

method using DMIM, emotions can be recognized within a shorter processing time while 

maintaining the overall classification performance. Table 7 presents the execution time of 

the proposed method, comparing the results with and without the channel/feature selec-

tion method. 

Table 7. Computational time comparison of proposed method with and without channel/feature 

selection method. 

 

DEAP MAHNOB-HCI SEED 

Channels 
Feature 

Vector 
Time (s) Channels Feature Vector Time (s) Channels 

Feature 

Vector 
Time (s) 

CS+FS+1D-CNN 10 51,300 22 10 102,400 46 10 51,300 22 

CS+1D-CNN 10 245,760 189 10 491,520 221 10 409,600 249 

FS+1D-CNN 32 524,288 303 32 1,048,576 629 62 2,539,520 1066 

1D-CNN 32 2,621,440 1100 32 5,242,880 1274 62 10,158,080 1675 

The channel selection greatly enhances the overall rating performance, as depicted in 

Table 8, where the selected channel outperforms all other channels. This improvement can 

be a�ributed to the fact that not all channels provide high-quality stimuli for emotions in 

EEG signals. This study highlights the importance of channel selection and its impact on 

understanding the emotional behavior captured by the selected channel. Also, a compar-

ison of average accuracies on augmentation has also been provided in Table 8. It shows 

the efficiency of the proposed method with and without augmentation. Moreover, we 

used the Kappa coefficient to evaluate emotion recognition accuracy. Kappa measures the 

agreement between predicted and true labels, normalized for chance and classifier count. 

Unlike basic accuracy, Kappa provides a standardized performance estimate adjusted for 

variations in classes and classifiers. 

Table 8. Comparison between all channels and selected channels in terms of accuracy with/without 

augmented data and Kappa coefficient for EEG classification. 

 
Original +  

Augmented 

Original  

(10 Channels) 
All Channels Kappa 

DEAP 89.02 84.21 81.06 0.713 

MAHNOB-HCI 97.61 94.65 89.50 0.841 

SEED 95.27 91.72 88.30 0.752 

4. Discussion 

Given the important role of emotion in human–machine interactions, this study aims 

to recognize emotions using EEG signals captured with a limited number of electrodes. 

While people may more easily identify specific emotions they feel, the dimensional per-

spective offers a more fundamental understanding of the emotion–behavior relationship 

[38]. Neuroscience studies also support this dimensional view. Evidence of neural activi-

ties shows that valence and arousal influence cognition and behavior through distinct 

brain mechanisms [39]. Consistent with this theoretical background, this study systemat-

ically manipulated and examined valence and arousal effects rather than focusing on dis-

crete emotions. By taking a dimensional approach to emotion recognition from limited-
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channel EEG data, this work provides insight into the fundamental mechanisms linking 

EEG signals to emotional states. 

We have introduced a deep learning-based 1D-CNN model that effectively utilizes 

differential entropy for channel selection and the DMIM method for feature selection. This 

model efficiently processes raw EEG signals to recognize emotions, enhancing the visibil-

ity and efficiency of class-specific features. The proposed architecture simultaneously ex-

tracts valuable EEG pa�erns, considering the recent literature emphasizing the signifi-

cance of channel selection in emotion recognition. Consequently, we specifically employ 

differential entropy to identify the most relevant channels for emotion recognition. Fur-

thermore, we employ the DMIM method to select high-quality features, dividing the EEG 

signal into samples of 2 s on a horizontal scale. This helped in assessing the signal in a 

be�er way on a temporal scale and reducing the feature vector for the deep learning 

model. 

In Tables 4–6, we provide the evaluation metrics for each subject. It is important to 

highlight that the proposed 1D-CNN model demonstrated efficient performance across 

all datasets examined in this study. The average accuracy of the model is highest in the 

MAHNOB-HCI dataset, reaching 94.6%, and lowest in the DEAP dataset, with an accu-

racy of 84.2%. Additionally, the model successfully tackled the three-class problem in the 

SEED dataset, achieving an average accuracy of 91.7%. 

Furthermore, the mean p-value (0.10) is highest in the MAHNOB-HCI dataset, indi-

cating the significance of the selected feature vector compared to the original data. Alt-

hough the average p-value (0.081) for the DEAP dataset is lower than that of MAHNOB-

HCI, it is still satisfactory and demonstrates the importance of the selected features over 

the original ones. 

In order to ensure a suitable training phase, we tested different numbers of aug-

mented data and network designs. The experimental results determining the impact of 

augmented data are presented in Figure 6. As depicted in Figure 6, data augmentation 

proves to be more effective in the deep learning model. It considerably enhances the pre-

diction accuracy of the 1D-CNN model. Specifically, doubling the data leads to improve-

ments of up to 4.8%, 3.9%, and 3.5% for the DEAP, MAHNOB-HCI, and SEED datasets, 

respectively. This improvement can be a�ributed to the fact that deep neural network 

models require a larger amount of data compared to traditional machine learning models. 

In conclusion, data augmentation in EEG data is a complex task that requires careful con-

sideration. In this experiment, a substantial amount of data was generated and added to 

the original dataset. However, augmented data did not uniformly improve results across 

all datasets. When increasing the original data amount threefold using our augmentation 

approach, we observed overfi�ing and degraded testing accuracy. This highlights the fact 

that that simply generating more data does not necessarily lead to be�er performance. 

There are optimal augmentation levels, beyond which additional synthetic data fails to 

provide new information and causes overfi�ing. The reliability of the classifier’s accuracy 

on data from different sources remains a significant concern in this task. 

Table 8 presents the emotion recognition accuracy and Kappa coefficient using our 

proposed feature extraction method with and without data augmentation, compared to 

using all channels. Augmentation increased the maximum accuracy on MAHNOB-HCI to 

97.61%, exceeding all-channel accuracy by 8.11%. For SEED, average accuracy was 95.27% 

with augmentation. DEAP accuracy improved by 4.81% to 89.02% with augmentation ver-

sus original data. The kappa scores were 0.841, 0.752, and 0.713 for MAHNOB-HCI, SEED, 

and DEAP, indicating substantial reductions in error versus chance levels. Overall, these 

results demonstrate that our proposed method of an emotion recognition and data aug-

mentation approach considerably improves EEG-based emotion recognition accuracy and 

consistency. 
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Table 9 presents a concise overview and performance comparison between our pro-

posed method and other existing emotion recognition methods. These methods are all 

deep learning models and have been considered for evaluation because they used the 

same dataset. Luo et al. [26] proposed three methods for augmenting EEG training data 

to improve the performance of emotion recognition models, utilizing deep generative 

models (VAE and GAN) and selective data augmentation strategies. These methods, 

namely cWGAN, sVAE, and sWGAN, were evaluated on SEED and DEAP datasets. Topic 

and Russo [40] presented a new model for emotion recognition using EEG signals, utiliz-

ing topographic and holographic representations of the signal characteristics. Deep learn-

ing was employed for feature extraction and fusion, resulting in improved emotion recog-

nition performance on publicly available datasets. Zhang et al. [41] addressed the lack of 

interpretability in deep learning models for EEG-based tasks and explores the use of in-

terpretable models to analyze CNN-based model SACNN in emotion recognition. By in-

tegrating brain science knowledge with interpretability analysis results, a new model was 

proposed, which demonstrated improved recognition accuracy on standard EEG datasets. 

Zhang et al. [42] presented a novel two-step spatial-temporal framework for emotion 

recognition based on EEG. The framework incorporated a hierarchical self-a�ention net-

work to capture both local and global temporal information, reducing noise and localizing 

relevant segments. Additionally, the squeeze-and-excitation module and channel correla-

tion loss were utilized to enhance spatial feature extraction and improve emotion recog-

nition performance. Luo and Lu [43] addressed the challenge of limited EEG data for emo-

tion recognition by proposing a Conditional Wasserstein GAN (CWGAN) framework. By 

leveraging generative adversarial networks, realistic EEG data in differential entropy form 

were generated and evaluated using quality indicators. Overall, the proposed method out-

performed the methods from the literature and provided sufficient grounds for the idea 

that using a deep-learning-based lightweight 1D-CNN model with limited number of 

channels can produce successful results. Therefore, the major contributions of this study 

are listed below: 

 It has been observed that the proposed deep learning method performs be�er than 

methods in the literature, even without data augmentation. 

 Generally, large datasets are expected for deep learning studies. Therefore, the im-

proved performance after augmentation further proves this point. 

 In deep learning, manual feature selection is not typically conducted. In this study, 

deep learning was performed after feature selection. Manually selecting features may 

have caused some information loss. However, the deep learning model still achieved 

successful classification. 

 Generally, all channels are used for emotion recognition. Despite the fact that this 

work utilized a limited number of channels, the deep learning model produced suc-

cessful results. 

 Processing raw data can increase deep learning algorithm performance. Due to the 

small sample lengths in this study, we could process the raw data, which increased 

overall performance. 

 Although each dataset alone was small, the reliability of the proposed method was 

evaluated using different datasets and increasing the data size through augmentation 

on each dataset separately. 
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Table 9. Comparison between the results of the proposed method and the state of the art methods 

from literature according to various factors and the number of datasets used. 

 
Augmentatio

n 

DEAP MAHNOB-HCI SEED 

Accuracy Channels Classes Accuracy 
Channel

s 
Classes Accuracy 

Channel

s 
Classes 

Proposed Yes 89 10 4 97.6/10 10 4 95.3 10 3 

Luo et al. [26] Yes 59.1 32 4 - - - 93.5 62 3 

Topic and Russo 

[40] 
No 77.72 32 4 - - - 88.45 62 3 

Zhang et al. [41] No 83 32 10 71 10 2 89 10 2 

Zhang et al. [42] No 77.03 32 4 81.37 32 4 79.56 62 3 

Luo and Lu [43] Yes 78.17 32 4 - - - 86.96 62 3 

To summarize, Table 9 presents a comprehensive comparison between our proposed 

study and existing state-of-the-art methods in the literature, focusing on EEG-based tech-

niques applied to the DEAP, MAHNOB-HCI, and SEED datasets. Our proposed approach 

outperforms other methods in terms of classification accuracy while also reducing com-

putational overhead. By utilizing a 1D-CNN model and selecting high-quality features 

from specific channels, our method achieves simplicity and effectiveness. The results in 

Table 6 demonstrate that our model significantly improves precision compared to the pre-

viously employed model using the same datasets. 

5. Conclusions 

In this study, we tackled two key challenges in emotion identification from EEG sig-

nals: the high dimensionality problem and the scarcity of available data. To address these 

issues, we employed channel and feature selection methods to reduce the dimensionality 

of the EEG data and employed data augmentation using graph-EMD. The implemented 

approach exhibited superior accuracy on the proposed 1D-CNN model, highlighting the 

significance of addressing data scarcity in neural network models. The model was vali-

dated using DEAP, MAHNOB-HCI, and SEED datasets, demonstrating that our feature 

selection method effectively enhances overall classification performance while minimiz-

ing computational costs. Additionally, the proposed model offers notable improvements 

in feature extraction capabilities, while channel selection aids researchers in exploring the 

understanding of emotions through selective channels for precise emotion recognition. 

These results demonstrate the potential for a cost-effective IoT EEG device to enable ac-

cessible emotion recognition. By selectively extracting clean and relevant neural signals, 

our proposed methods can enhance the feasibility of real-world EEG acquisition. Our sys-

tem provides an efficient and accurate pipeline from targeted EEG input to emotion state 

predictions. Moving forward, future research directions will explore further enhance-

ments to the emotion analysis framework by integrating multiple neural networks. Con-

sidering the reduced testing and training time of the proposed model, it would be inter-

esting to evaluate its performance across multiple emotion categories. Also, further anal-

ysis is needed to determine ideal augmentation factors for each dataset. While augmenta-

tion generally helped, more data did not linearly translate to accuracy gains. Additionally, 

this study was focused on small sample size for the sake of simplicity and reduced com-

plexity; therefore, it is required to investigate the increased sample size for preprocessing 

to observe its impact on the performance. 
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