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Abstract: Despite differences in pathological analysis, focal liver lesions are not always distin-
guishable in contrast-enhanced magnetic resonance imaging (MRI), contrast-enhanced computed
tomography (CT), and positron emission tomography (PET). This issue can cause problems of dif-
ferential diagnosis, treatment, and follow-up, especially in patients affected by HBV/HCV chronic
liver disease or fatty liver disease. Radiomics is an innovative imaging approach that extracts and
analyzes non-visible quantitative imaging features, supporting the radiologist in the most challenging
differential diagnosis when the best-known methods are not conclusive. The purpose of this review
is to evaluate the most significant CT and MRI texture features, which can discriminate between
the main benign and malignant focal liver lesions and can be helpful to predict the response to
pharmacological or surgical therapy and the patient’s prognosis.

Keywords: liver; contrast-enhanced computed tomography (CT); contrast-enhanced magnetic
resonance (MRI); radiomics; texture features

1. Are Focal Liver Lesions Always Distinguishable?

Focal liver lesions, such as hepatocellular carcinoma (HCC), hepatocellular adenoma
(HCA), liver metastasis (LM), hemangiomas (HH), or focal nodular hyperplasia (FNH),
require differential diagnosis, especially in the absence of clinical and laboratory data.
In 80% of cases, HCC arises in patients with cirrhosis with previous hepatitis B and C
infection or alcoholics and it is the most widespread primary liver cancer [1,2]. In cirrhotic
liver, HCC shows hyperenhancement of the arterial phase, followed by a delayed portal
or venous phase washout on computer tomography (CT) or magnetic resonance imaging
(MRI) with multiphasic contrast [3]. In non-cirrhotic liver cases, differential diagnosis with
hypervascular lesions, such as HCA and FNH, is challenging [4,5], especially when they lack
typical imaging features, such as a central scar, suggestive for FNH (reported in about 50%
of FNHs larger than 3 cm) [6]. LM are 10–40 times more common than HCC [7] and typically
in an early-phase contrast-enhanced CT (CECT), an annular enhancement of the focal lesion
is observed; then, a central avascular area in the portal phase and delayed enhancement in
the central area in the equilibrium phase can be observed. In highly vascularized tumours,
instead, LM shows early enhancement in the arterial phase, late homogeneous enhancement
in the portal or equilibrium phase, and washout in the equilibrium phase. MRI and its
combination with hepatospecific contrast agents and diffusion-weighted imaging (DWI)
techniques are the most sensitive and specific techniques to distinguish liver metastasis
from other focal liver lesions, but differential diagnosis is not always straightforward, given
certain similarities in their radiological behaviour [3,8,9]. FNH is the second most common
benign liver tumour after liver cysts and before adenoma [3,10]. It occurs more commonly
in women using oral contraceptive in the third–fourth decades of life and presents as
a noncapsular mass with a central stellate area of fibrosis and nodular hyperplasia of
the liver parenchyma associated with a congenital vascular malformation [11]. MRI has
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higher sensitivity than CT for the diagnosis of FNH, but in some cases, it may present with
atypical features that can generate confusion with HCC, such as a strong hyperintensity on
T2-weighted imaging, a pseudocapsule, washout or absence of a central scar in small FNH,
and the presence of haemorrhage, calcification, or necrosis [12,13]. HCA is characterized by
proliferation of mature hepatocytes and can be complicated by hemorrhage and malignant
transformation into HCC. HCA is generally a homogeneous lesion with mild prolonged
enhancement and smooth margins. It can sometimes be heterogeneous in T1- or T2-weighted
stages, as in cases of hemorrhage or necrosis. It is usually hypointense in a hepatocytic phase
on MRI with a hepatospecific contrast agent. These findings do not facilitate differentiation
from HCC [13]. They are currently divided into four independent genetic and pathological
subtypes: inflammatory HCA, HCA mutated in hepatocyte nuclear factor 1 alpha, HCA
mutated in b-catenin, and unclassified HCA. Inflammatory HCA accounts for 50% of all
HCAs and is mostly found in women; it is related to the use of oral contraceptives, obesity,
diabetes hepatic steatosis, and glycogenosis. [13,14] (Figures 1 and 2).
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biopsy examination. 

Figure 1. (a) Axial T2-weighted MRI image and (b) axial arterial-phase CT image show two different
focal lesions (orange arrows), respectively, hyperintense in the T2-weighted sequences and endowed
with marked wash-in in the contrastographic arterial phase CT. Both lesions proved to be HCC on
biopsy examination.

According to what has been described so far, the aim of this study was to develop
a review about CT and MRI features of focal liver lesions (FLL) in order to distinguish
malignant from benign lesions earlier and find CT and MRI radiomic features that could
have a role in terms of the prognosis and response to medical or surgical therapy treatments.
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Figure 2. (a) Axial T2-weighted MRI and (b) axial arterial-phase CT image belonging to the same
patient: this was a 45-year-old male who was using anabolic steroids. In relation to the patient’s
history, which excluded a history of potus or hepatotropic virus infection, the supposed diagnosis
was inflammatory adenoma. As can be observed, the lesions (orange arrows) appeared, for HCC,
hyperintense in T2-weighted sequences with a strong contrastographic enhancement in the arterial
phase CT.

2. Radiomics and Feature Classification

CT texture analysis (CTTA) is an area of “radiomics” that allows the objective assess-
ment of a lesion and organ heterogeneity beyond what is possible with subjective visual
interpretation and may reflect information about the tissue microenvironment; CTTA has
demonstrated promise in lesion characterization; in particular it is able to differentiate
benign from malignant or more biologically aggressive lesions. There are many texture anal-
ysis methods, such as statistical-, model-, or transformed-based-methods; statistical-based
techniques are generally applied to describe the relationship of grey-level values in an
image [15]. Three orders of parameters are described in a statistical-based texture analysis.
The first-order statistics are related to gray-level frequency distribution within the region
of interest (ROI), which can be obtained from the histogram of the pixel intensities [16].
The first-order parameters are calculated from the original values and do not describe the
relationship between the pixels. They include the mean, medium, and maximum intensity,
the standard deviation (SD), the skewness (the asymmetry of the histogram), the kurtosis
(flatness of the histogram), or the MPP (mean of the positive pixel). The second-order
parameters related to the grey-level co-occurrence matrix (GLCM) are entropy, energy an-
gular second moment (ASM), and homogeneity or dissimilarity. The second-order features
related to the GLCM count the number of pixel transitions between the two pixel val-
ues [17]. Other important second order parameters derive from the grey-level-run-length
matrix (GLRLM), which provides information about the number of equal and consecu-
tive grey levels in each course. These are short-run-emphasis (SRE), long-run-emphasis
(LRE), grey-level non-uniformity (GLNU), run-length-non-uniformity (RLNU), and run-
percentage (RP). Another second order feature is the grey-level size zone matrix (GLSZM),
which includes low grey-level zone emphasis (LGZE) and more. Higher-order features
are obtained by applying filters (model-based features) or mathematical transformations
(transform-based features) to images and provide information on more than two pixels
or voxels. The neighbourhood grey-tone difference matrix (NGLDM) is a higher order
parameter that corresponds to the difference of the grey level between one voxel and its
26 neighbours in three dimensions [18]. The NGLDM includes features such as coarseness
(measurement of edge density), business (spatial rate of the grey-level change), or contrast
(number of local variations in an image). Another higher order feature that compares the
differences between multiple pixel/voxel is the neighbourhood grey-tone difference matrix
(NGTDM). There are a wide variety of imaging filtration methods. A Laplacian or Gaussian
bandpass filter is a commonly used advanced image filtration method that alters the image
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pixel intensity patterns and allows for the extraction of specific structures corresponding to
the width of the filter. Lower filter values correspond to fine texture features, while higher
filter values emphasise medium or coarse texture features [19]. Model-based approaches
represent texture using sophisticated mathematical models, such as fractal analysis. Fractal
analysis is a form of pattern or geometric recognition. The fractal dimension is a measure
of the irregularity or roughness of a surface [20,21]. Transform-based methods (Fourier,
Gabor, and wavelet transforms) analyse the texture in a frequency or the scale space [19].
Fourier transform analyses the frequency content without spatial localization but is used as
frequently. Gabor transform is a windowed-Fourier transform derived by the introduction
of a Gaussian function, which then allows for frequency and spatial localization, but this
method is limited by its single filter resolution. This problem is overcome by wavelet
transform, which uses multiple channels tuned to different frequencies [21]. In more recent
years, texture analysis has also been applied to MRI; texture features can be derived from
the grey-level histogram, GLCM, or run-length-matrix (RLM), as we saw for CTTA. Other
texture features derive from the absolute gradient (gradient mean, variance, skewness,
kurtosis, and non-zeros), autoregressive model, or wavelet transform [22] (Tables 1–3).

Table 1. Description of Radiomic Features.

Texture Features
(Statistical-Based Methods) Level Description Examples

Intensity of the pixel/voxel
histogram First

Grey-level frequency distribution
from the pixel intensity histogram in a

region of interest (ROI). First-order
parameters are obtained from original

values; they do not describe the
relationship between pixels.

- Mean, medium, maximum intensity.
- Median
- Standard deviation
- Skewness (asymmetry of the histogram)
- Kurtosis (peakedness/flatness of histogram)
- Mean of positive pixels
- First-order entropy

GLCM (Grey-level
co-occurrence matrix) Second

GLCM parameters count the number
of pixel transitions between two

pixel values.

- Homogeneity
- Energy
- Angular second moment
- Contrast
- Correlation
- Second-order entropy
- Dissimilarity

GLRLM (Grey-level
run-length matrix) Second Number of equal and consecutive

grey levels in each course.

- Short/long-run emphasis
- Grey-level uniformity for run
- Run length non-uniformity
- Run percentage

NGLDM (neighbourhood
grey-level different matrix)

Higher (third
or more)

Grey-level difference between one
voxel and its 26 neighbours in

three dimensions.

- Business
- Contrast
- Coarseness

Advanced metrics Higher order
Comparing differences and

relationships between multiple
pixels/voxels.

- Autoregressive model
- Haar wavelet (wavelet energy)
- Neighbourhood grey-tone difference matrix

(NGTDM)

Table 2. Examples of CT features.

Examples Description

Texture features
(model-based methods)

- Fractal analysis Fractal dimension measures the
irregularity or roughness of a surface.

Texture features
(transformed-based methods)

- Fourier transform
- Gabor transform
- Wavelet transform

They analyse texture in a frequency or
the scale space.
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Table 3. Examples of MRI features.

Texture Features Examples

Grey-level histogram
- Mean
- Variance
- Percentiles (1%, 10%, 50%, 90%, 99%)

Co-occurrence matrix

- Sum entropy
- Sum of squares
- Inverse difference moment
- Difference variance

Run-length matrix
- Run-length non-uniformity
- Grey-level non-uniformity
- Long/short run emphasis

Autoregressive model - Teta
- Sigma

Wavelet transform - Energies of wavelet: transform coefficients in subbands
LL, LH, HL, HH.

3. Malignant CT Features
3.1. FLL Feature Characteristic

In 2007, Mougiakakou et al. proposed five different architectures obtained by combin-
ing texture features with an ensemble of classifiers (EC) in order to optimise the performance
of computer-aided diagnosis (CAD) systems. The best performing architecture was able to
classify normal liver tissue, liver cysts, HH, and HCC from non-enhanced CT images with
an average classification accuracy of 84.96% [23]. Raman et al. obtained two high-sensitivity
and -specificity prediction radiomic models both based on first-order features (mean and
SD). The first was able to differentiate a liver without any lesions from a liver with FNH,
HCA, or HCC; these two characteristics alone highlight the shared hypervascularity of the
lesions. The other model defines whether or not an HCC is present in the liver [24].

3.2. FLL CT Radiomic Features and Prognosis

Radiomic models are able to predict patient outcomes, as showed by Lubner et al., who
correlated CT texture features of pre-treatment hepatic metastatic disease with pathologic
features and clinical outcomes. They analysed 77 non-treated patients with colon–liver
metastasis (CLM) and found an inversely related association between the tumour grade and
entropy, SD, MPP. They did not find any significant association between the baseline serum
carcinoembryonic antigen (CEA) and texture features. The skewness and kurtosis showed
association with KRAS, although it was only available in about half the patients. Their data
express how greater homogeneity causes a greater tumour grade and worse survival, differ-
ent to other studies wherein there was a correlation with the tumour heterogeneity, hypoxia,
and neoangiogenesis, and, thus, to a decrease in MPP and entropy [25–29]. Radiomics
may be also able to identify patients at high risk for the development of colorectal–liver
metastasis (CRLM) at the first diagnosis stage. In a recent study, a radiomic model based
on 101 features was developed and two feature were the most relevant: the median and
small-dependence low grey-level emphasis (SDLGE). This model, if combined with clinical
features, outshines the clinical model itself [30]. A combination of the clinical and radiomic
features can help to predict the recurrence of HCC in preoperative CT better than clinical
variables alone [31]. An example was given in a recent study by Gu-Wei Ji et al. where
they aimed to establish the recurrence risk in HCC models based on the radiomics features
meeting the Milan criteria in patients undergoing resection. They built a preoperative com-
bined model including a radiomics signature and clinical radiologic parameters available
before surgery, and a postoperative combined model, which included the aforementioned
predictors plus pathologic variables. Two clinical models were generated on the basis of
the semantic features and parameters available before or after surgery. Both the prognostic
performance of the preoperative and of the postoperative radiomic model was superior
to the preoperative clinical models. Among thousands of radiomic features identified,
an accurate selection the wavelet-based features achieved the highest weights in order to



Diagnostics 2023, 13, 2591 6 of 15

build the radiomic signature; according to the authors, these features may reflect the spatial
heterogeneity of a tumour and its periphery [32]. In the study by Oh et al., when only
second-order textural features were included, the skewness was the most commonly identi-
fied feature predictive of the outcomes. They also reported that the skewness predicted the
overall survival (OS) better than microvascular invasion [33]. Defour et al. performed a
multivariable analysis of textural features in the portal-venous phase and found that the
skewness was strongly associated with the OS [34]. Kim et al. found that a high-order
feature analysis performed similarly to a combined clinical model (age, hepatitis C, alcohol
use, cirrhosis, tumour capsule, and microvascular invasion) in predicting early recurrence
(ER). The authors also demonstrated that the inclusion of 3 mm of peritumoural tissue
improved risk prediction over segmenting the tumour alone [35]. Lubner et al. also in-
vestigated the role of CTTA in the prediction of the pathology and clinical outcomes in
patients with LM from CRC: entropy, MPP, and SD at medium filtration levels were signifi-
cantly associated with the tumour grade, while the skewness was negatively associated
with KRAS mutation. Entropy at coarse filtration levels was associated with survival [29].
Some studies demonstrated an association between the homogeneity/heterogeneity of LM
and survival. Ravanelli et al. reported a lower OS and progression-free survival (PFS) in
patients with a higher uniformity of the CRLM CT scan [36]. These results agreed with
Andersen et al., who described an association between the shorter OS for patients affected
by CRLM and the tumour homogeneity on the CT [37] (Figure 3).
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Figure 3. (a) Axial T2-weighted MRI and (b) axial arterial-phase CT image belong to the same patient,
suffering from metastatic mucinous colorectal carcinoma. MRI examination shows a hyperintense
focality in the T2-weighted sequences and a hypodense lesion in the arterial phase on CT investigation
(orange arrows). The reason why the lesions exhibit this signal and contrastographic behaviour stems
from their mucinous content.

3.3. LFF CT Radiomic Features and Response to Therapy

In the response to therapy field, Mulé et al. investigated the role of pre-treatment
CTTA in predicting the OS and the time to progression (TTP) in patients affected by
advanced HCC treated with sorafenib; portal phase-derived entropy at fine-, medium-,
and coarse-texture scales was identified as an independent predictor of OS. Entropy at the
portal-phase could be a predictor of survival in patients with advanced HCC treated with
sorafenib [38]. Regarding the prediction of the response to therapy and prognosis of LM,
Su Joa Ahn et al. analysed a cohort of 235 patients with LM from CRC who underwent CT
and cytotoxic chemotherapy using FOLFOX and FOLFIRI; they found that lower skewness
in 2D, higher mean attenuation, and narrower SD in 3D were independently associated with
the response to chemotherapy [39]. With the support of artificial intelligence, radiomics
can generate automated models. Hu et al. aimed to develop a prediction model utilising
radiomic features from liver volumes as input data to machine learning models in order
to predict patient outcomes in patients with CLM treated with radiotherapy. The most
predictive radiomic feature was NGTDM strength [40]. Klassen et al. investigated if
a CT radiomics approach could predict the response of individual LM of esophageal
cancer in patients treated with chemotherapy (CAPOX); most of the extracted features



Diagnostics 2023, 13, 2591 7 of 15

correlated to heterogeneity or described the tumour intensity and seemed to predict the
response to therapy. Another paper focused on non-CRLM in esophageal cancer; the study
found that the characteristics of pre-treatment CT related to heterogeneity and the grey-
level intensity, such as wavelet grey-level co-occurrence matrix correlation and grey-level
distance zone matrix with large dependence emphasis, were predictors of the response to
chemotherapy [41]. As for non-CRLM, Martini et al. analysed a small series of patients and
observed a number of associations: pancreatic NET had a lower skewness and higher mean
Hounsfield (HU) than non-pancreatic ones; entropy in the arterial phase was negatively
associated with PFS in pancreatic NET and with OS in non-pancreatic NET; and kurtosis
was associated with a lower OS in pancreatic NET, while skewness was associated with a
higher one [42] (Figure 4).
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4. Benign Radiomics CT Features

As mentioned above, there are some imaging characteristics about focal liver lesions that
may overlap. Regarding the distinction between HCA and FNH, Cannella et al. reported a
strong difference in the CTTA features between these two groups that may reflect the different
histopathology of these lesions. In particular, on arterial phase images, the mean, mpp, and
skewness were significantly higher in FNH than in HCA on the unfiltered images; the SD,
entropy, and mpp were higher on the filtered analysis. On the portal-phase instead, the mean,
mpp, and skewness in FNH were significantly different from HCA on the unfiltered images,
while entropy and kurtosis were significantly higher in FNH on the filtered images [43].
Raman et al. investigated the role of CTTA in differentiating a hypervascular liver lesion,
including FNH, HCA and HCC. The study showed that only the mean in medium (3 mm
and 4 mm) and coarse filters (5 and 6 mm) was statistically different in distinguishing FNH
from HCA, only on arterial phase images [24]. As described above, Nie et al. built a radiomic
signature using 10 features to distinguish FNH and HCC; the radiomic score showed a
statistically significant difference between these two lesions. In another study the same author
built a radiomic nomogram, which incorporated the patient’s gender, age, enhancement
pattern, and radiomics score (made by a radiomic signature from seven features). The
radiomics nomogram was better able to distinguish HCC from HCA in a non-cirrhotic liver
than the radiomic signature alone [44]. Hu et al. built a radiomic index on an unenhanced CT
using two features (wavelet-LLL first-order median and wavelet-LHL-GLSZM-zone entropy)
that showed great performance in differentiating HH from HCC; lower GLSZM zone entropy
and higher median values of the voxel intensity values indicate more uniform pixels in the
region of interest, and these results might be highly consistent with the pathological differences
between HH and HCC, in which HH consists of a vascular malformation and HCC contains
mainly cytological atypia [45]. Song et al. investigated the ability of CTTA to distinguish
different hypervascular hepatic focal lesions by dividing the benign lesions (HH, HA, FNH)
from the malignant ones (HCC, LM). They found that seven texture features (max intensity,
range, kurtosis, quantile 95, min size, sum variance, and inverse difference moment) showed
significant differences between the benign and malignant groups [46]. Xue et al. also built
a radiomic-based model to differentiate intrahepatic-cholangiocarcinoma (I-CHC) from an
inflammatory mass with hepatolithiasis by selecting two features from the arterial phase:
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(1) GLCM-correlation and (2) grey-level zone length matrix (GLZLM) and three features
from the portal phase (SHAPE compacity, NGLDM contrast, GLZLM); both features from
the arterial and venous phases could differentiate these two types of lesions. The diagnostic
accuracy improved with the clinical data [47]. Zhao et al. selected twenty-seven radiomic
features with specific associated filters to distinguish six categories of FLL (HCA, HH, FNH,
cysts, HCC, metastasis); the classifiers had good diagnostic performance, with the area under
curve (AUC) values greater than 0.900 in the training and validation groups [48]. A Pyogenic
hepatic abscess may mimic primary or secondary carcinoma of the liver on CECT [49].
Hepatic abscesses usually appear as thick-walled lesions with low attenuation on CT and
show increased peripheral rim enhancement on CECT [50]. However, imaging findings
are often nonspecific because certain primary or secondary carcinomas of the liver may
develop central necrosis, which may mimic the appearance of hepatic abscesses [51]. Suo et al.
demonstrated that there were significant differences in the entropy and uniformity among
hepatic abscesses, malignant mimickers, and simple cysts. The abscess had a significantly
higher entropy and lower uniformity compared with malignant mimickers, since the hepatic
abscess was more radiologically heterogeneous than the malignant mimicker [49] (Figure 5).
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Figure 5. (a) Axial T2-weighted MRI and (b) axial arterial-phase CT image show, respectively, a gross
inhomogeneously hyperintense focality on T2-weighted sequences and a hypodense lesion in the
CT arterial phase characterised by centripetal contrastographic enhancement (orange arrows). Both
lesions, given the signal on MRI and the contrastographic behaviour on CT, were considered to be
angiomas.

5. Malignant MRI Features
5.1. FLL Feature Characteristic

Some radiomic features can provide information about the genomic, proteomic and tran-
scriptomic characteristics. Granata et al. were the first to achieve, through thought radiomics,
a correlation between RAS mutation and liver metastasis in a multivariate analysis: contrast,
dissimilarity, and entropy were the most significant features [52]. Hectors et al. not only investi-
gated the correlation between MRI histogram features and immunohistochemical markers of
HCC, but also evaluated how potentially quantitative radiomics analysis can non-invasively
predict immuno-oncological features and HCC. They found that an ADC map variance and
enhancement ratios in portal and late venous phases were significantly correlated with PD-L1
checkpoint inhibitor expression and several texture features associated with CD 68. ADC min
was associated with more or less aggressive molecular subtypes, and late arterial phase textures
were related to PD-1 and CTLA4 immunotherapy targets, while sum entropy was significantly
associated with the risk of recurrence [53,54]. These models, if applied to clinical practice, can
change patient management and therapy. Li et al. developed the first radiomic model SPAIR
T2W-MRI-based concerning 162 patients in a retrospective analysis with the aim to distinguish
liver lesions. The radiomic features selected had three peculiarities, namely, reproducibility, high
degree of differentiation, and low redundancy. Several features, in particular, the mean of energy,
homogeneity, inverse difference moment, inverse variance, small gradient emphasis, gradient
non-homogeneity, large gradient emphasis, and gradient entropy differentiated between LM
and HCC. Inverse variance, contrast, small gradient emphasis, gradient non-homogeneity, LRE,
and long run low grey-level emphasis (LRLGLE) are also able to distinguish HH and HCC;
another contribute to this last differentiation may be given by small gradient emphasis and
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gradient non-homogeneity. SRE and short run high grey-level emphasis (SRHGE) in different
directions can differentiate HH and LM [55]. By exploiting the radiomic features obtained
from the pre-contrast MRI sequences T2w, out-phases T1W and DWI, Wu et al. attempted
to distinguish HCC and HH. The shape features showed the worst results because the shape
and volume change during lesion evolution. T2 and the tut-phases sequences showed the best
results because of the different fat signals between HCC and HH. The model’s most signifi-
cant features concerned randomness (entropy, GLCM—difference entropy), flatness (kurtosis),
asymmetry (skewness, GLCM—cluster shade), variation (standard deviation, GLRLM—run
variance), groupings of voxels with similar grey levels (GLCM—cluster tendency), and het-
erogeneity (GLSZM—zone entropy) in the ROIs [56]. Regarding the application of contrast
medium (CM), Stocker et al. aimed to find diagnostic MRI radiomic features on MRI in order
to differentiate between HCC and benign hepatocellular tumours in a non-cirrhotic liver. In
particular, five features were significant in the arterial phase (skewness, LGRE, SRLGE, SRHGE,
and LRLGE) and two in the portal-venous phase images (LGRE and SRLGE). Only one was
significative in the native T1w images (skewness). In particular, the best results were obtained
from the arterial phase images because of the different vascular supply of the HCC, as well as
the formation of leaky vessels in HCCs. Moreover, HCC and HA in venous and later phases
show a similar drainage pattern and the absence of functional hepatocytes [57]. Through
the minimum redundancy maximum relevance (mRMR) and the elastic network algorithm
method, it is possible to select different significant features from DWI and CE-MRI in order
to distinguish HCC, mass-type cholangiocarcinoma (MCC), and CHC, as demonstrated by a
recent study, which found the cluster prominence, uniformity, and GLCM energy to be the
relevant features. These features were common for three nomograms, which differed for the
sequences included [58]. Zhang et al. aimed to discriminate between HCC and non-HCC in LM
using radiomics features extracted from an MRI. Different models were built, and some features
were common, such as minimum, skewness (first-order feature), inverse different moment nor-
malised (second-order feature), and flatness (shape feature). Furthermore, a wavelet transform
was applied to decompose the original image in order to obtain wavelet-based features; different
first-order (mean, 10th percentile, kurtosis, robust mean absolute deviation), GLCM (Idn, Imc1,
MCC, and dependence variance) NGTDM (strength), and GLSZM (large area low grey-level
emphasis) features became important in different models. The model based on T2W and
contrast-enhanced T1W images achieved the best discrimination performance [59,60]. Xuehu
Wang et al. developed MRI-based radiomic models involving both low-order and high-order
features to distinguish combined hepatocellular cholangiocarcinoma (cHCC-CC), HCC, and
CHC. A model based on higher-order features significantly improved the diagnostic capabil-
ity compared to a low-order features model because of its susceptibility to noise. The most
influential feature was LRLGLE, which received the highest weight in the lasso regression [61].
Yang et al. developed and validated a radiomics nomogram for preoperative prediction of
microvascular invasion (MVI) in HCC involving 208 patients. Their combined model showed
that 10 radiomic features were correlated with MVI, in particular, the sphericity (MVI correlates
with capsular invasion and, consequently, with an irregularity of the margins), root mean square
(different tumour areas correspond to different grey levels depending on whether or not MVI
is present, and, consequently, to a different root mean square), and median of the intensity
histogram (this feature is reduced if MVI is present, as seen in other studies) [62,63]. A CAD
system was used to automatically classify the focal lesions of the liver segmented automatically
by algorithms on the T2W images in the study by Gatos et al. Contrast features, such as the
inverse different moment, sum variance, and LRE, were found to be the most accurate features
of the classification, none being correlated with lesion shape or morphology [64]. In 2018, the
American College of Radiology developed standardised criteria to define the probability of
malignancy of a liver lesion: The Liver Imaging Reporting and Data System (LI-RADS). Among
the various categories, LI-RADS M indicates a malignant lesion where there is no absolute
certainty of it being an HCC. Such lesions are categorised as malignant by MRI and include
not only HCC, but also ICHC, cHCC-CC, and metastases [59,65]. A radiomic nomogram
model based on eight texture features (vertical run-length nonuniformity, difference variance,
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sum of squares, wavelet energy, LL scale1, sum entropy, sum variance, sigma) extracted from
T1-weighted, T2W, and apparent diffusion coefficient (ADC) images improved the diagnostic
accuracy of LI-RADS in benign and malignant liver lesions differentiation [66]. As previously
explained, radiomic models may potentially predict the occurrence of LM: Shou et al. aimed to
develop a radiomics signature based on primary rectal cancer for the preoperative prediction of
synchronous LM. The radiomic score and tumour stage on MRI (mT-stage) were identified as
independent predictors of synchronous LM in patients with rectal cancer. A nomogram incor-
porating these two factors in order to predict synchronous LM was constructed and achieved a
maximum sensitivity of 73.11%. This value is lower than the diagnosis obtained by CE-MRI,
but the potential savings in time and money were emphasised [67]. Liu et al. built a radiomic
signature based on five radiomic features obtained from preoperative T2 images (coarseness,
cluster shade, high grey-level zone emphasis, median, and dependence variance) able to predict
CLM. This model was less accurate than a nomogram obtained by combining the radiomic
signature with CEA and CA-19.9 [68]. Few studies analysed the repeatability of the radiomic
feature in MRI [69], but Carbonelli et al. were the first to attempt to assess radiomic feature
reproducibility on multiple MRI sequences in a normal liver and HCC. Although there was
an acceptable repeatability using the same MRI system and across readers, a decrease in the
inter-platform reproducibility of first- and second-order radiomic features between the MR
sequences, with a less pronounced decrease on the T1WI sequences was registered. The decline
was supposedly related to different acquisition parameters, reconstruction, and field strength
variation between the MRI systems from the same or different vendors [70]. Several studies
have been listed that have proposed an automatic classification of liver lesions, but Jansen et al.
proposed a method able to differentiate between five lesion classes, namely, HCA, cysts, HH,
HCCs, and metastases, by exploiting features derived from delayed CE-MR images with an
extracellular contrast agent, as well as features from T2-weighted images. Importantly, due to
the low sample size, FNH was not included. The risk factors for adenoma, HCC, and metastasis
were also taken into account as features. They tested how the addition of these features from the
delayed CE-MR images and the risk factors from the T2-weighted MR image features improved
FLL classification. In particular, for both grey-level histograms (mean, 10th perc., 90th perc.,
SD, skewness) and texture features (sum of squares variance, sum of average sum variance,
IMC1, correlation, sum entropy, difference variance, contrast), the addition of CM expanded
the number of useful radiomic features. They were able to differentiate between malignant and
benign lesions with a sensitivity of 0.92 for benign lesions and 0.86 for malignant lesions. The
specificity was 0.91 and 0.88 for benign and malignant, respectively [71] (Figure 4).

5.2. LFF MRI Radiomic Features OS and Response to Therapy

Several studies have evaluated the role of radiomics in the prediction of HCC prognosis
using MRI features. In a recent prospective study, the efficiency of CE-MRI-based radiomics
features for the prediction of OS in HCC patients after surgical resection was evaluated. The
radiomic signature alone distinguished high-risk from lower-risk survivors with HCC and
when combined with the clinical features in a combined model, the predictive ability was
improved [72,73]. In another study, Zhang et al. investigated the value of texture analysis
and conventional MRI features for predicting the ER of single HCC after hepatectomy; a
total of 100 HCC patients were divided into two groups (A and B based on tumour diameter
> or <3 cm) and then classified into two subgroups with ER or non-ER. In a multivariate
logistic regression analysis, uniformity and entropy based on arterial phase images and an
irregular margin in group A, and skewness and entropy based on arterial phase images
and arterial peritumoural enhancement in group B were independent predictors for ER.
Entropy displayed a higher predictive power for ER. I-CHC is an aggressive primary hepatic
cancer arising from the bile duct epithelium; surgical resection is currently the only curative
treatment [74,75]. A recent single-centre retrospective study reported that the radiomics
signature on preoperative arterial-phase contrast-enhanced MR images can be used to predict
early recurrence of I-CHC after partial hepatectomy with an AUC of 0.82 and 0.77 in the
training and validation cohort, respectively [76]. Song et al. showed that features extracted
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from pre-treatment portal venous phase MRI images could be useful to build a combined
model together with clinical information that is able to evaluate the recurrence-free-survival
(RFS) of patients with HCC who undergo c-TACE [77]. Trebeschi et al. reported heterogeneity-
related radiomics parameters as predictors of the response to immunotherapy in LM of
melanoma and non-small-cell lung carcinoma (NSCLC); he found that lesions responding
to anti-PD1 antibodies in a pre-treatment CT presented higher levels of irregular patterns
(wavelet, HLH-GLSZM-ZoneEntropy) with more compact, spherical profiles (surface–volume
ratio). This result suggests that morphological heterogeneity does not necessarily correspond
to a genetic heterogeneity [78].

6. Benign MRI Features

Cannella et al. assessed the performance of a texture analysis on CE-MRI for differentia-
tion of HCA from FNH. The skewness on T2-weighted imaging and entropy on hepatobiliary
phase imaging (HBP) were significantly higher in FNHs than in HCAs. Furthermore, the
skewness on arterial phase imaging and the skewness on HBP imaging were significantly
higher in HCAs than in FNHs. A value of skewness greater than −0.06 had a sensitivity of
72.5% and a specificity of 90.6% for the diagnosis of HCA and was the most relevant for diag-
nosis [79]. Zhao et al. developed a radiomics model based on triple-phase CE-MRI images to
differentiate between fat poor angiomiolipoma (fp-AML) and HCC in a noncirrhotic liver. The
radiomics features that contributed most to the diagnosis of fp-AML were root mean squared,
mean, and 90th percentile [80]. In addition, Ding et al. [81] aimed to develop and validate a
radiomic model for differentiating HCC from FNH in non-cirrhotic livers using CE-MRI. In
his study, the author built a radiomic model based on eight features to obtain a radiomic score;
a clinical model (including sex, HbSAg, and enhancement pattern) and a combined model
were also established. The patients were randomly allocated to a training and validation set;
both these groups benefited from the combined model, which had higher accuracy. In both
groups, when comparing the AUCs between the three models, the combined model proved
to be significantly better. The difference between the clinical model and radiomics model was
not statistically significant (Figure 6).
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Figure 6. (a) Axial T2-weighted MRI shows an image (orange arrow) with a hyperintense stellate
scar in T2-weighted sequences, a typical appearance of FNH, with a central fibrotic area that appears
hyperintense in T2 and hypointense in T1. (b) Axial arterial-phase CT shows a focality in the V
hepatic segment at pericholecystic site (orange arrow) characterized by rapid filling in arterial phase
contrastographic on CT; FNH may show this contrastographic behaviour.

7. Conclusions

Taking into account the difficulties in distinguishing between benign and malignant
liver lesions with similar imaging characteristics, analysing some quantitative features not
visible to the naked eye could represent a breakthrough. The studies reviewed thus far
have demonstrated the superiority of a combined clinical and radiomic model in predicting
the classification, prognosis, and response to therapy of FLL compared to the clinical model
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alone. Unfortunately, radiomics nowadays lacks standardised models, although it has
potential applications in imaging.
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